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Theoretical approach is proposed to description of dielectric properties of matrix disperse systems
which consist of dielectric matrix with embedded metallic inclusions. On the basis of effective differential
medium approximation the analytical expressions are obtained for the effective dielectric permittivity € of
the matrix disperse system with inclusions of spherical and ellipsoidal shape. The analysis of limits of pos-
sible values of real and imaginary parts of € is carried out depending on system parameters.

1. Introduction

Under theoretical study of processes of elec-
tromagnetic radiation interaction with matrix dis-
perse systems (MDS) which represent a continu-
ous matrix (commonly, dielectric one) with the
imbedded inclusions of the various form and na-
ture, the effective medium approximation is widely
used. The core of this method consists in that the
MDS with distributed values of the dielectric per-
meability of a matrix €, and inclusions €, , is sub-

stituted by continuous medium with effective di-
electric permittivity € , which depends both on ¢,

and &, , and on the value [/ =V/V, (where V' isa
volume engaged by inclusions, ¥, is a total vol-

ume of a system) as well as on its statistical distri-
bution in a matrix. Such approximation is in a
close relation to the experiment in a case when
wavelength of the incident electromagnetic radia-
tion is large compared to the inclusion sizes and
the mean distance between them (long wave ap-
proximation). There are many calculation meth-
ods for such systems. The literature review con-
cerning this problem can be found in [1-2]. In the
present paper the calculation of effective dielectric
permittivity € is carried out under the large con-
centration of metallic inclusions of spherical and
ellipsoidal shape in the approximation of differen-
tial effective medium (DEM) [3-5]. The estimation
of possible limits of values €' and " (€ =€'+i€")
is obtained with use of common methods of elec-
trodynamics of inhomogeneous medium.

2. The MDS effective dielectric permittivity in
DEM approximation

A correct calculation of effective dielectric permit-
tivity (€ ) of MDS under the large volume fraction of

inclusions represents a very complicated problem.
One of the methods of € calculation is the differen-
tial effective medium approximation (DEM) [3-4].

Generally, DEM follows from the average field
approximation (Bruggemann approximation [6]).
In case of inclusions of ellipsoidal shape the Brug-
gemann approximation for calculation of € has a
form:
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where L is a depolarization factor along the large
semi-axis (L,=L; L,=L;=(-L)/2), ¢, and
g, are dielectric permittivity of inclusions and a

matrix, respectively. Consider first the variation of
the effective dielectric permittivity at the expense
of adding a small portion of particles of the sec-
ond phase with relative volume Af . This change

will be:
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After differentiation of Eq. (1) we find:
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In the result of addition to the effective medium of
Af portion of particles of the second phase, fAf

particles of the second phase will be replaced.
Therefore, the actual variation of a fraction of
particles of the second phase in a new composite
will be: Af,;; =(1= f)Af , i. e. in the relation (2) it
is necessary to replace Af —Af/(1-f). In view
of it, the relation (2) will have a form:

dg d

= =L_ 4)
glee) 1-f

The solution of the Egs. (3)-(4) with the initial
condition € =¢, at f =0 gives:
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Thus, for the case of particles of spherical form
at L=1/3 and a=1/3, y=1/2, b=0, this formula

takes a form [4]:
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Let us analyze the case of symmetric replacement
fewy=(-7) in the formula (1). Really, such
replacement can take place when considering the
dielectric in MDS as inclusions, and metal parti-
cles as a matrix. The physical sense of the formula
does not alter from such replacement. Then, from
Eq. (1) we obtain:
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For the case of particles of spherical shape with
L =1/3 this formula acquires the form [3]:

30
f{%} = | ®
13 €, —€

From formulas (6) and (8) it follows the relation
for calculation of € :

l_t;f_.f.L:L. (9)
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The equation (9) belongs to a common class of
relations of a kind:

= o, + (- el (10)

which, as shown in [7], at |k| <1 completely satis-
fies to the theorems on the limits of possible values
of the effective dielectric permittivity for MDS and
statistical mixtures [7-12]. The further considera-
tion of behavior € depending on parameters of
system we will carry out using just these methods
and restrict with the MDS, consisting of the dielec-
tric matrix with the metal inclusions of spherical
shape.

3. Estimation of limit value € for disperse systems

The following inequalities (Wiener relations
[9]) for € are valid for real €, and g, for two-

component system:

endificens (11)
e, (12)
S5 B w8

€+=_fi€|+f282, (13)
where f; and f, are volume fractions

(i + /, =1); €, and &, are dielectric permittivities
of medium components; €, is a dielectric permit-

tivity of layered dielectric in electrical field parallel
to the border of layers; €_ is the same for the per-

pendicilar field orientation. Later in the paper [10]
the estimations of a type of Eq. (11) were im-
proved and generalized to the case of complex g,

and €, [11-12]. In the case of real € and complex
€, the limits of area of possible values of €' and
g" (€ =¢'+i€") are given by set of relations (12)
and (13) [8], which after introduction of variables
x=%/e, and 1=(g, —¢,)/g, will have a form:

PRy (14)
l'

(x'—a)2 +(x' '—b)2 =R?,

a=—l-‘, b=—1—( ‘+|t]2); R=+va> +b% ,

2 2t
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where x' and x'' (x = x'+ix'") are real and imagi-
nary parts of x; ¢ and ' (z=r+ir'") are the
same values for ¢ . When obtaining Eqs. (14) and
(15) from (12) and (13) the value f was excluded.
The straight line of Eq. (14) in a plane of variables
(x',x'") passes through a point 4 (x'=1; x"'=0
corresponds to €,) and B (x'=1+17;" x''=1' corre-
sponds to €,). Through the same points the circle
of Eq. (15) passes, which passes, besides, through
the coordinate origin. As a result of crossing
Eq. (14) and Eq. (15) the segment of the permitted
values x' and x'" (Fig. 1) is formed. It should be
noted that x' and x'', as it follows from Egs. (12)

and (13) parametrically depend on
I =fasfi=1=1).
xll
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s 3
4 1
2
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Fig. 1. The borders of real and image parts of effective
dielectric permittivity in the case of inclusions of spherical
shape at f=0.5 and €1=2; £2=5+10i

1) Maxwell-Garnett approximation Eq. (21);

2) the approximation Eq. (9);

3) Landau approximation Eq. (23);

4) DEM approximation Eq. (6)

In the paper [7] the improved estimations of
limits of permitted values of € are obtained. They
look like Egs. (10) and (11) from [7]:
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These relations can be easily written down in vari-
able 7:
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As a result of intersection of circles (18) and (19)
the small segment is formed, which tops lay on a
straight line (14) and a circle (15), whereas its posi-
tion in a sector depends on f. One can show [7]
that relations for calculation of € in a form (10)
under |k| <1 satisfy to the restrictions given above.
It should be noted that a number of known rela-
tions belongs to the condition (10). When k =+%I
we have Egs. (12) and (13), when k=1/3 there is
the relation of L.D. Landau [13], and when
k=-1/3 we have the relation (9), etc. The case
k=0 is a special one and £ can be found from
the relation of Lichtenecker [14]:

In€=flIng, + (- f)lng,. (20)

The relation (20) also satisfies to above mentioned
restrictions. On Fig. | the area of the permitted
values of €'and €' is shown for the case [ =0.5

at € =2; & =5+10i. The points in the figure
correspond to values of € calculated by the for-

mulas:
the point (1) is Maxwell-Garnett approximation

(2]
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€—-§ =f &5 =B (21)

>

€+2g €, +2¢,
point (2) is the average field approximation [6]
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) b o f 2

g +2€ g +28

(-7 =0 22

the point (3) is the formula (8), the point (4) is the
formula (9), the point (5) is the formula of
L. D. Landau [13]:

=l + -1k (23)
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Fig. 2. Dependence of dielectric permittivity € of MDS
on the volume fraction of inclusions f, calculated by the
DEM approximation with £1=2; £=40

1) the upper border of value €, Eq. (13);

2) Bruggeman approximation Eq. (22);

3) Landau approximation Eq. (23);

4) DEM approximation Eq. (6);

5) the approximation Eq. (9);

6) Maxwell-Garnett approximation Eq. (21);

7) the lower border of value €, Eq. (12)

All the calculated values of € lay in segment
area, i. e. in the region of permitted values. On Fig. 2
the dependence € on f is shown in the case of real

values € =2; €, =40 calculated by relations (21)-
(23) and (8)-(9) for the value L=1/3. From the fig-

ure it is visible, that all curves lay in area limited by
straight line Eq. (12) and hyperbole Eq. (13):

g =1, (24)

1+¢

R (25)
(-fNi+0)+f

4. Discussion and conclusions

The obtained relations (5)-(9) for the calcula-
tion of € in DEM approximation for the case of
spherical and ellipsoidal inclusions do not contra-
dict the conditions of restrictions Egs. (15) and
(18)-(19) for values €' and €'. However, here are
several moments which we would like to discuss.
When restricting with the case of spherical inclu-
sions, as follows from relations (21) and (22), the
structure of inclusions (spherical shape) is present
in expressions (21) and (22) through multipliers

g —§ E—¢g €—¢g,

] Ll

. These multipliers

g,+28 g +2€ g +2¢€

determine within an accuracy of the value a (where
a is the particle radius) the polarizability of a par-
ticle. It should be noted that the generalization of
relations (21) and (22) to the case of ellipsoidal
inclusions may be found in the work [1]. The par-
ticle’s structure comes in relations of DEM ap-
proximation Eq. (5) partially, whereas in the case
of approximations Egs. (9), (10) and (20) they are
absent at all. The importance of account of inclu-
sions structure is especially seen in processes of
absorption of microwave electromagnetic radia-
tion in matrix systems with metal inclusions. Thus,
in the case of inclusions of the spherical shape un-
der small f the peak of absorption is found out

on a frequency close to the surface plasmon fre-
quency of inclusion ~®,, /\/_3’ [2].

The value ®,; can be found from a condition
€',42¢, =0, which in no way enter into relations

of DEM approximation. It seems that relations
(5)-(8) very well describe electrodynamical proper-
ties of various statistical mixtures in low-frequency
range under large values of f. Their using makes
attainable the description of electrodynamical
properties of dump porous systems (sand, ground,
rocks, etc...). Proceeding from the relations (5)-
(8), the theoretical explanation was obtained of
Archi law [15] for effective conductivity (3) of

such rocks:

=0,/ (26)

where G, is the fraction conductivity.

Thus, despite of the limitations of relations (9),
(20)-(23), they can be used for calculation of elec-
trodynamical properties of two-component sys-
tems practically in all the interval of variation of

thevalue f/ (0< £ <1).
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D¢dexTUBHAS AMJIEKTPUIECKAs TPOHHLIAEMOCTH
MATPHYHBIX JAMCIIEPCHBIX CHCTEM B NPHOIHKEHHH
nuddepeHuabHOl 3 derTHBHON cpeabl

B. H. ITycroeur, JI. B. I'apanuna,
H. ®. Muponiok, C. B. Illoctak

IpeaioxeH TEOPETHYECKUI MOAXOM K Onuca-
HMIO JM3JIEKTPHUYECKUX CBOWCTB MATPUYHbIX JHC-
MEPCHBIX CHCTEM, COCTOSILMX M3 INIJIEKTPUYECKOH
MaTpHLbl C BBEJEHHbIMM B Hee METaJIMYECKUMU
BrmoueHusmMu. Ha ocHoBe meroaa 3 dexTHBHOM
qdepeHIHanbHOM Cpelbl MOJyUYeHbl aHaIUTH-
yecKHe BbIpaXeHUs T 3DHEKTUBHOM AUIIIEKTPHU-
4ecKOil NMPOHMLAEMOCTH € MAaTPUYHOM amcrepc-
HOM CHCTEMBI C BKJIIOUEHHAMHU C(HepryecKon U 3Ji-
nuncoupanbHoi Gopmbl. ITposeneH anamms rpa-
HUII BO3MOJKHBIX 3HAYEHHI [eHCTBUTENLHOW M
MHMMOIi yacTeli € B 3aBUCHMMOCTH OT NapameTpoB
CHCTEMBI.

E¢eKkTHBHA AieJIeKTPHYIHA NPOHUKHICTH MATPUY-
HHUX JMCNIEPCHUX CHCTeM y HAG/MuKeHHi aude-
peHuiaIbHOrO e)eKTHBHOTO CepeIoBHILa

B. M. Ilycrosir, JI. B. Tapanina, I. ®. MupoHiok,
C. B. lllocrak

3anpornOHOBAHO TEOPETHUHMIA MiAXIA [0 Ornucy
JlieNeKTPMYHKUX BJIACTUBOCTEM MATPUYHMX JMCIIEpC-
HUX CHCTeM, fIKi CKJIaJaloThCsl 3 AieIeKTPUYHOI MaT-
puLi 3 MeTaniyHnMK BimoueHHamn. Ha OCHOBI Me-
Tofly epeKTUBHOrO AM(EPEHLiabHOrO CEPEIOBHILA
OTPMMaHO aHaJiTUYHi BHpa3u A eheKTUBHOT
IieNeKTPUYHOI MPOHUKHOCTI € MaTpHUYHOI AuCHepe-
HOi CHCTEMH 3 BKIIIOYEHHSMH ChepuyHOl Ta
enincoinanbHoi  opmu. IIpoBeeHo aHaii3 Mex
MOYUTMBHX 3HaYeHb IHCHOT TA ySBHOI YacTMH € B
3aJI©KHOCTI BiJl MapaMeTpiB CUCTEMH.
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