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Electromagnetic Response of Interacting System of Metallic Particles
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A theoretical approach is formulated for the calculation of the macroscopic dielectric response of a random
system of metallic spheres embedded in an uniform dielectric medium. The appreciable deviations from the
Maxwell-Garnett formula are found. It is noted that with the metal volume fraction increase the role of pair mul-
tipole interactions between inclusions becomes significant. The frequency dependence of the imaginary part of
the effective dielectric function of the system is calculated with account of the dipole-dipole interaction between

particles which consist of two different kinds.

1. Introduction

The calculation of frequency-dependent dielectric
function of a composite presents an old though still
unsolved problem [1-3]. There have been many differ-
ent approaches [4-13] to its solution, but there is still
no the theory that could provide complete quantita-
tive agreement with the corresponding experimental
measurements. We study suspension of metallic
spheres randomly distributed in an insulating matrix.
The effective dielectric function € of such system is
given by the Maxwell-Garnett formula (MG) [1] un-
der small concentration of inclusions. In present
work, we propose the generalization of method of the
paper [8] to the case of the composite containing
spherical metallic inclusions of different sizes. We
take into account only the pair multipole interaction
between inclusions (the first correction to the MG
approximation). An observed sharp absorption
maximum can be attributed to surface plasma modes
of individual pair of spheres. A general expression of
€ and its imaginary part as functions of parameters
of the composite containing inclusions of the same
metal particles but with two different sizes is consid-
ered in Section 2 using this method. In Section 3 the
brief discussion of the results is given.

1. The dielectric function of a composite

We consider a system that consists of the uniform
dielectric matrix with embedded in it spherical particles
of different kinds (noted below by indices a, b, ...). The
matrix dielectric permittivity is €,, and the particles

dielectric constants are g,, €, ..., respectively. Let
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the number of spheres of kind a be N,, 56— N, ....
The total number of particles is N = ZNG . The sys-
o

tem is located in the external field proportional to
e with a wavelength A=2nc/o which is large
compared to the sphere radius and the mean distance
between particles; n, =N, /V , n, =N, [V , ... are the
concentrations of particles of the kinds g, b, ...
Generalizing the method of cluster expansion [8-
11] to our case we can obtain the following relation
for the effective dielectric permittivity of a system [14]:
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(o =£“—_§9—r‘,3 is the common dipole polarizability
€, +2¢,

of a single particle of a kind a; ®,(R) is the two-

particle distribution function of particles in the ma-

trix, r, is a radius of particle a, R=(R, -R, |, R,

and R,, are the origins of spheres a and b, respec-
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tively, B+ are the longitudinal and transverse parts

of two-particle polarizability. Formula (1) is a gener-
alization of relation (5.8) of the paper [11] to the case
of system with inclusions of different kind. Taking
into account only the pair dipole-dipole interaction
between particles, we have [14-16]:
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It should be noted that the developed method al-
lows generalization to the case of the higher pair mul-
tipole interactions [17] as well as to the case of multi-
particle interactions. The convergence of the integral
in Eq. (1) in the limit N - o, V' - o, N/V =const
was discussed in [8-11] in details. Using an elementary
approximation for the two-particle distribution func-
tion @, (R):

R>r, +1y

4>(R)={1 3)

0 R<r,+n,

and restricting ourselves with the case of two kinds of
particles of different radii when n,=n,=n;;
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from Egs. (1-3) we get
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and fj = %E-R:’no is the filling factor of inclusions.

Using this formula, we have carried out the nu-
merical calculation of the frequency dependence of
the imaginary part of € under various parameters of
the composite (See a Figure) consisting of a glass ma-
trix with embedded silver inclusions. The dielectric
function &(w) of the metallic spheres is given by the

Drude model [3]
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Plot of the imaginary part of E((o)/eo depending on
= m/ ©, and parameter A for silver spheres in a glass at

volume fraction f, =0.04; MG — Maxwell-Garnett ap-
proximation at A=1
with &l =45,

o | S BT (1

y=1.68-10"s7" for silver spheres. It should be noted
that from Eqgs. (2) in a particular case A=1, €7, =0
and y =0, we obtain the frequencies of dipole surface
plasmons for the particles, all of the same size [18-19]:
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L

——=——is a surface plas-
Ve, +28

mon frequency of a separate particle.

where p=L, and o, =
R

2. Discussion of received results

Here we briefly discuss the obtained results. First,
hold the case A =1. Then from Egs. (4)-(5) it follows,
that € can be found from the relation

& 3/B
e=¢gyl 1+ Zf 5+ B |’ ®)
1- fB-=fBIn
3 8-2B

at f=2f,, which comes to the MG approximation
when the term with logarithm in the denominator of
Eq. (8) is neglected. It was analyzed in details in paper
[14]. This term is associated with the pair dipole-
dipole interaction (PDDI) between inclusions. The
account of PDDI results in appearance of bounded
absorption frequency band instead of a single fre-
quency o, in the system. Really, at A=1 and

€ =0, y—0 from Eq. (7) follows that each parti-
cle can absorb at two (o and o,) frequencies,

which values essentially depend on a distance R be-
tween a fixed particle and any other particle of the
system. So,at R—>», o; =0, =0, and at R=2R,
(the minimal distance between particles) these fre-
quencies are given by expressions

o =—L2—; Tl =—2— ©

Actually, this frequencies o, and o, define the

merges of continuous spectrum of absorption. The
spectral dependence of E(a)) of composite is obtained
after averaging over the all possible positions of the
particle pair in the matrix. It should be noted that in
the metallic composite at f ~0.1 and more, the fine
structure of the spectrum can be observed [4,14] if
only PDDI is taken into account. The account of
higher pair interactions between inclusions

(quadrupole /=/"=2, octupole [=/'=3, etc.) can
be made within the frameworks of our theory and
would result in some partial smoothing of the fre-
quency dependencies of Im&(w) [17]. The similar ef-

fects can be caused also by other reasons — by many
particles interactions, by the effect of clustering of
particles, etc.

In case 7, <<r, (A - 0) the & value can be found

from Eq. (8) at f = £, i.e. the contribution of parti-
cles with small radius () into value of ¥ is negligi-

bly small. The intermediate case is shown in the Fig-
ure where from it follows that account of simplest size
distribution turns to smoothing fine structure in the
frequency dependency of Im E(co)
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D/1eKTPOMATHHTHBIH OTKJIHK CHCTEMbI
B33aHMO/EHCTBYIOLIMX YACTHII

JI. I'. I'peuxo, B. H. Ilycrour, B. B. Boiiko

ITpennoxkeH TEOPETUYECKHM NOAXOA K BbIYHCIIE-
HUIO 5(0(DEKTMBHOMH IMINEKTPUYECKON MPOHMIAEMO-
CTH CHCTEMBI, COCTOAILEN U3 IBYX COPTOB MeTajuInye-
CKHX cep pa3sHOro pamuyca, CIy4aiiHO PacroNoMKeH-
HBIX B JMIJIEKTPUYECKOH cpexe. M3yuyeHbl OTKIOHE-
HUs OT opmynsl Maxcsemna-Iapaerra. I[TokasaHo,
4TO C yBenuMyeHueM oOBbeMHOM (pakuuy yacTui[ B
CHCTEME CTaHOBATCH CyLIECTBEHHBIMH 3 deKTh
MYJIBTHIIONBHOTO B3aUMOJEHCTBUS MEX/Iy 4acTHIa-
mu. C ydeToM IMMONb-AUNIONILHOTO B3aUMOEHCTBHS
PacCMOTPEHO IOBEAECHHE YaCTOTHOM 3aBUCHMOCTH
MHUMO¥# 4acTi 3Q(GEKTUBHOM AUIIEKTPUUECKOl Npo-
HUIIaEMOCTH CHCTEMBL.

EnextpomarniTHuif BIATYK CHCTeMH B3a€EMOAII0UMX
MeTaJIYHUX YaCTUHOK

JL. I'. I'peuxo, B. H. Ilycrosir, B. B. Boiiko

3anponoOHOBAHO TEOPETHYHMH MiAXixm mo o6umc-
JIeHHs e(heKTHBHOI JieNIEKTPUYHOI TIPOHUKHOCTI CHC-
TEMH, SKa CKIAJA€TbCd 3 OBOX BHMIIB MeETaJiyHMX
chep pisHMX papiyciB, BUNAJKOBO PO3TALIOBAHHX B
OieNEKTPUYHOMY cepe/loBuIli. BHBUEHO BimXumeHHs
Bix popmymn MaxcBemna-I'aprerra. IToxasano, wo
i3 36inbIIeHHIM 06’eMHOI (pakuii YaCTHHOK B CHC-
TeMi CTAalOTb ICTOTHUMH €(pEKTH MyIbTHIONbHOL
B32€MOJIl MiJK YaCTMHKaMU. 3 ypaxyBaHHAM JUIIONb-
AUTONILHOT B32EMOJIT PO3IIIAHYTO MOBEMIHKY YacTOT-
HOI 3a7eXKHOCTI ySBHOI YAacTMHM  e(eKTHBHOI
Ji€TIEKTPUYHOI IPOHUKHOCTI CHCTEMH.
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