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Efficient Technique to Solution of SIE in Scattering Theory
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Efficient numerical approach proposed to solution of the scalar diffraction problem for arbitrary shaped cylindrical
screens is considered. Treatment is based on direct numerical solution of the singular integral equations of the problem.
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Introduction

An analysis of electromagnetic wave scattering by
different type of inhomogeneities in the plane stratified
media is one of the interesting problems in radio science
[1-4], geophysics [5-7], non-destructive testing [8,9] and
the other applications. In the resonance region - the most
difficult case for theoretical investigation - the integral
equation technique is widely used in solving of the cor-
responding diffraction problems. For heterogeneous
structures including different cylinders such equations
were formulated regarding unknown surface current
densities [10,11] or internal fields [12-15]. Numerical
investigation of electromagnetic scattering by resonant
screens in open planar stratified media has been carried
out in the case of strips [16,17], circular cylinder with a
slot [18,19], combination of them [20]. The integral
equation technique was extended also for analysis and
design of multilayer printed circuits and antennas [21-
25]. The paper [26] reviews recent works by a number
of investigators in this field. Note, that the moment
method [27] is widely used under numerical treatment of
the corresponding integral equations. Sometimes (for
example, in the case of resonance mode excitation) such
approach leads to a large algebraic system and could not
reach a sufficient accuracy. Similar problem appears
under investigation of the other resomant structures. A
diffraction grating is well-known representative of such
structures due to its important role in different electronic
equipment design. Rigorous mathematical approaches
are very useful in this case to state the physical proper-
ties of a scattered field. A simple grating of strips or cir-
cular cylinders with or without slot is usually explored as
a classical testing ground of these techniques (see ex.
[28-33]). In comparison with single element array which
diffraction properties are sufficiently established the
multilayered grating has additional waveguide features
[34]. In both cases arbitrary curvature of grating’s eie-
ment destroys the implementation of such rigorous ap-
proaches and needs of numerical method's usage.

The present paper’s aim is to outline a general nu-
merical approach to accurate solution of wide class dif-
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fraction problems for arbitrary cylindrical screen's sys-
tem. The approach is based on singular integral equa-
tions’ technique. We illustrate this approach to the
screens in an open planar waveguide as well as to a mul-
tilayer diffraction grating. The features of the proposed
algorithms are: application of the potential method in
boundary integral equations [29]; direct numerical treat-
ment of the obtained singular integral equations using
the interpolation-quadrature technique [35]; manner of
Green functions calculation by contour integration and
polynomial approximation [36]. We exemplify the algo-
rithm’s serviceability and validity by solution of scatter-
ing problem in the case of two resonance cylindrical
screens located in a dielectric slab.

Statement of problem

Let planes z=0 and z= — d form the boundaries of
stratified medium. Assume that the upper half-space S,
the slab S, and the lower half-space S, have dielectric
permittivities €, €,, €; and magnetic permeabilities L,
Mo, K3, correspondingly. Note, if we put €,=€;, W,=U,
then the slab’ thickness tends to infinity. In the case of
€,=€,=€;, ;=M,=Ll; we obtain a homogeneous me-
dium. Let the slab consists of a system of N open, infi-
nitely thin and perfectly conducting cylindrical screens
as well as a homogeneous dielectric cylinder (rod) with
dielectric permittivity €, and magnetic permeability 1.
We suppose that the structure is uniform in the z-
direction of Cartesian coordinate system Xxyz (Fig.1).

The arbitrary smooth contours L, k =1, N and L,
form a cross section of the screens and cylinder by xOy
plane. We designate a domain inside of curve L, as S,
In the plane x(y we consider an arbitrary two-
dimensional wave with time factor exp(-i®f) (w is an

angular frequency) as illumination of the described
above structure. Introduce now the corresponding wave

numbers [ ;:



Efficient Technique to Solution of SIE in Scattering Theory

TP
YA S ‘\fyT/ iR

| L o
[ ITY Ry Q_,/v‘\‘\x

€M X2 S )(7
2 r \
LO
SO

€05 thos Yoo

)

Ly
L,
C)

S

-d 835“3?%3

Fig. 1. The geometry of the problem
X =0yE ;=03

Then the scattered field satisfies the Helmholtz equa-
tion

ool

(E and H are electric and magnetic field’s components).
Our problem is to determine the solution of this equation
with continuity conditions for tangential components on

the boundaries of domains .S;, i = 0—,5 :

[E’Ei]lsinsj = [H’Ej] sns;’

[E’H"]ts,.nsj =[ﬁ’Hf]s,.

as well as with the following conditions on the screens:

[AE] =0k=LN

L

ns,’ i,j=03

(1 is a normal to the corresponding boundary).

For solution uniqueness we demand that the waves
which propagate from infinity (except exciting one) are
absent. In addition we suppose that the field components
satisfy to Meixner’s edge condition at screen ribs.

Green’s function

To reduce our problem to the integral equations we
use the method of potential. As far as the initial problem
could be separated into two cases:

e the case of E-polarization when electric component

of excitation wave is parallel to the axis Oz:

E(00.E"+E°) H(H,,H,0),

(O
H, L (——E (x,y)+|x2|hx}
no \ oy

h = —l—iE‘(x,y),

* ]XJIay
H, =L ZE )l
Y po \ 8x ’ Wy p
1 &
ho=t 9 ps
¥ IXz‘axE(Z)

o the case of H-polarization when magnetic compo-
nent of excitation wave is parallel to the axis Oz:

a0, H +H*)E(E,E, 0),

[0 .
Ex =J-(——H (x’y)+!x2|exj’

ew \ Oy
1 o )
e, =——H"(x,y
‘leay ( )’
E =——?—(3~H‘(x y)+{x.le )
Y sw \Bx ’ 2y p
1 ¢ .,
ey—l*aé‘;H (x,»)

So, we consider these cases separately. The super-
scripts “*” and “s” (here and below) denote components
of initial and scattered field.

Let us find the Green function G of the problem as a
solution of inhomogeneous Helmholtz equation in the
following form

—5+ =5 |G X, ¥, %5, ¥ )+
P ayz ( Vs Xy yo)
2
+ X G(x’ M Xo5 yo) = _S(X —Xgs YV J’o)
(6(x - Xy, Y — y{)) is Dirack’ delta function). We take
into account that function G satisfies following condi-
tions on interfaces between S, and S, domains:

G#(x.+0),, =GE(x.3-0)

3

y= y=0
18G5 (x,y+0)l 1 8Gf(x,y-0)
meooy |, m |
(E-polarization);
G (x,y+0)| , =G} (x,y=0) .
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190G (x,y+0)
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_ LaGZH(x’y_O)
e, oy
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(H-polarization).
Similar conditions should be satisfied at the boundary

y=—d

Gy +0) =G (xy-0) .

1 G (x,y+0)l 1 8GF(x,y-0),
[ T -

(E-polarization);

G'(x,y+0)_, =G (x.y-0)

y=—d

>

y== y=-d
1 8G (x,y+0)| _i?Gf(x,y—O)
€, oy ’ a3 oy oy
(H-polarization).

Additionally, the Green function G has to satisfy
certain (see above) condition at the infinity. In the cases
of E- and H-polarization we get two Green functions
[37]. We can write them in the domain S, and .S, as fol-
lows:

2
|
GIE'H(X:)/:xo: J’O) = ;E x
x+]ffp exp[ypv2 —-yv, +i& {x_xa}]dé;,p _12
e g
fl =2(vopistvab ). Vi=Ve,
]{2=2(V2P13—V3P23), Y2,= —2d-y,,
—-d< y,<0, =0
GzE!H(x’.%xOSyO) =
1
= H () + 87 (x = 0,3, 3).
S?_E‘I-I(xsy’yO):b ]
E 1 "Fg,expP v, +iEx —
— dt , p=14,
Z=1 4 i v,8 5. 2
—dsy,  y<0,

£1=(VaP s ViD5)(VaP13+Vapas), 8170ty

8 =(ViD1s= Vi) (VaP15—VPys), 0,=—2d+yy,
&5=(Vap i3 tViPy)(VaD 15— VaD3), 6,23y,
8782 8,=—2d-y,ty,

8 =(Vop 15tV D) (VP13 +VaDy))-

(VP15 ViD2)(VoP 13t Vi Jexpl-2dv,)].

Here H®(z) is

(E-polarization)  or

Hankel function,
Py = Xzzsz
tion); v; = JE? - sz ; Ri{ve}20; 1,7 = 1,3. Similar

expressions can be easily written in the domain S;.
First we consider the simplest case of the problem for
homogeneous medium. Suppose that the incident plane

Py Ly
(H-polariza-

wave propagates at the angle B to the axis Oy. Let the
system of V screens forms an infinite grating with period
d (Fig. 2). In this case for the E.-polarization we have the
following well known representation of the Green func-
tion:

i

GgE(lA,,Z) = ZHé”(xltk - z])+

+i. ib’é”(xltk +ud — z‘)

H=—00
u=0

As far as our problem does not depend on z coordinate
we use this symbol (here and below) to denote a com-

plex value z=x+iy. Then z = x — iy designates a
complex conjugate value. If point z belongs to contour
Ly (Lyweputz = t,=x,+iy, (z=0).

VAR,
/ 0, %

O X

Fig. 2. Infinite gratings in the field of plane wave

As it is well known the above series are weak to con-
verge. For its calculation we propose to use the familiar
integral representation of Hankel function [38]:

i el Sspoobveenfe:
_H(l) f— _ [ Sfr—zfv+ER{-z} ,
4°° (Xi Z|) 47trJ.ve %
v=.8" -y ®{v}=0,

3{v} <0, 3{g} 20,0<Rig} <y, e T,

Here the contour I" is chosen according to the Fig. 3, A,

are cuts on the complex plane &,
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Substitution of the last formula into the Green func- Hidden line of the path signs the part where
tion representation yields ‘R{v} < 0. Thus, after carrying out some manipulations

Gf(lk,z) = iHél)(X‘lk - z|)+

I & s I sfy eyl —ud—:)
+— e iy sin 3 —e" & 3 d +
4r Z: '[v :

rrrl

we lead to

. 2
GE(t,.2) = i_Hén(ijk ~ )+ ZSp(tk,z,d, B).
p=

1

S (t,,2,d,8) = Z;t—exp[qixdsin B]x

exp[—lS{tk —z}iv + qiERY, +9d -Z}]d
| V(1 +geErmsn) ) -

+L +oo0 o Xdusin B Ile—VS{Ik~:}1‘v—i?’;ilt{tk+ud—z}d§ ‘
r A%

475 u=l

1Nm

14

g=(-1)".
It is easy to see that there are Cauchy’s type singu-
larities of the integrands at the nodes

S{EA

|
l
|
! A E,=qn/d— qysinf . We denote them by nodes on
* the Fig. 4.
l e R{E} Let us consider the numerical algorithm for Green
— - ‘ ! » function calculation. It is easy to see that the Green
=X r function consists of two kinds summands. The first kind
Al is a fundamental solution of Helmholtz equation (a free
space Green function) and consists a logarithmic singu-
larity. The second one is a series of Sommerfeld type
integrals. The last integrals are regular functions. Nev-
ertheless they cause well known difficulties during the
Green function calculation.
Let us write a general form of the Sommerfeld type
integrals for stratified medium by mean of the following
formula [39]

Fig. 3. Integration path for Hankel function integral repre-
sentation

9(§)

+00
Note that it is impossible to move the sum sign into Io,B)= j——-—— exp(—ov, +iEB ) . (1)
integral (under such action the sums diverge in the fourth = Y2

quadrant of complex &-plane). To do it we have to
change the integration path according to Fig. 4.

J{E}

|
J{EW |
e | C
1
I
|
s,
\ x 0
et N ——— >
N —X 0\‘ R}
N |
& N\ |
-O0—06- 00— ——> A ]
X o X R{E} ‘:
[

Fig. 4. Integration path for Green function of periodic prob-

lem Fig. 5. Integration path for Sommerfeld type integrals
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We propose to use some integration path I” according
to the Fig. 5. The angle O is chosen according to relation

S[-av,+BE] e const, tg(0)=P/a, Eel’. (2)

Condition (2) ensures the fastest decay of the integrand
(1) and avoids its oscillation.

If the losses of stratified medium are absent then the
waves are not damped and can propagate to infinity in
the domain S,. Mathematically, the advent of an own
waveguide mode corresponds to residue appearance on
the real interval [0;y,]. We can write this condition in
the following form

gk, )=0, g'€,)=0, i=ln ®)

Here 7, is a number of zeros of the function g(&).
Actually, », is the same as a number of waveguide
modes.

Let us consider an asymptotic behavior of the Green
function at x —> 00. As well as at x—>c0 the integrands
in the fourth quarter tend to infinity we have to change
an integration path according to Fig. 6 in the case when
n,#0.

S{EH

Fig. 6. Integration path for Sommerfeld type integrals at
E —>

It is obvious that integrals over I';UI’, tend to zero
and integrals over ' are equal to sum of the residuals at

points &, I =1, n, . Hence, the asymptotic expansion of
Green function can be written as

GIE,H(x = psin(p,y = pCOS(P,xo’yo)p

~—»00

=G="(0) = Zt;ﬁf”(ij)ex S{Vl (gj )} rr ’Efx] *

1
+ L5 (1,0) \/znm

GZEH (x’ Y Xo5 Vo )x;:‘w
62 ()= 3.2 5 Jouflufe )

Here "’;i,H (Z,(p) is known function that depends

sing exp(ixl p—in /4) ;

only on coordinates; Eif (E;j) are coefficients that

depend on number of modes.

It is easy to see that the Green function representation
for the upper half-space has two components. The first
one is a function that vanishes at infinity. The second
one is undamped function and has exponential behavior
at y—>0. The Green function representation in the do-

main S, has only undamped waveguide modes.

3{cH

Fig. 7. 4 modified integration path for periodic Green fune-
tion

In the case of periodic Green function we have to
change our approach as far as the Green function is de-
fined on the grating period and is periodical function of
X-coordinate. So it is necessary to consider its asymp-
totic behavior when y tends to infinity. For this reason
we have to change an integration path because on its
hidden part the integrands grow to infinity. To do it we
choose an integration path according to Fig. 7.

As in previous case, integral on the contour I gives
us the residual contribution. An integral over the contour
I',, vanishes at infinity. So we obtain the following for-
mula

Z i
61t~ 2 Srdeost,”
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% eix(tcos(ﬁm)i{z—lk }+sin(Bm)9% {z~tk }) (4)

>

sinf, =sinf + 27tm/ (xd) ,

2
27cm) 4mmsin B
- 2n _ _
cosf,, =,/cos” P (Xd wd

xd

S{cosp, }20,n, = —2;(1 +(~1)?sinB), p=12.

It is easy to see that number of the modes depends on
the excitation frequency. Angle of the plane wave inci-
dence just shifts these modes.

Now we are ready to calculate the Sommetrfeld type
integrals but unfortunately it is too hard work. To make
it easier we propose to use an interpolating polynomial.
There are many different approaches to build such poly-
nomials and may be it is not so easy to choose an appro-
priate one.

Let we need to interpolate a function that passes the

points (x,,f(x))), (¥ f(,)),. . (X)) [40].

Let us put

1) =1,() =
(x—xl)...(x—xj_l)(x—xjﬂ)...(x—xn)
(xj —xl)...(xj ~xj_1)(xj —-xjﬂ)...(xj —xn)’

j=lLnnzl.

This expression is called as the fundamental polyno-
mial for interpolation function f{x) at nodes X;,..., X,.
Then

L,, (x): f(xl )11 (x)+ f(xz )lz(x)+
+/x, (%)

is a polynomial of degree at most n-/ that passes
through the points in question. This polynomial is unique
one that interpolates f{X) at X,,..., X,,. It is called as La-
grange’ polynomial (to function f{x) at nodes xi,..., X,
from X). At the end, we have to choose the nodes Xof
the polynomial.

The following question arises: how good an ap-
proximation by mean of these polynomials is? It is easy
to show that {41]

| /() - L ()] = [{15%‘ f(x)-L,(x)| <
<E, (f(x)){l +max kz;i[lj (x)

-~

},k=0,70, )

Here
E,(/(x)) = max|p" (v) - /().

p'(x) is polynomial of the best approximation,

k+1

}"k+l(X’x) = _Zzl:‘lj(sz)l

is called as kt1 order Lebesgue function of X. Note that
it does not depend on f{x). The quantity

A (X)= max A (X, )
is called as the Lebesgue constant of order k+1.

The formula (5) shows that the smaller is A, , (X ) ,
the closer the sequence of Lagrange interpolating poly-
nomials at the nodes X is to the uniform approximation

of the function f-
So let us introduce the Chebyshev polynomials of the
first kind:

T (x) = cos(narccos x),

where —1< x <1, 0<arccosx<m, n2>0.

The polynomial 7,(x) has zeros which can be ex-
pressed according to the formula

2k -1 —
X, =C0s . nl,k=1,n.

The point of this digression on the topic of polyno-
mial interpolation is that the zeros of the Chebyshev
polynomials of the first kind provide a grid of nodes
with “small” Lebesgue constants.

Let us build the Lagrange interpolation polynomial
for the integral J(&,\y=const) from (1) at zeros of the
Chebyshev polynomial of the first kind. It is obvious that

R
](g,\y = const) ~ ZZ‘{QW(&)I(@,W )} ,

i=

®,,(8)=1+25 7, ()7, () - Lale)nE),

m m

m=l é - éi

B 2i-1
& =cos o T .

Now if we put 7,y ) =I(5,y) and build a poly-

nomial for I; (\u) we derive that

1 m ny
I(ﬁ,\u )z " Zl{q)n..i(f.» )zl(gi’\vj)(bnz,j(‘l/)}'
W= j=1

Thus, if we have the inteérals calculated at nodes

&,y ; it is easy to obtain them at arbitrary points from

—~1<E,y <1. There is a simple way to increase ef-
fectiveness of the integral's calculation. The other possi-
bility to improve the quality of numerical
algorithm is extracting the weight function in
the Sommerfeld type integrals. If we know that
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IEy)= ]*(é,\p )0) (i,\p) , where ®(&,y) is known

and  well-calculated  function  (for  example,

(O(Egs\lf) = eXp[ix \/é‘z :F]) then the following

formulae are useful:

Igy)~o(Ew)

X

T, (2)T, (w)ﬁ: { I
£

mn, = -§

Xil(“w/)

VY
Tlew )= T @)L ) (Bw)) -

As a test in Table 1 we would like to demonstrate
some results of the free space Green function H él) (x)
interpolation by one-dimensional polynomial. We used
15 nodes on the interval x=[1;41].

Table 1.
X HD Absolute Absolute error
0 (x) error for for
o(g) =1 o(&)=explix]

5 (-0.177597, 0.199068 0.001137
-0.308518)

9 (—0.090334, 0.092254 0.000203
0.249937)

13 (0.206926, 0.015398 0.000018
-0.078208)

17 (-0.169854, 0.041813 0.000033
-0.092637)

21 (0.036579, 0.122417 0.000081
0.170202)

25 (0.096267, 0.170105 0.000115
-0.127249)

29 (—0.147849, 0.143034 0.000116
0.009481)

33 (0.097271, 0.062674 0.000071
0.099135)

37 (0.010862, 0.038804 0.000069
-0.130715)

Thus the simple weight function extracting before
interpolation leads to essential decrease of calculation
erTor.

Integral equations of the problem

In the case of homogeneous slab (€,=€,, 1,=}1,) we
present the total diffracting field as a single layer poten-
tial

N
E@=E@+2n Y. [, (1,)G5 (1, 20ds,  (6)

k=1 Ly
for E-polarization or as a double layer potential

H(z)= H‘(z)+2nz [m,(, )5

AIL

G”(tkz)dsk @)

in the case of H-polarization. Here the variable z=x+iy
denotes complex coordinate of observation point, 7, (Z,)
and my(f,) are unknown functions proportional to the
surface current densities induced on screens by excita-
tion wave, 7 is a normal to the contour L,, 3/0n,

marks a partial derivative by normal at the internal point
=X, 1y, with arc abscissa 5, of contour L,.

When €,7#€, and [L,#}l, we can present the total dif-
fracting field as

E@=E'@2m ). | )Gt 2)ds+

k=t [,

21 [ Joty)G (1o, 2)dlso (8)
Lo
in the case of E-polarization or like

H(z)=ff(z)+2ni [m ()

k=1 L

21 [ jo(ty) G™(ty 2)dis, ©)
Ly
for the H-polarized excitation.

Note, that in the case of periodic problem the pres-
entations of a total diffracting field are similar to (6) and
(7) with appropriate (according to polarization) Green
functions.

Taking into account that the Green functions satisfy
specific to the problem conditions all what we need it is
to satisfy the boundary condition on the screens

(th2)ds;+

(contours L,, k =1,/N). Doing it we obtain different
(depending on polarization) system of integral equations.
Their kernels consist logarithmic singularity, Cauchy
type singularity or hyper-singularity {37,38,42]. The
Meixner edge condition as a matter of fact defines the
classes of such systems solution.

Let us consider some general forms of such integral
equations. One of them is weak singular (logarithmic)
integral equation of the first kind. It looks like
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- it =
+ ]j(x)]((x,y)/\/l—:?dx =-E(y).

If we apply a traditional regularization to the first term
we obtain equation in the following form

mj(y)in2 - f[/ ()linjx - y[/\/r—ﬁdxﬁ-
+ j Ky NI-x> dx=-E(), (0

-1
ye[-L]

Now, we assume that all regular functions (also un-
known function) can be represented by interpolation
polynomial as follows

J(x) = %gf(xk)%(x), an

2k -1
X =COSQ,, O, = o

Now we apply the familiar Gaussian quadrature for-
mula

]ff(x)/\/l——?dhggf(xk), (12)

and obtain a numerical analog of integral equation (10):

>1.

3

nj(y)ln2—7—;~i[](xk ]lnixk y‘
+ ‘T:;ZJ(’CA )K(x,,y)=-E(), y el-111.013)
k=1

Now assume that derivative j'(y) is finite on the in-
terval [-1;1] (due to Meixner edge condition this as-
sumption is obeyed always in the scalar diffraction the-
ory). Let us put y equal to nulls of the Chebyshev poly-
nomial of the first kind. We derive that

%j(y, nln2+Zln'xk—yl’ -

kel

—%anj(xk)lnlxk - y1]+%§j(x,()K(x;<’y[)=

k=l

201 —
= —E(y,), Vv, =cos[ o n), [=Ln, (14)

or

~E(y,),

5 e S(eeon)+ K5, -

nin2+ }n:ln!xi -nhl=k
S(x,3,) = = (15)

izl

—In!xk S ANEY

Now we have just to solve the system of linear alge-
braic equations (15). Scattering field we find via apply-
ing quadrature formula (12) to the presentations (6) or

(8).

The second form of integral equation appears in the
case of H-polarization. It looks like

Im /(x - y) dx+ jm(x)ln'x yjdx +

+ Im(x)L(x,y)dx = F(y), -1<y<l. (e
1

Here kernel L(x,y), right-hand part F(y) as well as

unknown density 71(x) are regular functions which have
continued first derivations.
Due to the Meixner edge condition we have

m(£1)=0. Then (16) is equivalent [42] to

[ =) el s

F(y) -1<y<l. a7

+ 1J'm(x)L(x, y)dx =

To solve this equation we present the unknown function
as an interpolation polynomial with nodes as zeros of the
second kind Chebyshev polynomials:

mle) =2 2 {2 (e)nle).
P, (&) = i sin(m&i) sin(m arccos(@)) ,

m=l
i
g€ =cos0;, 0, =——7.
n+l
Differentiating of the both sides of the last presenta-

tion yields

5
m () = e B ()
n-l d sin(m arccos(é))

Pyfe) = Sosinfm ) S -

m=l1

=— ni m sin(mg.)

cos(m arccos(&_, ))

J1-E2
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Taking into account the above formulae we can easy
calculate the following singular integral

jm /€ -&0 )k ~—-——Zm§k)x
y imsin(m& ) fcos(m arccos(ﬁ ) & -

¢ - \/1—-?;2

- Z mcos(m(ek + 9)) :

In particular case, when 0 =0,, / =17, we get the
following relation

SE,.8, )= (n+1)?12;

SEE, )=2[ctg [e ;9 ]
0 e |

As a result we obtain an interpolation type quadrature
formula for calculation of the first term in equation (16).

To calculate the integral with logarithmic singularity
in equation (16) we use the following transformation

jfm(a Jinfs &, |dg =

x 1J'sin(m arccos ))Inf —&, |d§} -

-1

B m(éi) sin®, 1n2—z2(2i) +

k-1 k+1

To calculate the regular integral we use well known
Gaussian quadrature formula in the following form

+ zn:Sin(k(-)i) Tk-l(éo) _ T;cn(éo)

Ni-Eome iz = 2 sin0un(e).

We reduce the integral-differential equation (16) to a
system of linear algebraic equations using the method of
mechanical quadratures. The essence of this approach
consists in numerical treatment of the integral equation
(16) by application of the above mentioned quadrature
rules. Note, that a rigorous mathematical justification of
this approach is performed (see for example [43]). After
solving the linear algebraic system we evaluate the un-

known density m() using formula (17).

Results and simulations
a) Screens in open planar waveguide

Let's apply the numerical method of diffraction
problem solution expounded in the previous sections to
determine the field on the interface y=0 and at x—>+00
{wave zone or far-field pattern) [37]. We consider the
particular case when the excitation is normal incident
plane wave

W (@)= expl-ix, 3{z}] ()

or own waveguide mode
* Ccos _
W @)= g [ @0~ 2Dexplin g ], (19)

Here 27/ (thQ) is the k-th waveguide mode wave-

length; p, = ,1822 - xzz , symbol € denotes dielectric

constants of the media.
Let the relations €,/€,=0.25, d=A, a=A/10 occur.
The single metallic strip -a<x<g is situated horizontally

in the slab at y=-d/2. It is interesting how the thickness
and the slab material properties influence the scattered
electromagnetic field. In Fig. 8 and Fig. 9 we present the
magnitude and phase dependencies for scattered field in

the case of E-polarized plane wave excitation.
The designations 1-3 in Fig.8 correspond to

83/82=0.64; 1; 1.44. From this figure we notice that

the magnitude of the field electric component substan-
tially decreases and its phase is practically unchanged

with increasing €,. Observe that in 83/82=O.64 case the
non-attenuated waves arise in the slab. The designations
1-3 at Fig. 9 correspond to d=0.7A; 1.1A; 1.5\ and
83/82=0.64. As indicated in the picture a slab thickness
substantially (more than 50 %) changes the scattered
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field magnitude. The corresponding phase of electric
component changes on thickness by almost 5 % and less.
Consequently, under slight variation both of the layer
thickness and dielectric constant of underlying half-
space the scattered wave amplitude undergoes substan-
tial changes too. Its phase remains almost invariant in
this case. Due to the phase curves we can detect a screen
as well as determine the depth of its location.

E| 4

0.24

0.22 7

\{

0.16
A
arg[E]? 1-g,/¢, =0.64
1 2-g,/€,=1.00

-3.01 3 3-g,/8,=1.44

2Rk
3.+ g7

-3.2

0.6 04 02 0 2mfglx

Fig. 8. The magnitude and phase dependencies at different
dielectric constants of the underlying half-space (the case of

plane E-wave scattering)

IE| A
0 24'— 3/
- 1 2//
0.22
0.16 L »
arg[ ] R 2 /\__
-3.01 I T—d =0.7n
] ( 2-d=11
-3.1‘ 3‘/’\3‘(1=1‘5k
-3.2

0.6 -04 02 0 2yl

Fig. 9. The magnitude and phase dependencies at different
slab thickness (the case of plane E-wave scattering)

X1
X2

X1

Fig. 10. Cross-section of elliptical screens in the planar
waveguide

The numerical results given in the Fig. 11-Fig. 19
correspond to the configuration shown in Fig. 10 at
xz/x1=1.5; x2d=3.

Calculations were carried out during slab illumina-

tion both by E- and H-polarized non-attenuated planar
waveguide mode. We consider the transmission Yj]'k

(x—>+0) and reflection Rjk (x——0) coefficients of
such waveguide modes which are specified by formula

12
W) -W(2)="{¥, (CP)( ) exp(ix,r) +

Iy,
2 | T, -8 ,,x>0|{cos ,
+ / J ’thZL\’[, 20
;{Rﬁc, X< O}{Sin}pkb)’e (20)

where 6jk is Kronecker delta symbol; ‘Pj is far-field
pattern; anI is number of non-attenuated waveguide

modes; 15/<ny, is an index of the exciting waveguide
mode. In the simplest case (see formula (20)) we have
j=np=l, THET, R“ER. In the slab (region S,) and
at the single-mode excitation the squares of these coeffi-

2 _inc

1
cients define respectively the transmitted (P=|7] P ),
2 _inc
reflected (Pr:\R] P ) as well as dissipated
inc 2 2
(E/P =1-|T| —|R| ) field energy normalized by the

me
incident mode power P

X

e 0.80 035 X2l

Fig. 11. The H-polarized waveguide mode reflection as

screen curvature € and size x4 Jfunction
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Fig. 12. The H-polarized wave energy dissipation as screen

curvature € and size x,4a Junction

Fig. 13. The H-polarized wave energy dissipation as function
of screen orientation and size

T;I: ])LL '
31.67 ‘5\\&* - 0.52
9 42.02 0.35 x4

Fig. 14. The H-polarized waveguide mode reflection as func-
tion of screen slot’ width and size

Fig. 15. The E-polarized waveguide mode transmission as

screen curvature € and distance le Junction

Fig. 16. The E-polarized waveguide mode reflection as

screen curvature € and distance Y5l function

Let the equations of contours Lg, k=1,2 are repre-
sented parametrically by formula

1,(t) = acos([n - 8} ) + iz cos{[rn — 8]t Je” -
~id2+Qa+1\k-1), 151 <1. @1)
Here & and €a are the ellipses half-axis; / is a dis-
tance between screens; 239 is an angular size of the
screen slot; O is an angle of screen orientation relative to
the =0 plane. Calculations were performed bearing in
mind that x_a=0.35, o=7/2, 3=m in the case of -
polarization and a=n/6, 3=m/6, €=0.6 at H-polarized

excitation.
Referring to Fig. 11 and Fig. 12 we can see the func-

tion’s resonant behavior in the domain 0.35_<_X2as0.7.
The resonance frequency and resonance merit factor

increase when € reduces. In Fig. 13 the dependence of
dissipation energy is shown graphically as the function

of orientation angle and screen size x4 Here £€=1.6;

8=7/6. From this figure we notice that the resonance
appears at different wave size of the screen depending on
its orientation in the slab. Consequently, the screen ori-
entation in the case of its H-polarized excitation pro-
duces a significant change in the scattered field. As is

shown in Fig. 14 (here we put €=1.6; =7) the reso-
nance frequency increases when the slot aperture ex-
tends. Note, that the corresponding merit factor de-
creases in this case.

The FE-polarized wave transmission and reflection
coefficients as functions of distance between screens le
and their curvature € are shown in Fig. 15 and Fig. 16.
The functions maxima depend on distance between
screens as well as on parameter € (according to (21) the

change of curvature € is equivalent to the change of
screens size). Note that location of the functions' maxima

slightly depends on €. For small curvature € we observe

the transmission maximum at /~0.4A and minimum at
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{~0.27)\ (A - is a wavelength). The growth of screen's
size causes shift of the functions |7-1] and |R| extremes

to the high frequency range. The results of the /1-
polarized scattered field calculations as function of dis-

tance X21 and screen’s size X4 are illustrated in Fig. 17 -
Fig. 19.

0.40 e

wal 0127035

Fig. 17. The H-polarized waveguide mode transmission as

screen size 'Y, @ and distance le Junction

; 0487 0. ‘
X2 0.10 0.35 X0
Fig. 18. The H-polarized waveguide mode reflection as

screen size ) and distance le Junction

Fig. 19. The H-polarized wave energy dissipation as the

Junction of distance le and size X4

We see that value xza=0.52 which corresponds to

the resonant size of each screen remains extreme in the
case of their system. The resonance amplitude depends
on the distance between screens slightly. The largest and
the smallest transmission coefficient values are achieved

at %.@=0.48 and y a=0.21. The transmission reso-
2 2

nance at [~0.48A\ corresponds to waves multiply re-
flected by screens system, The resonance amplitude de-

pends on the screens size only if xzaSO.SS. The corre-

sponding analysis of energy dissipation (Fig. 19) shows
that the single slotted screen resonance is the reason of
powerful energy dissipation and the screens system de-
creases this losses.

The above calculations demonstrate the possibility of
suggested approach to the accurate determination of
electromagnetic field scattered by system of cylindrical
screens in slab. The geometrical and physical parameters
in the problem are supposed to be arbitrary. The devel-
oped numerical schemes in fast acting and on-line re-
quest memory can analyze the scattering on screens up

to few tens of A by the modem personal computers.
Coupled with accuracy of obtained results the above
confirms the high effectiveness of the approach and wide
areas of its application.

b) Gratings

For testing of the obtained results let us solve a sim-
plest problem of plane wave reflection by infinite plane
screen in the case of normal illumination. It is obvious
that this problem can be reduced to the following inte-
gral equation

- .+co ‘ .
~2£] _‘.Hél)(xr)dx =-E (x,). (22)

Taking into account the value of the following integral
[44]

[HE (uryax =2 [HP (xr)dx = 2 @
—~0 0 X«

from equation (22) we easily obtain next relation for
current density:

i o2 .
—j—==E (x,). (24)
27 %
*

If we assume here =1, £ (xo)=1, then we obtain
that
j=i/m. (25)

Now divide our plane screen on infinite periodic
system of strips. Each strip has width 2a (see Fig. 20).

Let us consider this system as a grating. Assume Yd=T,

2ya=m and solve this problem numerically. Also, an
infinite screen was considered as a grating with two the
same strips within period. In this case the strip’s width
was 2y,a=n/2. The accuracy of solution within 0.01 %
we achieve with 15 collocation nodes per wavelength.
The check was carried out also with some numerical
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results in partial case of single element diffraction grat-
ing with screens of constant [28,30] or of variable [29]
curvature.

2a
I

Fig. 20. Infinite screen as a periodic system of strips

As an example let us consider the case when two
screens are situated on the gratings’ period [45]. Sup-
pose, that contours L} are parabolic arcs with their end-
points +a+il(k-1) and tops at the points ib+il(k-1)
(Fig. 21).

A
d
i'l_a1 0 L, a {

\/\h{\_/§

Fig. 21. Infinite two-element grating

Let us introduce complex value equations of arcs L,
in the following form

tk(‘t)za(t +i8k(l—-1:2))+il(k—l), (26)

g, =g =bja,1=[-11] k=12

Here / is a distance between screens in cascade.
Grating is illuminated by FE-polarized plane wave with
incidence angle B=0. The wave number 7 is assumed to
be real.

An influence of geometric parameters of the cascade
screens system on the induced currents has been investi-

gated for the cases Y d=, xa=n/4 (Fig. 22).

We see that distance between screens makes an es-
sential influence on the current's magnitude. For value /
that is divisible by half length of excitation wave, we
find resonance (here €=0.5). An influence of curvature
of screens was established on magnitude of currents that
are induced on the illuminated screen (contour Lz) for

resonance distance /=0.5A, A=27/y (Fig. 23).

Fig. 22, An influence of distance l on shadow screen’s current

h

1

i,
Wi DN
S,

€ -0.57 ~0.99 T

Fig. 23. An influence of curvature € on illuminated screen’s
current

Currents depend also on profile of the screens. In
particular at € =0.4, the magnitude of current at
screen’s ribs tends to zero.

Note, that infinite two element gratings (see Fig. 21)
can be considered as an open planar waveguide. It is
found that at certain distances / this structure may be
transparent for electromagnetic waves with wavelength
almost equal to period of the gratings.

Fig. 24. Transmission coefficient for two element plane grat-

ing (€=0)

Let us consider the transmission coefficient of elec-
tromagnetic wave for two-elements cascade gratings

with strip as an element (Fig. 24). At distances /, which
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corresponds to appearance of additional modes of planar
waveguide the transmission coefficient is maximal. This
resonance distance depends also on size of the screens.
In other words, for low density of gratings filling the
waveguide becomes wider. When increasing density of

filling ()Ya—>»m/2) we increase reflection properties of
upper layer of screens so we decrease transmission of
waves.

On the Fig. 25 and Fig. 26 the transmission coeffi-

cients for concave-out (€ =€>0, & =-£€<0) and con-

cave-in (8]‘—8<0, 82:8>0) screens are presented.

Fig. 25. Transmission coefficient for different screen’s cur-

vature: a)e=0.25; 6)=0.5

We see that the curvature of screens influences the
physical properties of cascade grating. The screen’s cur-
vature changes an influence of density filling of multi-
layer grating on the wave transmission. For slightly
curved screens the transmission is possible only for
small filling of array. For essentially curvilinear grat-
ing’s elements the effect of transparency appears for
higher density of gratings filling (Fig. 25b, Fig. 26b,

ya~1.83). The higher curvature causes increase of
transparency (the magnitude of waves which transmit
through structure is significant). (Fig. 25b, Fig. 26b).

For testing obtained numerical results, we specially
investigated their stability and convergence at resonance
frequencies. Taking into account of high merit factor of
the effects that we considered such investigation to our
opinion is obligatory. Note, that the determinant of alge-
braic system (that is obtained by mechanical quadratures
method) dramatically decreases at resonance frequen-
cies. Nevertheless, calculation of Green function with

relative error =107 for gratings with parameters

yA=2m; yax1.47; €=0.25; N=2 ensures an error no

more than 0.1 % in the resonance transmission coeffi-
cients. Such accuracy was established at number of
quadratures formula nodes equal to 35. The same inves-
tigations were performed for all resonance cases pre-
sented in this work. It allows us to affirm reliability of
effects described above.

7]

1.31 5.04
xa 0.79 1.88 v/

Fig. 26. Transmission coefficient for different screen’s curva-

ture: a)e=—0.25; bye=—0.5
Conclusion

The integral presentation of periodic Green function
supposed here allows to increase an accuracy of calcula-
tion essentially. Applying of interpolation polynomial
for its approximation substantially decrease the time of
calculation. It allowed us to construct an effective nu-
merical algorithm for solution of wide class of scalar
scattering problems. The accuracy of this approach in the
resonance frequency range is close to the accuracy of
rigorous numerical-analytical technique [28,30,31,34].
At the same time the numerical treatment of the singular
integral equations allows to study the electromagnetic
field properties without any restrictions on shape of the
screens and their location.
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06 ogsom uncIeHHOM nogxome k pewensio CHY s
TeopHH JudpaKuiH

3. Hazapuyk, O. OBcSIHHMKOB

Paccmotpen 3¢deKTHUBHBIH YUCTEHHbIH MOAXOM K
PEILIEHHI0 CKANAPHBIX NHGPAKIMOHHEIX 3ajaq ULl
CHCTeMbl [TPOM3BONIBHBIX ITMIMHIPHYECKUX IKPAHOB.
ITpenmoXeHHbIH METOX PelIeHHS 3aJa4l OCHOBAH Ha
NpsAMOM UYMCIIEHHOM DEUIEHHM COOTBETCTBYIOIMX
CHHTYJISIPHBIX HHTETPAllbHbIX YPABHEHHH.

ITpo oaun uncnosuii niaxia Ao posp’a3anns CIY s
Teopii audpaxnii

3. Hazapuyk, O. OBcaHHikoB

PosrnsHyro edexTHBHMA uMcIOBHH migxia 10
pO3B’A3aHHA CKANAPHUX JAUQpaKUiHMX 3ajau s
CUCTEMM ROBLILHUX LUMIIHAPHYHUX eKpadiB. 3ampo-
[IOHOBAHKHA METOJ PO3B’A3aHHA 3a/aui 6asyeTbcd Ha
MPAMOMY YWCIOBOMY PO3B’A3Ky BifTIOBilHUX CHHIY-
JISPHVX iHTerpalbHHX PiBHAHE.
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