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The scattering of a grounded dielectric layer surface wave from a circular dielectric cylinder and a slitted circular
metallic cavity is analyzed in full-wave manner. By using the surface potential approach and analytical regularization,
efficient numerical algorithms have been devised and applications to the bandstop filters are discussed. Computation
results on the scattered, transmitted and reflected power fractions are presented, together with the near and far-field
patterns in resonance points. The comparison of two types of filters is done.

1. Introduction

Localized discontinuities are known as important
components of many optical and millimeter wave elec-
tronic systems that are based on the surface wave propa-
gation. They are used as elements of integrated couplers,
leaky-wave antennas, filters, resonators, etc. The design
and manufacturing of such devices is a complicated
technical task. To reduce their cost and improve the
electromagnetic performance, a preceding CAD simula-
tion, by using a reliable method and moderate computer
hardware, is highly desirable. Simulations of relevant
metal and dielectric discontinuities are frequently based
on approximate theories [1]. Works [2,3] were devoted
to the theoretical and experimental treatment of cylindri-
cal dielectric resonators with whispering-gallery (WG)
modes. A further theoretical and experimental work is
necessary to optimize the performance of filters, cou-
plers, and other passive devices. A more accurate analy-
sis is especially important if studying the millimeter-
wave applications, instead of optical ones, because here
the device dimensions are comparable to the wavelength.
However, it was only recently that adequate mathemati-
cal methods have been proposed, enabling one to attack
the problem in correct full-wave manner {4-7]. However,
they did not study specific applications such as filtering.
This CAD-oriented analysis has been started in our re-
cently published paper [8], for the circularly shaped di-
electric and slitted-metal-cavity filters in the single-mode
open waveguide. As such a simplified waveguide, we
took an impedance plane in the H-polarization mode.

The purpose of the present study is to develop a
method for modeling 2-D dielectric and metal scatterers
in a more realistic multimode dielectric-slab waveguide.
We wish to take account of the leaky and surface-wave
effects, and compare different bandstop filters. To
achieve the objectives, we use a combination of two
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methods. The first is the Green's function method which
implies that the full Green's function (£ or H-type) of a
homogeneous dielectric slab is obtained analytically, and
further used to derive the integral equation (IE) govern-
ing the field. Hence, satisfying the slab-interface conti-
nuity conditions is guaranteed, as well as the accounting
of guided and leaky modes of the waveguide. The sec-
ond is the family of techniques, which may be collec-
tively named as the Method of Regularization (MoR) to
treat the wave scattering problems, in mathematically
accurate manner. It starts normally from a surface or
volume IE well known in electromagnetics. However,
unlike the Method of Moments (MoM), here it is par-
tially inverted analytically, that results in the infinite
matrix equation of the Fredholm 2-nd kind, thus giving a
proof of existence of unique solution. This procedure is
equivalent to a judicious choice of basis/testing functions
in MoM, so that they form a set of orthogonal eigen-
functions of the inverted part of IE. Numerical solution
of such matrix equation is always stable and efficient in
terms of memory and CPU time expenses. To study the
localized dielectric discontinuities, it is supposed to use
the surface potential method, extracting out and analyti-
cally inverting the free-space-circular-cylinder part of
the IE. To analyze metallic slitted-cavity scatterer, the
static part of the electric field IE is to be inverted.

We considered both polarizations for the scattering
from a dielectric resonmator and the case of H-
polarization for the cavity resonator. This is because the
WG mode resonances are present in each polarization for
the former, but it is only the H-case for the latter, when
the low-frequency (the Helmholtz, or slot-mode) reso-
nance exists, which is promising for filter applications
(see [7]). All field quantities are assumed to have time

variation €' and this time factor is omitted throughout
of the analysis.
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2, Method of analysis
2.1. Cylindrical dielectric resonator. The case of H-
polarization

Consider the 2-D scattering problem depicted in
Fig. 1a. An H-polarized guided mode of the grounded
dielectric layer is incident from the left on a circular di-
electric cylinder, whose diclectric constant is €, and ra-
dius a. The layer thickness is d and the dielectric con-
stant is €, while the separation from the cylinder is w.

The magnetic field component of any surface-wave
guided mode is known to be as follows:

Fig. 1. Geometry of the scattering problem
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H, =V (y) e =™ x
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where *  denotes right/left moving  waves,

b=w+a, p,=+h}~-1, v, =4, -h, h,

l<h, < Je being the propagation constant of the

n-th mode (n=0,1,...,NV), and so a real root of the dis-
persion equation:
-1
tg(kYnd) =€:pnYn N
Functions (2) are normalized by using the following re-
lation:

f *(l—[ v ()| =
—~(b+d

d 1 vn +p;
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that yields the power carried by the n-th surface-wave

mode.
The total magnetic field in such geometry consists of

the incident H™ and scattered I components, and the
field inside the dielectric body is denoted as H’. The
total field satisfies the Helmholtz equation
[a+ k%) () =0,

r =(I‘,(p)ED\LS, D=(X,y),

the boundary conditions on the contour L, of the scat-
terer

Hsc +Hin :-Hb,

1 6H® oOH* oH™ . (3
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€, On on on

and on the waveguide boundaries (square brackets are

for the jumps of functions):
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and a modified radiation condition that is, according to

[9]:
2V,
HCS(r) (DH((P)( J etkr+

r—>w0
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Representing the scattered field outside and inside the
dielectric resonator in terms of the single-layer surface
potentials,

H () = jcp @ )G”(F Fydl, (62)

H*(F)= j\p (F)GY (7, 7)dl, , (6b)

we obtain a paxr of coupled IE with respect to the un-
known density functions:
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j<p (7)GH (7,7, )dl, -

-—Iw (F)G7(7,F)dl, = H"(F), Fe L,

(7a)
1o YFENG(F,F)dl, -
€, On LJ.
2 [y F )G FF I, =
an LJ 5 3
O i -
=—H"(r), FelL,. (7b)
on
Here G;{ is the Green's function of the homogeneous

medium with permittivity €;, and G" is the Green's
function of the halfspace with a grounded dielectric slab,
ie.

Gy (F.7,) =

g,

G (7)7) = L HO (k7)) + -
(7.7) 2 D (KF=7]) =

y ]-l ige , cos(kyd) —y sin(kyd) y
8 ige, cos(kyd)+y sin(kyd)

x eikg(y#—yj +2b)+ikh(x—xx)dh’

where g =+v1—h*, y =+/& ~h’. Then due to the

geometry of the scatterer these IE can be reduced to a
matrix equation by expanding the densities and the
Green's functions in terms of angular exponents
{e e }i_w . In fact, here we use the fact that these func-
tions form the set of orthogonal eigenfunctions of any
integral operator in (7a) and (7b), if G" has been re-

placed by its first term. That is why the final result is the
regularized matrix equation:

«m

1

7 (ka)(1+iB)
< Sl iy, ka0, =

i"(h, +p,)" COS(KY ,d) o0
J, (ka)(1+iB})

"
Y t

) ®)

where

— _HO(2kb)+ 2

XQ] cos(kyd)(h—ig)"
©ige cos(kyd) +y sm(kyd)

i _ In(e, @)Y, (k) — e, (ke @)Y, (ka)
" T ke, (ka) e, J (e, ), (ka)

The proof of the Fredholm 2-nd kind nature of (8) can be
found in [4]. Due to this fact, it can be solved numeri-
cally, with a guaranteed convergence to the exact values
of unknowns provided that the number of equations is
taken greater. The expansion coefficients of the field
inside the dielectric cylinder can be obtained via the
following relation:

J (ka)

H
o = e, HO (k e, a)], (k e, Q)

x[ yZHO (ka)+i"(h, +p,)" cos(ky , d)e ™ +

szgbdh (9)

? iw,’:(—i)me(ka)QmM J

m=—o0

2.2. Cylindrical dielectric resonator. The case of
E-polarization

The natural modes of the grounded dielectric
waveguide in the E-polarization can be represented like
follows:

E VE(y) e ikh,x eitkhxx

sin(ky,(y+b+d)), —-d-b<y<-b,
X
sin(ky,d)e™™*, —~b<y<om,
n=12,..,N.

Unlike the H-polarization case, every E-polarized
mode of a grounded dielectric slab has a finite cut-off
frequency. Its wavenumber is a real root of the disper-
sion equation

tg(kYnd) = _an;]’

and the norm of the mode is given by

g 1
Ny (y)= V.| dy=
Y -(b'L)[ y]z - 2 2k

By following the procedure described in the previous
subsection we come to the resulting matrix equation:
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E "
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To compute the functions Qf(E) one has to perform

a numerical integration. As the integrands are not single-
valued functions of /1, we have two branch cuts arising
from points +1 in the complex A-plane. Besides, there

are the surface-wave poles at A= 1/, on the real axis,
plus the leaky-wave poles off it in the 1-st and the 3-rd
quater-planes. Numerical evaluation of these integrals is
one of the most time-consuming parts of the algorithm.
To speed up the computation we follow the procedure
proposed in [10]. First, we convert the integrals in (9)
and (11) to the ones along the positive real semi-axis.
Then the path of integration is deformed to the one com-~
posed of the four straight-line sections between the fol-

lowing points: 1) h=0, 2) h=-iT, 3) h=T,-iT,
$h=T,, 5) h=T, where T,=1, T, =.[¢, +1. The

value of 7, depends on the rate of the integrand decay.
Thus the integration around the poles is omitted and the
infinite path of integration can be truncated because the
integrand is decaying exponentially on the last segment.

2.3. Slitted circular-cavity resonator

The scattering geometry for this case is shown in
Fig. 1b. Let us now represent the scattered field in the
form of a double-layer potential:

. 0w
H*(7)= Iu(rs)%GH(r,rs)dlx. 12)
L.r

As in the previous subsection, this function should
satisfy (2), (4) and (5), but on the contour of the scatterer
the following condition is valid:

oH -
—=0, FelL,
on

L being now a circular arc of the radius a. By following
the procedure described in [6,7], we obtain a singular IE
for the surface current density as:

0 0
— |WF)—G*(F,7)dl, =
an 105, G PRI

=——6-H”'(F), relL. (13)
on

Equations of this type are often encountered in scat-
tering problems. They can be solved numerically by di-
rect applying the MoM. However, the solution scheme
based on the analytical inversion of the static part of (13)
is much more efficient. The current density function
should be completed with identical zero on the slot. Re-
tracing all the relevant steps from [7], we come to the
dual series equations for the expansion coefficients.
Further we regularize them by inverting the static part
analytically and arrive at the following Fredholm 2-nd
kind matrix equation:

Ky = i [ AnT;nn +in (ka)Z(_l)nJ"l (ka)x

n=—c0

x Y iPT (ka)QE T |\u +in(ka)® x
14 n+pT mp n

p=—e

x ST,,i" . (ka)(h, + p, )" x cos(ky yd)e >,

n=—m

m=0%l,... ,

where the coefficients 7, are the functions of ¢, and 0
and can be found in [6,7]. They are easily computed as
combinations of exponents and the Legendre polynomi-
als.

2.4. Far-field characteristics and
procedure validation

To obtain the amplitudes of the guided mode at

X — to0 along the interface, one has to use the contour
deformation in the complex h-plane and take account of

the residues at the poles #=1A,. For the dielectric reso-
nator in the case of H-polarization:

TH 5 ] 2 ]
{ p }: o cos(ky ,d)e " x

x Sy (¥ T, (ka)(h, +p, ). (14)

m=g

For the case of E-polarization cos (.) should be re-

placed by sin (.), and Y ,f by y j The far-field scat-
tering patterns can be evaluated by applying the steepest-
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descent method in the far zone of the scatterer. For the
dielectric resonator:

OB ()= Sy HE (i) T, (ka)x

X(eimq) +RH(E)(CP).e2ﬂcbsin<p—irn(p)’ (15)
_ ie, sin@cos(kyd)—vysin(kyd)
e, sinpcos(kyd) + ysin(kyd)’
RE(p) = isin @sin(kyd) + ycos(kyd)
isin @sin(kyd) —ycos(kyd)’

¥(9) = V&, —cos” ¢.

For the cavity resonator, (14) and (15) are still valid
after replacing y 7' J (ka) by p2J! (ka).

The optical theorem, based on the energy conserva-
tion principle, serves as an independent partial check of
the numerical code [9,11]. After validation, the theorem
can be used to minimize the time needed to compute the
total radiated power, as

R (o)

P, =2 fjoo)f do = kh, N2, -
n o

N
Y ih,N2{
n=o(1)

where /1, and N,-,,CZ are the wavenumber and the norm
of the incident mode, respectively.

For the case of a non-symmetric scatterer such as
cavity, the reciprocity theorem yields that the transmis-
sion of the incident guided mode is invariant of the di-

rection of incidence:

T+ IR,

Tinc ((po) = T;’nc (Tc _(Po )

(see [9] for a discussion of this phenomena).

To have a 3-digit accuracy in practical computations,
it is enough to take the matrix truncation numbers as
N,,=kae, +3 and N_, =ka+10, respec-
tively. The truncation error is defined like follows:

8y =maxly ()™ —w (p)) |/ maxjy ()] As

for the optical theorem and the reciprocity, they were
satisfied with a 107 accuracy for all the values of the
problem parameters. CPU time varies depending on the
size of the scatterer. For example, computing a dielectric
cylinder of ka=2, €,=10, with the PC Pentium,
100 MHz and the MS-DOS Fortran source code at dou-
ble precision took 3 sec. For a cavity of ka=2 it took 2
sec.

3. Numerical results and discussion

Consider first a dielectric resonator. In Fig. 2, the
plots of the far-field characteristics are shown as a func-

tion of the normalized frequency parameter ka for the H
polarization. One can see that a dielectric cylinder can be
used as a bandstop filter. The principle of operation of
such a filter is based on the excitation of a WG mode in
the resonator. In this case the field inside the dielectric
cylinder is oscillating between the resonator boundary
and an inner caustic. When the resonator is coupled to a
waveguide, the resonances at the WG modes cause the
resonances in the transmission coefficients of the guided
modes. In many practical applications it is desired to
have a single mode operation. A grounded dielectric slab

supports, in the H-polarization, a single mode provided

that kd\/e, —1 <7 . This mode is called the principal
one, as it does not have a low-frequency cutoff.

1.5
14
1,3
1,2

P I N I

1,1

1,0

60 —
dB

0,5 1,0 1.5 2,0. 2,5. 3,0 3,5
ka
Fig. 2. Far-field scattering characteristics versus ka for the
dielectric resonator (H-polarization case). €,~10, w/a=0.01,
d/a=1, =225
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For the case of K polarization filter characteristics

versus ka are depicted in Fig. 4. In this case there is no
principal mode, all the modes have cutoff frequencies.

0,03 0,06. 0,09.
w/a

Fig. 3. a) Normalized scattering pattern for the dielectric reso-
nator (H-polarization case). €,=10, w/a=0.01, d/a=1, g,=2.25,
ka=1.9168

b) Magnetic field distribution on the contour of the resonator
with the same parameters

c) Filter characteristics versus the spacing between the reso-
nator and the waveguide

Figures 3 and 5b show the field variations on the
contour of the dielectric resonator. By the number of
lobes in this plot and their location with respect to the
symmetry axis the WG resonances can be classified. Due
to the symmetry of the problem geometry, the coinci-

dence of the resonant frequencies of different modes
may occur. A possible way to avoid this difficulty is to
disturb the symmetry of the problem, for example, to use
a non-uniform dielectric resonator [3].

14

13 — ——kl

12 <

1,1 —

170 r L3 r F r |3 r T

-
1,5 2.0 25 30 3,5
ka

Fig. 4. Far-field scattering characteristics versus ka for the
dielectric resonator (E-polarization case). €,=10, w/a=0.01,
d/a=1,€,=2.25

At the resonances the filter characteristics were cal-
culated versus the spacing. The results are plotted in
Figs. 3 and Sc. In order to obtain an optimum perform-
ance the spacing between the waveguide and the reso-
nator is to be selected properly.

As we consider an open structure it is necessary to
study the radiation appearing when the dielectric slab
mode is scattering from the resonator. The normalized
radiation patterns are presented in Figs. 3 and 5a for dif-
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ferent radii of the resonator. All plots in figures 3 and 5
correspond to resonances in Figs. 2 and 4.

a)

0,00 0,03 0,06 0,09
w/a

Fig. 5. a) Normalized scattering pattern for the dielectric reso-
nator (E-polarization case). €,=10, w/a=0.01, d/a=1, €,=2.25,
ka=1.9242

b). Electric field distribution on the contour of the resonator
with the same parameters

¢) Filter characteristics versus the spacing between the reso-
nator and the waveguide

The dielectric cylinders show the advantages of WG-
mode resonators, such as high quality factor and perio-
dicity of stop bands. Due to these advantages, the filters
on WG- mode resonators have undergone considerable
development and are widely used in various microwave
active and passive components. However there is an im-
portant feature, which seems to avoid recognition so far,

probably due to a lack of correct analysis methods.
Namely, at high-Q WG resonances the incident mode
power is more than 99% converted to the radiation field.

15

144 —h

13 T hy

12

11—

1’0 F l 2 r L I F I ¥ I 1-_}'”-‘;‘.
05 1,0 15 20 25 30 35

kd
0

05 10 15 20 25 30 35
ka

Fig. 6.Frequency dependences of the far-field characteristics
for the scattering from a metal cavity with parameters: 0=3(°,
©,=270°, w/a=0.01, dla=1, €,=2.25

Slitted metal cavity offers a way to avoid the exces-
sive radiation and minimize the electric size of the filter.
A resonance with a low level of radiation losses can be
observed when the radius of the cylinder is smaller than
the wavelength. In Fig. 6 the typical frequency depend-
ences of transmitted (P,=|T]), reflected (Pr=|R|%),
and scattered (P,) power fractions for the scattering

from the metal slitted cavity are shown for the H-
polarization case. When excited by the surface wave
field, the cavity gives a resonant response provided that
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the frequency coincides with the real part of a complex
natural frequency of the slitted cavity. These eigenfie-
quencies are related to two families of modes, because of
the splitting of the closed cylinder's doubly-degenerated
modes, to symmetric and antisymmetric ones, by cutting
a slot. It can be observed that antisymmetric resonances
have a larger Q-factor then symmetric ones. The first
low-frequency peak is due to the Helmholtz mode of a
cavity-backed aperture (see [6,7]). The Helmholtz mode
frequency is a complex number tending to zero when
6 — 0. So, by narrowing the slot one can obtain a
miniature low-frequency rejection filter with a remarka-
bly low parasitic radiation: more than 90% of the inci-
dent mode power may be converted to the reflected

mode. We did not consider the case of E-polarization
because the most interesting low-frequency resonance
does not exist.

4. Conclusions

We have proposed a full-wave approach to the analy-
sis of surface-wave bandstop filters. Based on this ap-
proach the efficient numerical techniques were devel-
oped, and rejection, transmission and radiated-field char-
acteristics were calculated for both F and H-
polarizations.

Sharp resonant phenomena were observed for the
scattering from dielectric cylinders and metal cavities.
These effects can be used for the design of bandstop fil-
ters in surface-wave guides. Our investigations proved
the advantages offered by such resonators that lead to
their applications as microwave oscillators and filters.
Unlike our previous study [8], in this paper we consid-
ered a waveguide with a multimode operation. Although
in most practical situations a single mode operation is
desired, it is interesting to analyze the effect of the
newly-born mode on the filter characteristics. We em-
phasize that, due to the analytical regularization, our
solutions are equally accurate off and near the sharp
resonances, unlike the conventional MoM ones (see
{12]). This fact makes them well suited to the computer-
aided design of resonant microwave devices.

The presented numerical treatment deals with the sur-
face wave scattering from obstacles, but the method is
applicable to various types of incident fields (plane or
cylindrical wave, etc.), and different host media.
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Yucsienuplii aHAIH3 GUIBTPOB MOBEPXHOCTHBIX BOJIH
HA JHIeKTPHYECKHX Pe30HATOPAX H MOJbIX
METALTHYECKHX PE30HATOPAX ¢ OTBEPCTHAMH CBA3H

C. B. bBopuckuna, A. 1. Hocuy

PaccMoTpena gByMmepHas 3ajada pacCesiHUs I10-
BEPXHOCTHOH BOJIHBI [IHANEKTPHYECKOTO CIO% HA Me-
TaNIMYecKoi MNOMIOKKE Ha AMIIEKTPHYECKHX LHU-
THHAPaX KPyroBOTO MOMEPEYHOTO CEYeHHs W Ha Me-
TAJUIMYECKOM MOIOM PE30HATOPE C OTBEPCTHEM CBSI-
3. C ¥Cnonb30BaHHEM MOBEPXHOCTHLIX HOTEHIMA-
JIOB MPOCTOTO MM JBOHHOTO Cl0A ¢ (yHKUMAMM
I'pvina IPOCTPAHCTBEHHO HEOOHOPOJHOM Cpelpl M
METOJA peryispu3auuyu paspaboTaHbl 3¢ eKTHBHbIE
YHCTIEHHBIE ANTOPHTMBL U OOCYXIAETCS NPUMEHEHHE
TAKHX pacceMBarefiei B  KauecTBe  [1OJIOCHO-
3arpaxiaoliux GUILTPOB B BOJHOBOAAX MOBEPXHO-
CTHBIX BONH. UYMCIIEHHO pacCYMTaHBbI H3JIy4eHHAA
MOIHOCTh, H MOLIHOCTD, IIEPEHOCHMAas IOBEPXHOCT-
HBEIMH BOJHAMH, a4 TAKXE CEYEHHA DPACCESHHMA B BEpPX-
Hee NOAYIPOCTPAHCTBO B TOYKaxX pesoHanca. [pose-
HEHO CpaBHEHHME [BYX THIIOB [ONOCHO-3aIrpaXx-

Aamoiux GUILTPOB.
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Yucnosuii ananis GinbTpiB nOBepXHEBHX XBU/IbL Ha
JieJIEKTPHIHAX Pe30HATOPAX TA NOPOKHUCTHX
MeTajdeBHX Pe30HATOpAaX 3 OTBOPAMH 3B H3KY

C. B. Bopnckina, O. 1. Hocna

Posp’a3zaHo ABOBMMIpPHY 3aJady pO3CiAHHA IIO-
BEPXHEBOT XBUWJII Ji€NEKTPHYHOIO APy HA METANEBii
MiAJOXKLI HA HieIeKTPHYHHX LMIAIHApPax KPyroBOro
HOMEPEYHOTO Nepepizy Ta Ha MOPOKHHUCTOMY MeTale-
BOMY pE3OHATOpi 3 OTBOPOM 3B’A3Ky. BuKopucTO-
BYIOUHM MeETO]l IOBEPXHEBHX MOTEHUaIiB NPOCTOrO
abo noxasifivoro wapy 3 ¢yHxuism#a I'pina mpocTto-

POBO-HEOAHODPIAHOTO CEPEAOBMILEA Ta METOA peryid-
pu3alii, po3pobieHo epEeKTHBHI aIrOPHUTMH Ta PO3-
[IS0a€ThCA  3aCTOCYBaHHA TaKHMX pPE3OHATODIB K
CMYTO-3aropoKyBallbHUX (inbTpiB Y XBHICBOAAX
HOBEPXHEBUX XBWIIb. 3pOOIEHO UUCIOBI PO3PaXyHKH
BUITPOMIHEHOI MOTY)XXHOCTI Ta MOTYXHOCTI, IO Nepe-
HOCHTHCS TOBEPXHEBUMH XBHIAMH, @ TaKOX
IiarpaMu po3ciaHHs y Toukax pesoHaHcis. IIpoBene-
HO MOpPIBHAHHSA ABOX THNIB CMYIro-3aropolXyBailb-

HHUX QiabTpiB.
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