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Using Bourret's approximation, the mean electromagnetic field scattered by a statistically rough sphere hav-
ing a small surface impedance 1), is analysed. Reflection coefficients of the mean field are calculated, which are
expressed in terms of effective impedances of spherical multipole waves. In contrast to the previous research of
the authors, not only the disturbances proportional to the variance c? of irregularity heights, but also those

proportional to 1,06 2 are taken into account , which proves necessary when 1), is not very small.

Introduction

The pronounced development of the perturbation
theory for the problem of wave scattering by a statis-
tically rough sphere began rather recently [1-4]. This
is explained by the complexity of the mathematical
formalism involved that is based on the theory of
representations of the sphere rotation group [5,6] and
is non-traditional for this field of research. In papers
[1,2], study of the incoherent scattering in Born's ap-
proximation for inversicn of the random scattering
operator is carried out.

Papers [3,4] contain, in general, results for the co-
herent field in Bourret's approximation and, in par-
ticular, effective impedances of spherical waves of
electric and magnetic multipoles in which terms the
mean field is expanded in a series . _

The expansion of boundary conditions in [3,4] is
carried out up to perturbing terms quadratic in the
height of irregularities c’. Neglecting the perturba-
tion terms of order ~ T]OO'Z , where 1), is the surface
impedance of an unperturbed smooth sphere
(|n0|<< l) , can greatly facilitate the analysis, how-
ever at the expense of limitations on the magnitude of
1, and the form of irregularity spectrum, even in the

case of wave scattering by a rough plane {7]. A natu-
ral continuation of the research begun in [3,4] is the
study of scattering by a rough sphere with account of

all perturbing terms of ~ G 2 ,including ~ M, 2
Effective reflection coeffitients for spherical waves

We shall proceed from Leontovich's boundary
conditions on a statistically rough sphere

r=a +C_,((p ,9) with a small surface impedance 1,:
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[ﬁ><1§]=n0[ﬁx[ﬁxﬁ]]

. i
r=a+{;(<p,9) ( )

Here N = (lA, -y*) / \/'T-;P " is an exterior nor-
mal to the surface, ¥ =a +(;((p,9), Y = VQ((p 6 )

E and H are the electric and magnetic field veciors.
Irregularities of the surface { are supposed to be

and flat, [|/a,kl5]<<l, |[VE|<<i;

Q((p ,9) — being a stochastic function with zero mean

small

value =0, whose variance is equal to
q

c’ =<§2>. These assumptions allow to appiy the

perturbation theory in the boundary conditions (1).
For this aim, equation (1) ought to be multiplied by a

unit vector ir of the normal to the mean surface

r =a and to expand E(?), ﬁ(? ) and ﬁ(? ) close to

the surface # =4 in a series in terms of powers of {
and Y to within quadratic terms. After splitting the

fields E and H into mean, & = <E> and
g;' = <ﬁ>, and fluctuating, ¢ and &, components,
equation (1) will be transformed into a set of two
coupled "equivalent” boundary conditions on the
mean surface ¥ =a, viz.
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(14— 20‘ F)E'L —(1’]0/\/5)(1+ io 5"—2) {l (He lH‘p)—
-i(By +H )| =-0,-0,+0,+0,-U,+0,=-T, Qa)
(no/ N2 i (0 ~it) =i (A +im)} | =il =ity +ih i1, = =i @5)
where The equivalent boundary conditions in [4] did not
take into account the summands

u;;%(h6 +ih¢)>,

- 0 - L .
:C—a'ré:l , =76,

7, = (n,/¥2) x
X {{_g %(ﬂe ~ i, ) -1 —gr—(ﬂe +iH, )}

i, = (o /N2 e = vy o1, ~ 1,y +iv, 1.,

yg = <y 2>. The subscript L designates vector com-
ponents lying within the plane tangent to the mean

surface r = @, the time dependence is e . Thereby,
for the reason stated below, mstead of the natural

spherical basis , the spiral one of

s l9 and l

~

l()’ Z+$

i is used [6] (See Appendix). Note that the

~

unit vectors of the spiral basis i,, i

are, apart from

the factor (—I), contravariant basic vectors. The
complex conjugation used below converts the con-
travariant basis into a covariant one ([6], Chapter 1).

120

63,64,l75,ﬁ6,_ﬁ3,and i,, nor c>-8*/or’ in
equations (2a, 2b). Usually, the field vectors in a
spherical problem are represented by expansions

- _Z Z( ea) eo) +B’(:',lo)h~’(;;o) ), 3)
n=0 m=0
i Z( eo) +B(eo ) @)
n=0 m=0

where the indices "e" and "0" correspond, respec-
tively, to the even and odd part of the appropriate
potentials [8]. Coefficients of the expansions in similar

series for €, B will be designated a( ) and b(ea).
The vectorial wave harmonics m,(m;) and ”;S;:O) de-

pend on spherical Bessel functions Z, (kr) , on asso-

ciated Legendre functions P (COSG) and on trigo-

nometrical functions sinm@,cosme . Up to a cer-
tain stage of the solution, the expressions

Aﬁff)zn(kr), B,(.;a)Z”(kr) are necessary to be

understood as admissible linear combinations of
spherical waves which are running to the sphere and

from it. In expressions for €, A, according to the

Rayleigh's hypothesis, only one type of waves,
namely, ones running from the sphere, is possible.
The expansion in such form is not invariant in rela-
tion to rotations of the sphere. The transition to the
invariant form of expansion allows, in the most suc-
cessful way, to use a method of small disturbances in
the solution of the problem. For the transform to the
invariant form of expansion, in addition to introduc-
tion of spiral basis, it is necessary to proceed from
usual spherical functions to generalized ones
(Wigner's functions)

" (~9,8,0)=e™ P! (cos6)e™, )
of order (or weight) of 7, the functions being de-
pendent on Euler angles ¢,0 and v =0 [5]. As a

~ (e,0) (e 0)

result, the vectorial wave harmonics m,, .~ and n,

Pamnodusuka u paguoactposomus, 1997, 1. 2, Ne2



Effective Impedance of a Statistically Rough Sphere: I. A General Case

are transformed to linear combinations of the fol-
lowing vectorial functions

- 2n+1

lnjn = 4nt t::,—l(_(Pse;O)'i,y

2o 2n+1
<lrzm“N 47‘; m+l( (p@()) (6)
» 2n+1

in?nz\l Z: m()( (pGO) o

(;1=O,1,2,...; —nSmSn).

n+l . .
— is a normalizing factor.
4n '

Orthogonality and completeness of the system of
functions (6) is stated, for example, in [6], Chapter 4.

It is supposed that the stochastic field C((p ,9) has

a spectral representation

t(0.0) = i Zn:Cf.i;”)I”,,’”(cos 6)[0.08 m(p) =

purSior sin mo

:%ZO ZC Cgr (-9,0,0), 7
- -2 ) 2.0
gledl = S baglen,

Here, N

=3

(ol _ L jime N
Qnm Z Vn(’ +1)( _‘m‘)‘ Km

() oo

Xm - (2)
m=1{.
o

To the even index "e" at x(e ) there corresponds a
top line in parentheses (1 or 2), and to the odd one
"0" the bottom in parentheses (I m/ Iml or 0) an-

swers. Note that in expressions similar to (6) in the
work [4], through an oversight of the authors, the

lower indices m, m' are interchanged, and the signs
are changed by opposite ones at “2” at Cm(: “) and at

‘m' in the factorials at Q,Ef,;o)

Adding together and subtracting the result of sca-
lar products of (1) and (2) into basic vectorial func-

tions i, and z , it is possible to derive the follow-
ing infinite system of linear equations for Fourier's
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coefficients for the electromagnetic field (see Appen-
dix):

( Be0)
* lBﬂm — Nnm .
r (Zn) [Z,("e,;o)J - P <U:tnm>’ ®
b,
(e.)
/ lb"zmz an
Qikznz) ~leo) | = ‘/5% U m, O
nym,
Here

. 1d €
@'(z,)= ;g-xﬂm\j )Z,;(x) (10)

e 1d

Q‘(Zn)-; \l—ino\/; —— )Z (x) 1

are linear differential operators, and

r<z,)= (1 1‘—9——5—)9 (z,)-

The upper Sign "+" in equations (8) (9) is "ﬂSWGlLd
with the top line in parentheses (l B( %) J b\‘“ < ; an

the lower sign "—" is answered with the bottem one
(A2, ) {450 B} = {400 G 0l

are Fourier coefficients

u

renorma!;zed. Through

imm, » @ linear combination of scalar products of

vectorial functions ({5,6])

~

o, = Idwldesme( {10, ) (12

is designated. Here, horizontal line above basic vecto-

. . T . . -

rial functions #,, means complex conjugation. The
20782

variable U

give the following expression for %, , .
1

U =—= X
trmm, 2'\/§N -

SADIDIDY zw

m=0 my=—m ny=0my=—n I=|m~- )

is defined similarly. The calculations

tnm

x*S C(n,,n3,l;m,,m3,m,+m3)5 )

mnyl Ly~ my, my+my

13)

121
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where C(I’ll My my my ,my + m3) are the Clebsch-
Gordan coefficients and

E ;:1;31 o ﬂS:l;l ﬂS,Zl["'ﬁS,Z‘] +4S:21 (14)
is the sum of expansions of four summands %,
(' =123 4) in the right part of (2b):
a5 = A0z (- (- £1] -
(e a) _1__ ’j _ 1=m=~ny +

~ Bl (x (xZ, @) | [0 £1] ¢ x
><C(n1 ns,l'Oll) 15
2 :',’,3, = —\/n] nl +1)n3(n3 +1)Bn(f;:;) X

1
x~Z, (x)C(r,n,,£101), 16)

7

~ikn, \/_ﬁt (; (xz, () )

x[- () 1]+ B 7 () x

o[C 1]}(:(11l 3, 10L1),
& .Jﬁ;(nl + l)n3 (n3 + l) X
07" £ 1jC(mm L101).
(18)

where

Aleo

nms

+3Sm3 _

mm! T

(17)

R —

n,m

_u0 Ly

+nm?

We shall represent U~
I

Ui )nm = U - Uiﬁnm

transformations of the summand U, -U( in the

U()

right part of (1), and U} is a result of operations
with the first four summands of the right part of (2a)

S is received by means of

> > | (g

122

8\/2Nnm ny=0 my=-ny m=0

e >{ S (2

Uii)m = +U:tlnm +U+2nm _U+3nm - U+4nm =
1 (e, 0)
2‘/~N m ng)mrz—m r;)'nﬁz-nzi Igr&% e

+ .
S C(n4,n2,l, my,my,m, + I"‘Lz)ﬁl,nam,m‘,m2 -

nyml
19)

The expression for S,J ny Can be derived from ex-
pression “S7 by replacement of m —>n,,

X (e0) (e 0)
n, —n,, my, —> m, and AWI3 Qy o s
Re0) _y 30
B"J”‘: - b”z'”z

If we introduce designations

S = —k{%ﬂ'(znz)C(n4,n2,7;0,1,l)—
- ino\/—%‘\[n4 (n,, + ])\/nz(n2 + I)XI—ZZ,,2 (x)x
x C (g m, TR0 [0 1],
B Spmi = —k{difl* (Z,l2 ) C(n,,,nz,T;O,l,l) +

+ \/n4(n4 +1)n2(n2 +1)

20

74, (_X)X

x Clne.n,. T, 01)}[(— 1)""4‘"2 il], @1
then

oy ~(e0) +4 7 (e0) tB

an T mymy nnyl b"zmz S ! (22)

Similarly,

+ o &,0, A ( 0} R

Sn,n,l = An;m * S nyl +Bn3em3 Srz,nl’ (23)
where *4S , is derived from S _ and

w3l ngnyl

iBSnlnz, from ** nmi DY replacement

n, = n, n, —> n, T2 Solving the system (9)
~e, ) b( 0)

for the variables a, m, and substituting them

into <U fn)m >, we shall receive

my==m, T<|ny=ny| m=0 m=-n

-
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~BS Be()

n31m3 mml = nymy

[—ASM i {e,0)

[“‘S At g Fled

mnyl T nyms mml L rmy

The product of four Kronecker symbols in this
formula is a result of orthonormalization of the cho-
sen system of basic vectorial functions (6).

For a homogeneous and isotropic field of random

irregularities (;((p,e), correlator of spectral ampli-

tudes according to Obukhov's theorem [9,10] is re-
lated to a power spectrum of a correlation function

K(@) by a ratio that is similar to Winer-Khinchin's
theorem:

(LTt = (1) (4n+2) 8,
X jK(@)PJO(COS ®)sin®doO , (25
[1]

where K(©)= <<; (q)l ,61) -(;((p2 9, )>, is the correla-

tion function, and ® — is an angular distance be-
tween points ((pl,Ol) and ((92,92).

In the case of small correlation radii £, <<a,it

is possible to continue analytically a correlation func-

tion B(p) determined in a tangent plane, on a

sphere, assuming 0 ~ p/a and B(p) zK(p/a). If

we take into account an asymptotic constraint ([11],
Chapter 2)

1
P (cos8) = P,(cosb) = J, ((211 +1)sin 56) +
+0(Sin2 %e) ~J,(n0) (0 <<1), (26)

then (25) takes the form

(Glea £l ) wdm(o/a) ()" x
x(2n+1)8, 8., . W(n/a), @7

where

el

w(x)= (21tc 2)_1 _"B(p) J, (xp)pdp (28)

0

—i *88

@ (Z, )]] x

]} 67,;1 8m,m4+m281,n26m2,m1+m, . (24

is an isotropic spectrum of irregularities in the tangent
plane; x =n/a. In case of inapplicability of the
tangent plane approximation, everywhere below, by

~

W(x) it is necessary to understand an expression
foliowing from initial (25)

~

W(x) = (2r0?) " @ x
x ]K(@)R,f’o (cos®)sin © d®. 29)
0

Thus, within the ten-multiple sum sign, after sub-
stitution of (25), there will be a product of 6
Kronecker symbols. The properties of orthogonality
of Clebsch-Gordan's factors (see. Appendix) add into
the product, as cofactors, two more Kronecker sym-
bols. In total, a product of 8 Kronecker svmbols is
turned out.

Choosing correctly the contribution of the sum-
mation areas on each variable, it is possibl= to per
form summation with respect to the 8 sums {see Ap-
pendix), and, as the result, we obtain

= 0:(tllz Zn’ (x) + Oinzn ()C), (30)

where 2,,()6) = xZ,,(x) are Riccati-Bessel functions,
and

n (ko)
=35 -

w  ntn

X Z Z (27’[4 +1) (n4 /a)Gn ngl Lftft?x" (3 I)

ny=01=| n—n,|

o ntn

XZ Z (2n4+1) (n4/a) gl Lf}m}‘ (32

ny=0[=| n-n,|

Thereby, the designations are used
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Gi

nnl

—_—
= C(n,n,,110,) al ( - )(dx

Q™ (z)

)™ % o*(z,)- 1)

a*(z,)

x C(n, 1y, EOQOWI(I + Dl + )

l € 1
) _ 13 g 1
Lnfl:l_c(n 1’24,1101)k( \/;_xj,
nnyl 43 b3y X b L ,
1 1
_C(n,n4,l;l,0,1)—[i + iﬂo\/E«J +
X wx
1
+C(n,n,, LOOOWI( + Dnfn+1) —
X

L;nal = C(n’ 45 1;170’1)1 (ino \/% B ;]Al -

~C(n,n,,1000) ~—\f JII+Dn(r+1). (37)

+
Lnn4l

(36)

Q(z,)+ inO;E l(i; ), Z,J +

|
Z,)i. g | x
My

;1+( 1) , .
+
o (z,>
v = Ve o ) igr(':a)} U, -U
+n ’\/2 inm// Z}ano) +5n +6n>
(38)
thereby
Z,(x)
br:tSn =0i5n ~ ! ’
Z, (x)
- (39
Z,(x))
Ui6n :Otén AT .
Z, (x),

The expressions O,s,,0,, are adduced in Appendix.

Substitution of the expressions for U il,? and Ug,) in

the right part of (8), after separation of fields into
incident and scattered one, makes possible to solve
the sysiem of equations for Fourrier coefficients of

Similarly, the scattered field
e __ (17 = x0_, ), (x)+[r7 - x(0% + 0., + 0., )]j:() 900, o
(ro— -x0_, K, 0 (x) + [Fl— - x(O_',Z +0.5,+0, )kn(l) (x)
Foleo) _ (lT —xO,(rl,),)\ﬁ,;(x)+[1“0+ "'x 0 2t 0.5, + 0., ]‘V (x) )
T =200 () +[r5 - %0, + 0,5y + 0 ) K (x) :
with

V() =20, (), 60 (x) =

=Jnx/2-H 'Elf) (x)

being Riccatti-Bessel spherical functions, the upper
indices s, o corresponding to Fourrier coefficients of
scattered and initial field, respectively. It is necessary
to take into account that

124

¥ (x) = .;.[c;‘,,m(x) + ()], as wellas
I =1+AI) =

n(n+1)+2 . e 2
:l+15k262[—“x‘—2———1—ln0J; ;:|, 42)
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Fl_=—in0F+Al",“=—-in0\/E—-lkzozx
B po2
l
e i:_z. + ”lo (E(n—-*-z)iz. — 1) il’ (43)
x x
Dt i |52 AT =i |5+ 2k
0“710“ o‘lnouzcv
X[Z(l_2n(n2+l))+mo\/g(i@?+2_]ﬂ,
X X ) X

(44)
l
F0_=1+AI“0‘=1+5k262x
{n(n+l)+2 _ \/?2( 2n(n+l)n
x| —————=1-my,|——|l-—5—"|}
X pox X
45)

Let us divide numerator and denominator in (40) by
— xOY and those in (41) by I, —xO_,, then

+n?
expand the result of division in a power series of small

additives Arl*, AT, . Weyield

1 g, (x)
Bled — 11~ RE 46
o 2 (X):I ), (46)
A,:,(:o) _ ___% 1- RM Ex; AO ,0) (47)

where RnE , R,ﬁ” have the meaning of reﬂection coef-

ficients of spherical waves of the multipoles of order
of n in expansion of a coherent field into series, and
they look as follows

In'g,? (x)+in \F
. "

RF =— (48)

n . . e ’
R
p
l+inj}j\/g ln'C:,(z)(x)
RM = a , (49)

1+inj \/g ln’CAn(') (x)

where the effective impedances are determmed by
expressions
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. |8 . € ., g |E
M| — =My |— +iAN,, . [—=
"\ °\/; 7\

€ 8
mo\/% ; oneff + Alnejf + Azneff) (50)

lr| f— = ’ + AI] ’
€ l €

€ €
an ; + l\/E(Ao'ﬂe% +Aln;; +A2n£’}t“)a (&Y
and '
, e 1 2(. 2n(n+1)
lA(meff\/g =§k20‘2';(1——‘—x2— s
(52)
. € 1 2
leneﬁ'\/% = §k262 ;3
. g
lAlT]ef \/j”‘ = (0+5n +0+6n) >
(53)
. g
lAlnejf\/E x(O—Sn + 0—6n )’
iAanﬂ\/%z ' \Fxo(' -x0,,
54
zAzneﬁ\/—- \/:xO +xO

Conclusion

Thus, at unspecified finite values x = ka , the re-
lationships (50), (51), (52), (53), and (54) solve the
problem on an effective impedance of a mean
(coherent) field scattered by a statistically rough
sphere, and, hence, that of the mean field as well.

An important for applications case of a large

sphere (ka >> 1) is treated analytically in details in
Part II of the present work published in this issue.
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DdderTHBHBIA HMIEAAHC CTATHCTHYCCKH HEPOBHOM
cepnt: 1. O0mmii ciayuai

A.C. Bproxoeeuxnii, JI.A. ITa3ninun

B npubmwxkeHuy Byppe npoaHanu3upoBaHo Cpea-
Hee JJIEKTPOMATHUTHOE MMOJIE, PACCEAHHOE CTATHCTH-

yecKi HEepPOBHOH c(epoil ¢ MajibIM NOBEPXHOCTHBIM
uMmnesaHcoM 1), . Boruucrens! kosdpduumenTet oTpa-

HEHHS CPENHEro NoJsi, KOTOpble BBIPAKEHbI Yepes
spQeKTUBHbIC HMOETAHCHl CPEPUUYECKUX MYJIBTH-
HOJMbHBIX BOJIH. B OTIHYHE OT NPEAmIECTBYIOLIEro
UCCNENOBAHUS ABTOPOB, YYTEHbI HE TOJLKO BO3MY-
WEHHs, NPOMOPHUUOHANbHbIE NUCMHEPCHM BLICOT He-

L2 2
POBHOCTEH G °, HO H ~ 1,0, 4TO HeobXxoaumo npu

HEOOCTATOUHO MAJIbLIX T!O .

EdexruBunii iMnesane CTaTRCTHHHO HepiBHOI cepn:
1. 3arasibnuii BUDAgOK

A.C. BpioxoBenskuit, JI.O. Ia3unin

B uabnwxeHHi byppe nmpoaHanizoBaHO cepenHe
eJIEKTPOMArHiTHe [one, pO3CisHE CTATHCTMYHO
HEPIBHOX  Cepold 3  MAJUMM  TNOBEPXHEBHUM
imnenadcom T),. Obumcneno koeditieaTn BinbuTTH
CepenHbOTO MOJIA, IO BUpaxeHi uepe3d edeKTHBHi
iMmnenancn chepHYHMX MYNBTHIONLHHUX XBHIh. Ha
BiIMiHYy Bi MONEPEAHbLOr0 JOCHIIDKEHHS aBTOPIB
BPaXxCBaHO HE TiIbKH 30ypeHHs, MpONOpUiiHi

’ . L2 " 2
Jucniepcii BUCOT HepiBHOCTeH O, ane it ~1,C ~, Wo

HeoOXiHO PH HEZOCTATHRO MANHUX T}, .
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