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The expressions for spheric wave impedance obtained in Part I are simplified, using asymptotic expansions for
high-frequency scattering on small-scaled irregularities. Transitions are studied both to the limit of impedance of

spherical waves without taking into account perturbations ~ 1,G 2

(M, is non-perturbed impedance, o? isdis-

persion of heights of the irregularities ) and to the limit of impedance of plane waves scattered by statistically

rough plane.
Introduction

The relations for an effective impedance of the
mean (coherent) electromagnetic field scattered by a
statistically rough sphere were derived in Part T (see
preceding paper) without any restrictions on parame-

ter X = ka value. Here we consider a case of large
spherc (x >>1n~ x) having small-scale irregulari-

ties (x =n,ja~k,n, >> l).

Effective impedance: Asymptotic representation for
xa, ka >>1

Let us take asymptotic representations of the val-

ues entering the expressions (50), (51) and proceed
from summation with respect to n,,l. to integra-

tion over them. Formulae numeration in this Part is
an extention to that of the Part 1. Thereby, the fol-
lowing relation is necessary to be implied:

a) if a =n—n,—1 iseven,then

1+(=1* =2, 1-(=1)* =0 and

P+n’—n;
Clnn £101)» — ==+ C(nn. 1 0,00),
i, EL08) ~ (1) 2“”“ -
\/4n -’ - nf)
b)if o =n—n, —1 is odd, then
1+(=1)* =0, 1-(-=1)* =2 and

C (n,n4,l ;0,0,0,) =0,
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e -] ~(n-n)]
C(n,n4,l;1,0,l)z (n+n4) ol (n n4) x

x C(n=1,n, ~1,1-1000)
Cln=tm, ~11-1000)~ (-1) 7
2Wiln

\/4n lz—n -n, )2‘
Then

. €
(x > oo): Aonfff\[i—>0, Aong,\/%%(), and

(see Appendix)

O A
lejy Op,

de jdcpr )———x’ : (55
1"14]( 110\/‘0' X
?dx jdcpr )——-5)£"—~ (56)

For a sphere in vacuum (,/8/[4 = l) , the formula

(55) transforms into an expression for Am, ., and
(56) does into an expression for Amyy , in a problem
of scattering by a rough plane [1]. The difference is
only that [1] contains a spectrum S ()Z), normalized

2 . . . .
on ©°, which, for isotropic case, is equal
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S(x)=5(x). and is connected with W(x) by
means of equation S(7)=02W(x). We shall in-
troduce designations k, =n/ak, =k’ -k},
N =np e/ and v =la, 'O(x) =iy, /k)
(for Debay's asymptotic  i(x, /k) = iy1-(1/x)").

Then the transition from summation to integration
gives rise to the result

Ak \/% = (ko )’ le/f/(x)dx X
V]

2n 1
d J
" ! P {ks(xz vkng)

<[ ke 2,2+ k2 g e (k.2 ~ ke, y 0056 ) -

2k (k.2 - kg cos@) - Ky, 1

2 .2
((_n?} % sin’ @ }’ 57

U o e o) o
1

© 2n
M |B _ 2 =
Ame,,\[; = (ko) (')[X ) !d@{“ x5

K +k
[X +mk(l—w)—m2(xz enge

X

kZ
_(kf +klxcoz(f)(xz +12) )+n5k;jkl2}+
a2y v ?sin’ @
+(1 o ) (Xz +kT]0')(k+xz1’]0’)} (58)

Obviously, by putting 1y =0 in numerators of (57)
and (58), we come to the formulas (18) and (19) of [2]

for the case of \/e/p =1.

This kind of procedure corresponds to preserva-
tion of only first two members in the right hand parts
of (2a) and (2b), as it was just used in the work [2]. To
compare (57) and (58) with results for a rough plane
[1], we shall bring (57) and (58) into a form

st % ) s

4

2r Z(n(;)j C;’m

Ty W(a)dy, [do :
<ol Jao o=

(39

Thereby,
Co =k{k2y? +K1]),
Xx = A COSQ, X, = %SiNQ,
Co = g {k2a2 + Iy + 1 (2 + 2 + 7)),
C; = k(32— k) (k> —kyx,)+2K%x),  (60)
Cs = -y k(K2 + ] = ., ),

C; ==k +x3)

Cr =k (12 +x})

Cr =k 2k —k, (K, + )]

Cp =1k (2~ ) — ke + )] - 207}
Cr= k{— e[ 20 =3k, (ke + )] +v2ki} , (61)
Cr= k3{— k2[R~ 2k, (e, + 0, ) +vRE )+ xi} :
vi=I +y* +2k ycoso .

For comparison with components of the effective im-
pedance tensor A1, (p.1403 of [1]) :

AN = k™' x
S clf
- ns i=0 .
e ey ey i

K, =K =7, (a,[})=(x,y)

it is necessary to take into account the difference in

designations (ko > kk—ok l) and to convert to a

new integration variable ¥ =K —k,, thereby
<, =m:\lk2“xz_ki ~2k x = Xy

Note that the expression CS}) (page 1403 of [1])

contains a misprint: the last summand in a square
bracket should be - kK, ,instead of + Kk K;.

Let us illustrate the agreement between the spheri-
cal problem asymptotic and the solution [1] by way of

example CcO .V €% where volume of trans-

xx ? T xx? Xx
formations is a minimal. Choose a coordinate system

with an Ox axis being along the direction of £, ,i.e.

-

k, = (k N ,0). Then
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2

CO) =k 2(k? -k} )+ k(e — k) =
=2kl = (a2 R T),

where y) =k* -k’ —y*—2k xcose coincides
with 7, of (57) and (58), and kz has the same sense,

if k, =n/a=(kasinp)/a=ksinp,where B is

a glancing angle at a mirror point, which is received
from Watson method for a field asymptotics in the
illuminated zone [1]. Thus, in the illuminated zone

=G,

) =, e+ e+
= KR 1)~ x, ke +he
_1((%3 +2Ej+ki)} =

2R k2 K2 2R -3, ).

_ sz_Z} =

- _ 1
As k ¥ =—=(k* =2 ="}, which follows from
J_X 2 z XZ X ;

definition of yj, then
Co =g a2+ K AR 2+ ),

which completely coincides with C; in the illumi-
nated zone.

C =kl kR -k + kK +xc? -
R i L S

= k{k* ~ k%) x |

x (=K — k& )+ (k- kK — k2 + K. ) =
= k(K =k &)~ k2~ kR )+ k2, =

= —k(k* — k2 2)+ kK] =

= k(K kA2 k) = k(- Kt k)=
= (K ~k2) == KK~k +x]) =

= -—kz(wcf +1<§) = —k3(xf + xj),

which, in the illuminated zone, coincides with C:.
The reader may convince of an agreement of other

coefficients Cig) with each other, by performing the

transformations similar to ones presented above.
In the shadow zone, the Watson method results in
representation of the field as its-expansion - in terms

of waves with complex value of 7, and, hence, with

complex both k, =n,/a and k, =Jk* -k that
enter the coefficients C;" .

It is- known- ([3], Chapter 1) that
n =~ ka+ (ka)"3 -O,, where §=0,1,2..., and |0,
for the first five values of §, lies in the region of values
1+10. Therefore, n /a~ k{l + (ka)'u3 OX] and,

correspondingly,

2

K2~ kf1-1- 2(@)“”303} ~k*{-2(ka) ™0}

From that, kz is complex and is equal to

kZ2 / k* << 1, while for plane waves glancing along

the plane, kz2 =0. This difference does contain, in

high-frequency case, the influence of curvature of
sphere on additional decaying of a coherent field,
which rises of wave being scattered on roughnesses of
the sphere.

As a numerical example, we shall put results of

calculations of Azmﬁf according to the formula (59)

of the present work and of those in accordance with
the formula (18) of [2] for the disturbed water surface

(See Table). Let us accept for air m =1 . The
dielectric constant of the water is equal to 80, the
conductivity of itis o, =4 S/m (sea water). Spatial
spectrum of irregularities

S6) 5107 /(2nx*), v 2g/V?,
X, pod
0, x<g/V?,

corresponds to a "half-isotropic" amplitude Phillips'es
spectrum of the rough-developed sea at wind speed

V' assumed, in the calculations, being equal
V =5+15 m/s,and g =98 m/s” is an acceleration

of gravity.
The small difference of computational values at

c,=4 S/m (IT]O| ~8-107 +2-10%) and rather
sizeable one (~ 3-:-15%) at 6,=4-10" S/m
( ]nol ~ 10"1) is explained by the fact that the repre-
sentation AZT]EJE,J, from [2], as being similar to (59),
contains in its numerator only terms of 5; +T]05f ,

and thereby 503 =, , and ae =9, kz(k: + )(,2).

For this reason, the difference in numerators of (59)
and (18) of [2] amounts to ‘
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%‘m XK (kF 43 +x7) ~nok?y at g >> kI

the spectrum of irregularities S(7 ) is concentrated

in the wave number region of 2 k/ lnol , the differ-
ence (59) from (18) of [4] can be much more essential.

Conclusions

The result of the researches carried out is the con-
struction of a theory of small disturbances for scat-
tering by statistically rough sphere, to within the

: 2 : .
terms of expansion of ~1C “, which is necessary at

insufficiently small 1)y, as well as for small-scale ir-
regularities (x >> k). Theoretical laws obtained in

the tangent plane approximation (xa >> l) for an

effective impedance in high-frequency case (ka >>1)
can be a basis for both theoretical evaluations of in-
fluence of the roughnesses on electromagnetic wave
attenuation in the zone of shadow and testing of the
heuristic methods of such evaluations. In limiting-
cases, the transition to the results already known, for
both the statistically rough sphere and the plane, is
satisfied. For the general case of arbitrary ratio be-
tween the wavelength, the radius of the sphere and

Table
£=80 j=0+4, formula (59) [2], formula (18)
V.mis | F.MHz AzneJE‘f(n) A2ne§f(n)
Go=4 Re | Im Re | Im
5 5 4,084E-04 -7,480E-03 4,092E-04 -7,475E-03
0 1,923E-03 -1,760E-02 1,926E-03 -1,761E-02
20 “ 1,343E-02 -2,613E-02 1,346E-02 -2,614E-02
30 2,016E-02 -3,066E-02 2,018E-02 -3,065E-02
AT T 1307600 -2,564B-020  1j309E-02  -2,562E-02
0 | 2,469E-02 -3,362E-02 2,471E-02 -3,361E-02
20 - 3,861E-02 -4,484E-02 3,868E-02 -4,487E-02
30 4,863E-02 -5,395E-02 4 877TE-02 -5,397E-02
N TERTE-02 | 3438E-02 | 2688E-02  -3,440E02
10 4,098E-02 -4,694E-02 4,101E-02 -4,695E-02
20 6,004E-02 -6,507E-02 6,020E-02 -6,438E-02
30 7,440E-02 -7,724E-02 7,469E-02 -7,746E-02
c0=0,004
5 5 ,2544E-03 -,1021E-02 ,2614E-03 -,1014E-02
10 ,6159E-03 -,2008E-02 ,6301E-03 -,1990E-02
20 ,1812E-02 -,2785E-02 ,1845E-02 -,2732E-02
30 ,2505E-02 -,3221E-02 ,2549E-02 -,3131E-02
T TN 27/ 2/ A7 £ 73 X (7 I826E-02 S272TE02
10 ,3003E-02 -,3594E-02 ,3066E-02 -,3472E-02
20 LA377E-02 -,4774E-02 AS53TE-02 -,4493E-02
30 ,5289E-02 -,5776E-02 ,5587E-02 -,5310E-02
TS T TS T T T T aI9E02 | S3777E-02 3286E-02 - S3646E-02
10 ,4635E-02 -,4961E-02 ,4814E-02 -,4656E-02
20 ,6266E-02 -,7042E-02 ,6833E-02 -,6280E-02
30 ,7269E-02 -,8780E-02 ,8340E-02 -,7455E-02
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scale of irregularities, the formulas (52), (53), (54) for
an effective impedance result in necessity to summa-
. rize series having Clebsch-Gordan's coefficients,
which is actually a specific character of just a spheri-
cal problem.

Appendix

Calculation of O, and O,

The transition from natural spherical basis

~ ~ ~

l',, s lgs l'q) to spiral one is provided with relations

=5 +ik).

[ (AD)
L=l -id). A=
Replacement  of  Legendre's  joined  func-

tions P (COSG) with generalized spherical ones
P! (cosB)

d — P"(cosf) = ~z H n(n+1) x

dd
( ,(cos@)+ " 1(cos@))
___’n__ m _ _ emil (AZ)
e P™(cos®) = 21 Jr{n+1) x
(n+m)!

n— m)'( (cos®)-P

. (cose))

_rives the wave spherical harmonics r}'z,(,f;lo) and ﬁ,gff)
to a form

{e.0)
"{e,o) _ Qnm -
mnm \/— Z (k ) 2n+1 { nm lnm}’
feq) 47m(n+1) A3
1 =%\ 2nel @9
Q(en) . 47 . .
f 2n+1 { mn H""’}’

where Q,(,f,’f) are defined after the formula (7).

Scalar product of vectorial functions i, and i,

is defined as follows [4]:

(;;:n*l::m')=

= jae sin® jdq) i (0,001 (~9.00)x
A+ %, \[ Qn+1)(2n +1) (r+1) |
l’ (Ad)

The horizontal line above i, means complex

conjugation, which converts contravariant compo-
nents of the spiral basis into covariant ones [5],

thereby (;+-f+)=(f'~f')=l and (;+ f‘)-—*O.

By virtue of it and of orthogonality of the matrix

(-0.8.0) [45]:

P
(znm* zn.m,) =0.

According to expansion into the Clebsch-Gordan's
series ([4], Chapter3)

t(~9.0.0) 12, (~0,0,0) =
h+h

= 3.l ik, j+ )%

I=|1,~1]
xC(l.L. 5 kL j +k)-t L (-9,00). a6

Proceeding from expression (7) for C((p ,9) , we have

n
elements tm)

(AS)

- 1
¥ =VLc(q>,e)=——2ﬁrx

n4 n4 +l - o
Z Z Q”o’"a [l’"d’":t +l"4""4 ]

1y =0 my=—n, n4m4

(AT

From this,

)= ge(2)
3 3T S )

ny=0 my=—ng n=0 m=-n

X I/IN/(n4 /a)n‘,(n4 + 1) X

ng+m

x 2.

I=|ny—ny|

C(n“,nl,l;m4 ~m, ,0) X
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x [C(r 7, E-110) + C 1L ~10)] x
2 o(~<9,8,0)-8, ,8_p m- (A9

Nyt~
Obukhov's theorem for the correlator of spectral am-
plitudes [6,7] is used here

(£l Ele9) = (1) (2m, +1)x

2
(o] ~
x4‘n:(—a—) W(n,1a)-8, .8 pm- (A9),
As
Hy Fi 7‘[ =
Z Y a0(x) 2 (900, (a0
n;—()m.‘ m
where
aﬁ?(e.,o) _ Q(e,o) %
1 Ay €,0) —\- e0
X {-};()CZ,,3 (x)) A,(l31 ”33| —(+)z B,(M ”LIZ,I} (x)},
(A1)
then

2
lnﬁ 14 (0) \[_&Z . © 1y © o e
?[ 2a2 z Z Z_o é’h =0 1~=}1~'13!

X C(n4,n4,l;m4,—m4,0)

X C(n4,n4 WHES l,())[_ (_ 1)1—n4—n4 + 1] y

e
X

X C(n3,l t~m3 0 mz)
« C(m LTF1071) - a(1,) £, . (-9.0.).
(Al12)
Here, for abbreviation, it is designated
ot (22 )(+) =40 () —o L ().
Correspondingly, for
0+6n =
(e Z (x)

- U ]

\/,_ [ *l 6 nm / A(e(,Z (X)
we obtain

. 2
o =+m_o(z) .
*1 " 4a’x\a

x \/—?‘— 2 Y (20, +1)n(n, +1)-u7(5’i) A1)
u 7y=0 a

In deriving this result, the following relations ([5],
Chapter8) were used:

n ‘
S ) Aryony by =m, 0) = (= 1) 28, +18,,

mg==1y

C(n0,mm0,m)=1, C(n0,nF10,F1)=1,

(= !

2n, +1

C(ny,n,,01,-10) =

For the summand

0= ([ -i1) -3 o))

we, similarly, have
2 L
g )i,_a W2

153 33) G\ +1)

B =0 m=n m=0 m=-n

g (Lo sz, )
<t (~9.00)12 . (-9,00)+

4 Loz )it 2z, 0]

X1, (= 9.6.0) ’:Z,-x(—(P,e,O) } (Al4)
Yo Fitel,., ——Z Z gled Jn(n, +1) x
n,,,—() my=-ny

[z by H( (p,G,O)—gt;’;‘,u,(-—(p,G,O)].
As a result, we receive

7o in,

Us="502z "

w M o M
= Z > 3 2 > 2
=0 my=-n, m=0 m=-n m=0 my=—n

nt+ny ny+l

Z ~Z <c;{ ”)>\/ n, +1n,(nl +1)
={m—r| T<|n~ ,
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|<n,,0<n <w,|m|<n,

then at fixed n, , there is always achievable n, =n,,

Since 0<n, <o,

{[A( ' az, () 48502 (x)}

XC(n1 n,, l'—ll())x soand m, =-m,,at which J, ,d =1.

ng g —my

[7_ C( 17 101) Thus, summation with respect to #,,/m, results in
x i n X

tomy+rmyem, A T mmem, retain of the summands at which #n, =n, and
x C

(”4,1,1 ;'“LO,'I)]'i' m, =—m,, thereby 8, ... =8, . By virtue

of Kponecker's symbols & -8, being present in
) __( ~ ) X ' ~
+ Aﬂz’"s x xZ n (x ) lB n3y Z m (x)} x the cofactors, it is possible to replace / with #n, and
3 m, with m at them. Interchanging the summation
X (n, NONA 1’—1’0) X order in (16), we come to a sum of a form
<l Cln, L T00)- 5 x SUM =(....,my =m....)x
My 1+ my+my+my

x C(m:l, 7;— 1,0,-—1)] } x X ;%(_ l)m4 C(n4,773,l;—m4,m;,-—m4 + mg) X

XC(nl,n3,l;m‘,m3,ml +m3)x XC(114,l,rt;m4,—m4+m3,m)§mmj’ (A7)

C( ] T + + + ) N where (....,m3 = m,) means external summation
xCln,, 11 ;m,,m +m,,m, +m +m . ) )
4057 T T T T T TS e with respect to all other variables, and in the sum-

(A1) mands, the substitution of m1; with m is accom-

Let us calculate scalar product plished. Using property of symmetry of Clebsch-

ST, in, Gordan's coefficients, it is possible to receive
US*lnm = 2 X [T
={....,m, =m,... \— e %
A& ’ 2n, +1

NI

}J‘ m=0 my=—n, =0 m=-n m=0 my=-n

n, m
ny+i X Z ZSmMC (l’lé,,l,rz3;m4,—m4 +m3,m} e

Z Z 475( ) (=™ (Zn4 + 1) x» My =—riy my=—1;

1=] -5} T =}y 1] X C(n‘,,l,n;m‘;,——m4 +m3,m3) =
X W(n4/a) Ry vm,‘,ml x \/”4(”4 ‘H)”l (nl +1) X = (....,m3 = m,....)(— 1)"3—’ X
x Cmm, s,y + ) (2041 [B,, (< +1)

~ X |— (A13)
xC(n4,l,l;m4,m1 +my,m, +m +m3)>< 2n, +1 |0 (1m| >n, +1).
x| A )( (xZ (x)) ) + lB,(f,:: Z (x) Such result is a consequence of orthogonality of

s ’ Clebsch-Gordan’s coefficients [4,5]. Then
SUM =N, x

x O,y E=110) x C(my, L T=10,-1) +

ST B N

iy =0 m=0 Iny~m| I'<{n,~|

21 +1 (lml =n+ l)
x C{rm,m, E,~10)C{,,1,T-10-1) }x %808, ) s 0 (> n, +0).

T 6mm,+m,+m3 7:311313 (A16) In view of presence of Bn o in the cofactors, re-
placement of #, —>n is accomplished everywhere,
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as the intervals of change of 7 and n; are identical
[0,00] .
The condition of |m|<n, +/ excludes of the sum-

mation a triangular domain near to the top of the
first quadrant with the sides of n, =m and [ =m

along the axes », and /. The summation with re-

~

spect to [ cuts of this domain a half-band being

~

rested on the axes / and 7, in the points [/ =n

and n, =n, and extending along the first quadrant

bisectrix. For the top half-band part that lies above
the bisectrix, the limitations

n<l<m+n, n-I<n, (A20)
are satisfied. For the lower band part that lies under
the bisectrix, the limitations on / and 7, take the
form

n,—n<l<n,, -1 <n,. (A21)
Proceeding from (A 20) and (A 21), it is rather easy to
establish  limitations on the upper bound

[ =n,+] of summation with respect to / and

max

on the lower one 1., which is equal to [, =17,

o = My =1 in the
lower half-band part of the summation with respect

to(ln4)
n<l I <n.

max ? min

in the top half-band part and I

(A22)

~

Thus, the summation with respect to / always con-
[ =n for which 8; =1. As the

result, the initial 8-fold sum is reduced to 2-fold one.

tains the point

w  Min

SUM=N,, 2, >, (-0

ny=0 I=|n,~nj

21 +1
2n+1

As a result of similar calculations,

2
-~ % i, o
0.7z ) = (2]
(5 “22N, &

Z > (2”4 +1)

P’ n,=0 I=|n-n,

X 114(1/14 + 1) (”4 / a)(~— 1)n_

2o 30 ez, 0) +iB 2, 9]

(cooosrmy = mymy =n,....). (A23)

2n+1

k-1 320 102 0) B0
x C(ny,m EL-10) }C(n4,n,l;$l,0,$l). (A24)

Using recurrent relations and symmetry properties
of Clebsch-Gordan's coefficients, the expression (A24)
can be transformed to a form containing only

C(n,1,,1000) and C(n,n,,1;10) . Thereby,

N, (ig,(,f;,")én (x)]

O™ o Vo] ooz
N - A ZEE::)ZA n(x)
—mm {( S.in:'l)i(U .in:n)} — " =
2 4:Z,(x)

__EEHO_(S)Z e
T 2ax\a/ \p

nin,

t
>

X Z Z (2;14 +1)n4(n4 +1) (n4 /a)
ny=0 I={n—n,|
I+
* 1) \v/n4 714 )qn,nulm,l)

\LX(Z T+ ] rn,, 1000) { x

M+
P Ann,110)) -

Hn+1)
n(n+1)

X

- (A25)

) A\, 2000)p x[1(-1°],

where o =n—n, —/. The top line iEf,f,;”’Z,,(x) in

the parentheses corresponds to U 5, , and the lower
one A,Sf,;") (xZ,,(x)) corresponds to U s, . Note
X

that the factor 15 (= 1)* =1F(~1)"™ ~ is different
from zero for odd o =n—n, —1 for the upper sign,

and for even o =n—n, —/ for the lower one.
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Transition from summation to integration at
nn,l>>1

The transition to integration at 7, >>1 in ex-
pression (A 13) for O, is carried out rather easily:
it is necessary to convert from integer 7, with dis-
An, =1
x =n,/a and dy =l/a, thereby 2n, +1~2ya,

crete change of to wave number

n(n, +1)~nl =y’a".
Then

(A 26)

In conversion to integration in expression (A 25) for
OiSn 4

ence, under the sum sign, of the "flickering" factor

it is necessary to take into account the pres-

—ny—1 .
1+(=1)""", because of which the non-zero values

in the internal sum with respect to [ occur within
Al =2 . Therefore,

o Aty

SUM =Y 2, f\(n,nml)z

n4=01=in—n4

nmy

= %azidx i dq A(n, x4, qa).

x=0 |”""4l
g="—"

(A27)

According to the vectorial model of addition of the
moments [5], [ is a module of the vector being the
vectorial sum of # and ﬁ4 forming an angle @ , i.e.

[=n*+n; +2nn,cosq ,

g=a"'n* +n; +2nn,cosQ,
whence

2a’qdq

_do = -
\/;mfnz - (qza2 -n*-n )2
2aldg

) \/4113112 —-(12 - —nj)2 .

Taking into account that ln—n4 | / a corresponds to

¢®=7 ,and (n+ n, )/ a corresponds to the value

of @ =0, we obtain (n4 = Xa)

SUM = -?;auj[dx?dfp 1A (n,n,, 1) x
0 0

-
x\/4n2n§ ~( 2 —nz—nf)

l=\[ n’+x’a%2nxa€os¢ :
ny=xa

(A28)
As aresult, for O,, we receive:

200 2n .2
. e ~ 3 —smn” @
0,,, =—i /—— w( d .
.5 M x Ojdx X% of <p(+cosz(p)
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