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Propagation of the transient electromagnetic field in a waveguide with the perfectly conducting surface of ar-
bitrary cross-section which is filled with a lossy medium is considered. Time Domain Method of Waveguide
Evolutionary Equations has been used, and original initial-boundary value vector problem for Maxwell’s equa-
tions has been reduced to integration of the one-dimensional Klein-Gordon scalar equation. Its solution is ob-
tained as an expansion in terms of a suitable for Time Domain Method basic set. The expansion coefficients are
readily derived through the same decomposition of the input signal. Analytical forms of early- and late- time
approximations for propagating electromagnetic signal are presented, and the validity conditions for the exact

solution are discussed.

1. Introduction

Present practice in transmission of the information
depends on propagation of transient superwideband
clectromagnetic waves, or signals, for short. Solution
to the problem for signal in the Time Domain has
priority over that for infinitely extended sinusoidal
waves in, for instance, radar or stealth technology.
Waveguides are used as important constituents of
apparatus employed in these fields. It is obviously,
that new approach should be developed for electro-
magnetic signal excitation and propagation analysis
which allows for causality low.

As for background history of the problem, a
reader ought to be referred to paper [1] where one can
find rather complete list of previous publications. The
list of references should be complemented by the sev-
eral publications [2-5] which have been omitted there.
This paper presents a method for analytical investiga-
tion of the electromagnetic signal excitation and
propagation through a waveguide.

A waveguide signal description has been tradi-
tionally based on the conventional concept of har-
monic waves and usually expressed by applying
Fourier Transform Techniques. But signal field ap-
proximation in terms of a superposition of harmonic
waves does not enable to give us a clear idea how an
electromagnetic wave with an initial time variation,
(c.g., a step pulse), changes while propagating in a
lossy waveguide. This is due to the fact that harmonic
waves exist and are nonzero in the infinite intervals
—o0< f z<+00. Therefore, they cannot provide
relevant information regarding the time evolution of
the signal which always has the start and the end and
is irregular or discontinuous in-time.

As it is seen, for instance, from [1,2], more power-
ful methods are the Time Domain Methods. This
paper takes a new look at the propagation of signals
in waveguides by applying Time Domain techniques.
More precisely, Waveguide Evolutionary Equations
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[3] and Separation of Variables regarding to Group
theory [6] arc used.

Waveguide Evolutionary Equation method is a
general method for the description of EM fields in
waveguides. It assumes geometrically regular

waveguide in the z direction of an arbitrary smooth
cross section S, a contour L is the boundary of the
cross section surface, v is the outer normal to the L,
20 is a unit vector along the Z-axis, 7 is a two-
dimensional position vector within the region of
waveguide cross section, i.e. 7 €.5 .

The bounding surface of a waveguide is assumed
to be perfectly conducting and single connected but
there are no restrictions on the medium filling the
waveguide, i.e., generally, the waveguide may be filled
in with an linear inhomogenous, time-varying and
even nonlinear medium. The complete definition of
waveguide EM field given by [3] may be summed up
as follows:

H- waves
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Here V, =V -z, 5— is transverse delta-operator.
z

Egs. (1) and (4) represent decomposition of the five-
component EM fields in a waveguide into transverse
E H and longitudinal E,, H, components. In the
case that the waveguide sustains a lot of modes the
total field is given by a sum over all possible integers
norm.

Membrane functions ¥, (7) and ®,(7) de-

termine a transverse spatial distribution of the
waveguide EM fields. They are defined in terms of the
boundary- eigenvalue Neumann and Dirichlet prob-
lems in Eqs. (2) and (5), respectively. Here
2

0
2 - . —
Vi=A-z, ey is the transverse Laplacian; p,,

and g, are positive real eigenvalues defined by the
indexesn, m =0, 1, 2....

The scalar functions 4,,(z,t) and e,(z,t} com-
pletely determine field evolution along the z - axis.

Mathematically, they represent evolutionary coeffi-
cients of the EM field expansion in transverse vector

functions and, physically, an amplitude of longitudi-
nal magnetic or electric field components. Coefficients
h,(z,t) and e,(z,¢) to be found satisfy Evolutionary
Waveguide Equations (3), (6) with predetermined
initial and (or) boundary conditions.

Everywhere constants €, and |, are the conversion
factors in MKS rationalized units; € = €(z,¢) and
W = W(z,?) functions are permittivity and permeabil-

ity of medium, respectively. The right hand sides of
Egs. (1), (3), (4), (6) contain six scalar functions

Jm> Jons8ms Prslymsly - They all are defined by the

constitutive relations and the impressed force func-
tions in accordance with the following definitions:
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where pg and j are the density and current density of
free charges, p,and j, are corresponding functions of
PP/ and M' M, are

the impressed forces; ;

transverse and longitudinal nonlinear parts of polari-
zation P and magnetization M vectors, respec-

tively. These vectors have been defined in [3] as fol-
lows:

”=eo(s(z -1 +P'(E,90);
=(u(z,t)-)H + M (.‘H,é’)
£ = E+zoE

#H=H+7,H,

The solution to the problem for EM signals in
lossy waveguide is obtained as an example of integra-
tion of evolutionary equations (3) and (6). In this case
EM field is assumed to be absent in the whole volume

of waveguide before fixed time ¢ = (. Since the in-
stant ¢ > 0 nonzero field originates in the cross- sec-

tion at z = 0 (step in the EM field) and changes with
time in a predetermined fashion. We investigate the
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signal propagation problem analytically and numeri-
cally.

The present paper is organized as follows. In the
- second section of the paper the formulation of the
problem for the arbitrary EM signal in the waveguide
is shown. The third section is devoted to the discus-
sion of the energy transport for the electromagnetic
signal in the waveguide. In the forth section the exact
sotution of the problem for arbitrary signal propaga-
tion is obtained. The fifth section demonstrate the
solution of the problem for case of electromagnetic
step signal. At last in the sixth section of the paper we
discuss the numerical and graphica! results obtained
and present the approximation of the exact solution.

2. Formulation of Problem for
Waveguide EM Signal

We shall demonstrate the solution to the EM sig-
nal problem for a particular case of a waveguide with
ohmic losses in absence of impressed forces when
€ (z,t)=const, W (z,t)=const
Pr=mM'=0;J,=0, p,=0;

Jc = .c +Z()jcsz :GI(E+ZOEz)’ ' (8)
G, = COnSL.

With the conditions of (7), Egs. (3) and (6) acquire
the following form

3 & .
5;2—_5;2— + P hm(Z,t)=]m(Z,l) s

€)

(souoeu

2 62

1F(z,1)

| 8
tF(z,t)l, w=5 F (20

where F(z,0)= h,(z,t) or €,(z,1), and k’=p,, orq,

respectively; a standard nomenclature for the asym-
metric step function have been used as follows

H 1, z=0,t20;
)=
@) 0, —wo<z<w,t<0.
Problem (14), (15), (16) admits the damped solution
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Let us calculate the right-hand sides of Egs. (9),
(10). Usage of definitions (7), and substitution expres-

sions for E,, and E,, from (1), (4) and (8) with re-
gard to normalization in (2) and (5) yields

= [ds(o B, 7, %, 5] -
M

+ qn] €, (Z5t)=

3
==0 BoH h,(z,0); an

T (2,0)= —;7 deoEm(D; =0,e,(zt). (12
s

Since at every instant ¢ < 0 fields are assumed to be

=0,

absent throughout the waveguide, i.c., &

<0

under the condition of the problem, then

divé | .,=0. Such initial condition together with
I . .7 Ps :

the continuity equations divJ_ =— v and Cou-

lomb law Sdivg=pc yield pc(z)%ogma“:(!.

Thus, taking into account the initial condition, in
Eq. (10) we have

p,(z,t)=0. (13)
We now can state an initial and boundary-value
waveguide problem for an EM waveguide signal.
Inserting conditions (11), (12) into Egs. (9), (10) and
supplementing it by two point boundary specifica-
tions along with the null initial values yields

' )
(souoaua?—é? +Ho O, 5;+K2)F(Z,l)=0; 14

e}

, O0<t<w; 15

Z—v*°0<

L 0=0, 0S]zl<oo ;(16)

F(z,t)=f(z,t)e™ an

c

L and f{z,?) satisfy corre-
£4€
sponding initial and boundary problem for one-
dimensional Klein-Gordon equation

provided that o =
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FED), 0= S G0)

where new dimensionless variables have been already
introduced, namely,

(dimensionless time);

1 o
= [ O (dimensionless conductivity); (21)
2Veg, 8

=xz (dimensionless distance);
Ki=l-c’.

Should recall that k >0 is the transverse
waveguide number related to a waveguide cutt-off

wavelength A, by x =21 \/ep /l .-
3. Energy Transport by Waveguide EM Signals

Let us define energy W/(z,f) and longitudinal
component of energy flux P,(z,f) (integrated over

waveguide cross-section S and normalized on it) of
waveguide EM signal

0
<0 T if(gﬂ)

(jtz—b%7+62)f(§,r>=o, osklse <o 09
LFO)=H@ e 00), |fC0)]|;0a<w, 0<[t|<0; 19

. =0, 0<|¢|<m; (20)

W(z,t)=% x

1
< [Slee B GO +hi @0 JdS, @

S

1

P (z,)== [[E(zt)xH(z,)],dS . 23)
A g

Since the ratio of energy flux P, and energy density

W is a quantity having the dimensionality of a veloc-
ity we can define

vS ( Z, l‘):M
W(zt)
as a velocity of energy propagation through
waveguide. By contrast to the time (period) averages
which are used in the description of the sinusoidal
waves we need in Egs. (22), (23), (24) to operate on
momentary values in spite of rapid aperiodic time
variation in all signal features. On insertion of the
Egs. (1), (4) into Eqs. (22), (23), (24) after the integra-
tion over cross-section with regard to normalization
in (2), (5) we obtain in dimensionless variables

24

OF\oF oF\ (aF)
2 [20‘ F— - J T (20’ F- —*‘) + (-"—) +F* (E — waves)
ve (6,1) ot/ 0¢ ot 0¢
e 259)
v OF 0F (GFJZ (asz ,
- 5{ 6@7 6’5 + a*C +F y (H —waves)

where v, = l/ JEEU M, is the velocity of light in

given medium. If G is nonzero we have, by contrast to
lossless medium, differences in energy features for the

EM waveguide signal to be transported by E-waves
and H-waves.

4. Solution to Problem for Waveguide EM Signal

One can readily see that there are three possible
types of Eq. (18) depending on whether the conduc-
tivity o is greater or less or equal to unity. In the lat-

ter case we have K =0 which yields a one-

dimensional wave equation. Its solution in a conven-
tional form of traveling waves with Eq. (17) gives

FGr)=e H(x -fho ~&)). 26)
Thus, the signal H(t)p(t) in such lossy

waveguide moves away from the origin in its true
shape and decays exponentially in its size. If 0<o <1

or | <6 <o we have in (I18) conventional Klein-

Gordon equation for f{&,t) or f(iC it), respectively.
For definiteness, let us examine the former case con-
sidering the latter one in the final result.

Problem (18), (19), (20) in the Time Domain is, of
course, not new but it is traditionally analyzed by
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using Integral Transformation Techniques. The final
solution in this situation takes the form either of the
time convolution of the Green function and the exci-
“ tation or inverse transformation form. In the former
case, it can be made with help of direct numerical
computations, see, e.g. [5]. The classical asymptotic
approaches are used in the latter case, see, ¢.g., {7].

In this paper we use the Separation of Variables
Method wherein problem (18), (19), (20) can be more
readily solved in the Time Domain. It is a key-point
idea of the paper that the separation of variables is
possible in many types of space-time coordinate sys-
tems which provide a new form of analytical solution
to the problem (18), (19), (20) in the Time Domain. A
full set of separable coordinate systems for one-
dimensional Klein-Gordon equation (18) is listed in
[6).

We use the transformations

¢ =ushy, 0<u<ow,~0<V<®

(27
for going from original ({,7) to new coordinate system
(u,v) with variables defined as follows

u:\/;z_gz ,

1 ("c +C_,]
v==In , 0<l<t <.
L 22, o<k
Parametrization (27) and (28) covers only the sector
of the Minkowski (£,7) - plane given by T + § >0.
Similar separable coordinates can be set up in the
three other quadrants. In the problem in question, it

is assumed that in quadrants different from T + £ >0
one has a zero EM field. Let us apply the separation

of (i, v) variables in ordinary way

Tt =uchv,

(28)

Suv)=V(v)U(u) (29)

for the rearranged Klein-Gordon equation (18)

o'f 18'f 1gf_

~2
= 0
ou’ +u ov’ uau+K S(wy) =0 30)

to yield its particular solution

fuy) = (Av exp(vv) + B, exp(—v v)) X
x[C,J, (@) +D,N, ()] (31)
where 4,,B,,C,,

N, are Bessel functions of the first and the second

kind, respectively, of order Vv; Vv is arbitrary separa-

tion parameter.
For EM fields to be limited all through the

waveguide, we need to avoid the N,(u) term since it

D, are arbitrary constants, Jy and

builds up without bound with #—0 (1—>C). Thus, let
us consider the following particular solution to the
Klein-Gordon equation returning to the original

variables (T,8)

o2 P
ey = C( s Jk(K e

0<gl<t, k=012....

The functions f;"(§,T) correspond to right- or left-
going waves which propagate in the £ Zz-direction

from the origin z = 0, respectively. We form the solu-
tion to the Klein-Gordon equation (18) by superposi-
tion of all possible propagation waves (32)

I Zc( ED

xJk({ rl—gz), 0<lg| < (33)
to satisfy boundary condition (19)

S0 c0=€"00) =
_ZCJ( Jizek), osfg<e. 69

In Egs. (33) and (34) we assume that 0 < o < 1. In

the | < & < oo case, one needs to derive similar equa-
tions by substituting Bessel functions for the modifi-
cate Bessel functions, vis.,

1 (V1=e7 72 > 1, (Vo? - 177=C7).

and desired coefficients C; fornew C, > C, .

Expressions like (33) have been already used for
the description of transients in waveguides, but they
were derived with more complicated and less general
methods. Relation (33) may be considered as an ex-
pansion of the required solution in one of the possible
evolutionary basic set for Klein-Gordon equation
solutions.

For an arbitrary signal f{f) it is practicable to de-

termine the coefficients C, in Neumann series (34)

using their association with the coefficients in Mack-
loren series B, [8], vis.,

L (k—n-1)!

k-2n N

Co=B,, Ck=k22 ——— B, ,,

n =0 n!

1(d) ..
Bﬁ;ﬁ(};} (e o)),

_, (for 05 <1).

(33)
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Hence, the expansion coefficients C, became readily
available from the time derivation of an excitation
function (or input signal).

5, Propagation of EM step signal

Let us consider a signal generated in a waveguide
by the EM step input (¢(t)= 1 in Eq. (15)).
1, 120;

F(§,1)|¢=0=H(T)={ 0, 1<0.

The unit step signal is of great interest in view of
the following reason. An arbitrary signal (continuous
or discontinuous) may be obtained (exactly or ap-
proximately) by means of a series expansion in time-
shifted step functions or DuHamel's integral, vis.,

0 ()= AU H (c—kAv),

k=0

(36)

o(t )=]-A(T')H("C —-1')dt’.

As it have been rightly pointed out in [9], for study of
transients of EM waves the step function is of a sig-
nificance comparable to that of sinusoidal waves for
study of the steady state EM waves.

The simplest signals that use the solution to the
unit step signal problem are the Walsh functions.

He-lohe {1, (Vime? 7=

)
k=1

| B,

Fier) ={H@E -ghe® ;

)+
R = e

Ly

+2

k=1

3 k
(1+on (c—ljl
—_ +
c —1 l+o

6. Numerical / Graphical Results and Discussion

The injection of ohmic losses in a waveguide me-
dium leads to the change of size, shape and time of
the transients but has no effect on the form of a
steady-state process. The last one is derived from
solution (37), (38), (39) if time T tends to infinity and
is nonzero for the step signal.

142

1@ -lehe {1, (o 1T

Since the Walsh functions are two-valued they can
be used in the transmission of information digitally.
In signal processing, the Walsh transform proves to
be much more easier and faster than the Fourier
transform; since its computation involves only addi-
tions and subtractions.

Rather than use Egs. (35) directly to obtain coeffi-

cients C, , we take advantage of the well-known [10]
X

relation
1
=
=Ty Y (BB, (),

CXPB(B +%ﬂ=10 (x)+ 2 (BB ), ()

to obtain
k k
C, =(—1—+—6—) +(=1)f (t_c_)l (for 0<c <1),
l-o 1+o
k 3
c, =(1+0')2 +(c —1)2 (for 1 <G <)
c-1 I+o

Thus, the net result of the lossy waveguide problem
for the unity step signal is given by

(for 0<o <l)

t+‘§|

(for 0'=l) (38)
(for l<o <oo)
T“‘d : 2 22
) e

Depending on losses value ©, time-dependent

transients at a fixed distance £ = const may be
classed (see Fig. 1) into oscillated function form

(0<o <1, Eq(37) or monotonically increased

function form (1 £ 6 <« , Eq.(39)). The case 6 =1,
Eq.(38), corresponds to the absence of transients. The
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time-constant solution in it just yields the shape of a
steady-state process
lim F(z,;,0)—>exp(-{). (40)

T3
0<o <>

g
=]

Q

[aN

g

80

2

£0.

>

K0

-

20 :

'g e G =50
'.é . - exp(-C)
g 10 15 20

Time,

Fig. 1. Time-dependent signal EM-field at E=1 for different
conductivities (losses)

Increasing the conductivity o ( i.e. losses) leads to
decreasing the transient time in case of 0 < o < 1
and to increasing it in case of 1 < © < o0,

In case of 0 € o <1, the more oscillations occur
with distance from the excitation and less oscillations

occur with increasing the conductivity & (i.e. losses).
The latter conclusion is illustrated, for example, by
the width of a front spike that can be estimated as

AxC - C2+ Jm2 ’ __ (41
\) l-o

where joi =2,44 is the first zero of Bessel function
Jo(x).

For all values of conductivity & (i.e. losses), it is
true that a signal front propagates with the velocity of

light in the medium v, = 1/,/80}108“ =C/\[£;.

Front remains its true value for lossless medium and
therefore remains always well-marked. To detect ve-
locity of the signal front in a waveguide with arbi-
trary conductivity (i.e. losses), we need however to
assume a technically perfect threshold detector with
an infinite resolution because both the signal front
and its “tail” decay exponentially on passage through
the lossy medium.

The most interesting is the case of lossless
waveguide filling which is derived by substitution

o =0 in Eq.(37). The absence of power factor from
zero term of this solution is of importance in estima-

tion near the signal front when (T - £) is small. This is
most pronounced far from the excitation point when

the contribution from each wave component
F:(&,t), k > 0 is negligible in comparison with

F(&,t) (see Fig. 2).

=

g r T T T T
2 10+ — F(8.0)

g e (2

3 I N 2 RS exp(-0)

< 0,6+ —— F2,0)

lo% LN | ‘](’((22-(;2)112)

5 02!t

S 0

§ 0.2 |

E L

0,6
g 0 2 4 6 8

Distance,
Fig. 2. Comparison between spartial distribution of the signal

EM-field and its approximation at T=2 and T=8

Thus, the more is time of signal propagation in
waveguide, the more is distance from the signal front
when spatial distribution of the signal is characterized
by

F*(g,v)

(r =)0 = 'E)i (C ,T ) =
1)

=H L), (Ve -¢7). )

ey

T L ]F(z,(;)_ Jo((.tz_ ‘;3)1/2)"(8
IL !F(T,C)-—exp(-{; |<e | E

0 10 20 30 40 50
Distance,

Fig. 3. The space-time domains in which approximations are
valid

Quantitative analysis of ({,t) - domain on which
approximate evaluations (40), (42) are applicable is
depicted in Fig. 3. Every point of the painted domain
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" yields that distance € and that instant T for which the
AISENANES

]Fi (t,8) — exp(—-C)I is less then a given error €.

difference or

Physically, € may be considered as resolving power of
threshold detector measured the EM field amplitude.

The plot of time-dependent energy W({,t) di-
vided on the k’gg, for E-waves or k’up, for H-
waves and normalized energy transport velocity
vs(&,7)/ v, given by (25) are depicted in Fig. 4.

L10]
»7 0,5
e ,,/\AVAAVILVAVI\[\N\MM
Sosl
2
g'l’oh.;...ll..,..
20 40 60 80 100 120
a) Time, t
12 -

Energy, W({,1)
oo}

10 15 20
b) Timc, T

Fig. 4. Time dependent energy W(C,,1) and normalized en-
ergy transport velocity v(&,, TV at {=6

Simulation of energy transport with a computer
gives following results:

» The energy of step signal is basically concentrated
near the signal front on which it has its maximum.
Hence the transport of the greatest part of energy
and the signal propagation are in the same direc-
tion.

* Energy of the transients distant from the signal
front is two-directed and vanishingly small.

e With away from excitation point a waveguide
impart largely the guided properties to the energy
of the signal.

¢ Inclusion of ohmic losses to the waveguide me-
dium leads not only to the predicted decreasing of
signal energy but also to its further concentration
in vicinity of signal front. Differences between the
energetical characteristics of E-waves and H-waves
are not significant.
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PacnpocTpanenue 3/1eKTpoMArHHTHOrO CTyNEHYATOrO
CHTHAJ12 B BOJIHOBO/E C NOTEPAMH

K.M. Emesmnanos, C.B. Hukurcknii, 0.A. TpeTbsikon

PaccMaTtpuBaercs pacnpocTpaHeHHe HecTaLuo-
HapHOrO 31E€KTPOMAarHUTHOIO MWOJNA B BONHOBOJE
MPOU3BONILHOTO TOMEPEYHOTO CEYEHHS C HIEAIbHO
MPOBOAALIEH NOBEPXHOCTHIO, 3AMONHEHHOM CPEIOH ¢
notepamMu. Mcrnonb3yloTcs BOIHOBOHBIE 3BOJIOLU-
OHHbIE YPAaBHEHMS, CBOJAILKE BO BPEMEHHOH o6racTy
MCXOJIHYI0 HAualbHO-KPAEBYI0 BEKTODHYIO 3ajady
AnA ypaBHeHMH MakcBemia X MHTErPMPOBAHHIO OJI-
HOMEPHOTO  CKaJIIPHOTO  ypaBHemus  Kieiina-
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Toprona. PeiieHHe HaxoJuTCA B BHIAC Pa3IOKEHHS
10 HOIXOMAIIEMy HecTauHoHapHoMy 6a3ucy peie-
anii gaHHoro ypasHexus. KoadduuuenTsl pasioxe-
A4S NETKO ONPENENA0TCS M3 aHATOrMYHOrO Iped-
CTaBJIEHUA BXOHHOro cHrHazia. IIpuBomiarca aHaiu-
TMgeckue GOPMbI paHHE- U NO3/HE- BPEMEHHOTO NpH-
BNMKEHHH PACTIPOCTPAHSIOIErOCs CHIHANA C ycio-
BAMH HX IPUMEHHMOCTH [0 OTHOLICHHIO K TOYHOMY
PEIUEHHIO.

TMomiipenHs: e1eKTPOMATHITHOTO CTYTHYACTOIO
CHIHAJTy B XBHJICBOAI 3 BTPATAMH

K.M. €menapsnos, C.B. Hikircokuit, 0.0. Tperbsikos

Posrasgaerbcsd  HOMKpPEHHA  HECTALiOHApHOro
EIEeKTPOMATHITHOrO IONS B XBHJIEBOAI MOBIIBHOTO

HONEPEYHOro HEPepi3y 3 iZeanbHO NPOBIAHOK MO-
BEPXHEIO, [10 3alIOBHEHUH CEPEIOBHUIEM 3 RTPATAMH.
BUKOPHUCTOBYIOTBCH XBHJIEBO/IHI €BOSTIOLHHI
piBHSHHA, IO 3BOAATL B oOnacTi yacy BUXiAHY IO-
YaTKOBO-KpAaiOBY BEKTOpHY 3ajauy M4 piBHAHB
MaxkcBena K0 iHTErpyBaHHSA OJHOMIPDHOTO CKalspHO-
ro piBuaueg Kneiina-Topnona. Po3se's3ox 3Haxo-
HOUTHCA Y BUTTSAL PO3KIIALy MO BiNiIOBiAHOMY HECTa-
nioHapHoMy Oa3sucy piieHb» aanoro pisasHHa. Koe-
digieHTH po3KIany JErko BW3IHAYAIOTbCH 3 aHa-
JOTIMHOTO TPEACTABAEHHA BxizHoro curxany. Ilpm-
BOAATHCA aHANITHYH] PopPMH paHO- Ta Mi3HO- 4aCOBO-
ro HaONMMKEHb CHTHaly, 11O PO3NMOBCIOJIKYETHCH, 3
yMOBaMH iX 3aCTOCYBAHHS MO BiHOLIEHHIO NO TOY-
HOTO PO3B'A3KY.
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