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Interpolation Method for Evaluation of
Periodic Green Function in Problems of Diffraction

Z.Nazarchuk, O.Ovsyannikov, T.Senyk

Karpenko Physico-Mechanical Institute National Academy of Sciences of Ukraine
5 Naukova St., 290601 Lviv, Ukraine

The algorithm is proposed to calculate the Green function for the problem of the diffraction of the
plane electromagnetic wave on infinite periodical grating.

Investigation of properties of fields, diffracted
by a system of scatterers, is an important problem
of current radiophysics. Description of such phe-
nomena in resonance frequency range, where
length of the wave is proportional to the scatterers
dimensions, is possible only with a rigorous solu-
tion of corresponding diffraction problem. An in-
finite periodic grating may serve as one of the
models of scatterers system, which has resonance
features. Papers of a number of authors, particu-
larly [1- 5], are devoted to investigation of such
structures. It was shown, that the significal diffi-
culties arise while the scattered field is calculated
in the case of an arbitrary (noncanonical) scattet
ers geometry. One of the ways of the efficiency m-
creasing of such calculations is proposed below.
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Fig.1. Plane wave radiation of multielement diffrac-
tion grating.

Consider multielement d-periodic grating in
homogeneous isotropic media with wave num-
ber x. One (curvilinear) period of the grating con-
tains N cylindrical perfectly conducting screens
with generatrices parallel to Oz axis. Cross-
sections of the screens by xOy plane are open

smooth Lyapunov-type contours L, k=1N

(Fig. 1). The grating is irradiated by a unit-

amplitude plane electromagnetic wave with time
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dependence exp[-io!] (- circular frequency). Let B
is angle of wave incidence to Oy axis. Then such
problem is reduced to Helmholtz equation solu-
tion on the grating period, which satisfies the fol-

lowing conditions: of Dirichlet (E-polarization) or '
Neumann (H-polarization) on the arcs Ly,

k = 1.\ . of Meixner-type near the screens ribs
(L, arc end-points). If LV — o0, the scattered field
should not contain waves propagating from infin-
ity.

Green Function of the Problem

The method of integral equations, which con-
Lain periodic Green function in their kernels, may
be one of the methods of such problem solution [1-
3.6.7). In the E-case it may be written as [2,6]
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where Hg” (z) is a Hankel function of the first
kind with a logarithmic singularity at z=0; ¢ is a
point of L=UL, contour; z=x+iy is a complex co-
ordinate of a view point;, y=— 00,400 is a period
number.

To avoid the convolution of the series (1)
(which have a weak convergence [3,7]) and to pro-
vide correctness in mathematical transformations,
it has been proposed in [5, 8] to utilize a known
integral presentation of Hankel function.
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Fig.2 Integration contour in corhplex x-plane.

y=\E2 42, R{v}=0. @

The condition R{v}>0 determines the Riemann’s
surface to satisfy the conditions at the infinity. If
Green function is calculated in the near zone, the
integration contour I may be chosen according to
Fig. 2. The dotted line shows that the contour
passes through another Riemann’s surface, for
. which
I} <0, I} =0,0<R{} <y, EET. 3
Angle 8 has been determined from the condition
tg(0)=M{6}/3{0}|, which (together with (3)) re-
moves oscillations and guarantees the fastest van-

~ ishing of integrand function in presentation (2).
Then Green function looks like
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It is possible now to insert the sum under the inte-
gral, to use formula for geometric: progression
sum, and to obtain the following expression:
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The case of the normal incidence of plane wave
(b=0) leads to

S, (t,2,d0)=S(d~-r,d),
S (t,z,d,0)=S(d +r,d);‘

1 e'—|y|v+i§x

sed=gliim® 0

It should be mentioned, that integration con-
tour, drawn according to Fig. 2, is easy in numeri-
cal realization, allows to transform presentation
(4) into (5), but fails to calculate the Green func-
tion in the far zone (Im{z}-»t), because, if -
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Fig. 3. Account for existing of poles E

[y}, the integral is diverging on the dotted part
of the integration contour. Consider another
method of the integration contour tracing (Fig. 3)
according to which poles, situated on the real axes
of complex plane &, remain on the left hand. Such
poles should be taken into account by formula
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Here . = [dx(l + sinﬁ)/(27r)] is a number of
the poles, in which residues are calculated; coordi-
nates of the poles’ distribution are given by for-
mula
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¢ =2mm/d+ysinB,m=Ln, ©®)
Then expressions for S+ and S. in formula (5) will
be
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Note, that if $=0, the pole &, will appear on the
integration contour I', at point (0,0). In this case
the integral in formula (6) will be
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were n=[xd2n}; &,=2nmld, m=l,n. Such con-
tour modification is valid for the far zone and, be-
sides, allows to provide an accurate Green’s func-
tion calculation on the L=UL, contours. Taking
into account, that integrals in (9) and (10) are
vanishing at the infinity, and providing some sim-
plifications, if |yl (far zome) it is possible to
write N

: s’ (B} Sig)-sin'(BmRig))
i i e
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To compare the accuracy of calculations, per-
formed by the presented methods, Hankel func-
tion was calculated by formula (2) with the inte-
gration contour, drawn as in Figs. 2 and 3. The
results were compared with. the exact ones given in
literature. Preassigned accuracy e=10-¢ was ob-
tained for all testing points from the area of pa-
rameters’ variation: 0.125A<x<1.185); 0sy<1.5M.

The following algorithm was used for Zommer-
feld-type integrals (6) calculation. The integration
contour in Fig. 2. was divided into four parts: two
finite segments, which have ¢ point as one of their
ends, and two semi-infinite, which complete the .
finite segments to the I contour. Substitution
E=y+£'(t-1) was introduced, were parameter £ de- .
termines the integration direction, 0st<i. Behav-
iour of expression &/fv if E-»y is easy to establish
from

i V1-12 _ J1-1?
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Thus, the equality takes place
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Then for an arbitrary function ¢(&), analytibcal in
the complex plane &, such equations are valid:
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It is easy to calculate the obtained right part of
formula (12), due to it regularity, with the help of
quadratures. By putting: I, - the finite segment of
T contour; a=3{z}, B=R{z}; @€)=(1 - exp{i&d})"',
we obtain the formula for integral (6) evaluation.

Interpolation Polynomial

For numerical solution of a diffraction problem it
is necessary to perform Green function’s calcula-
tion in a great number of points. To decrease the
time of calculation of integrals of type (5,6) we
construct a three-dimensional interpolation poly-
nomial. It is known, that interpolation Lagrange
polynomial on Tchebyshev’s nodes 1=,=cos 6,

06,=Qk-D)n/2n,k = 1,n; n is the number of nodes)
can be written in the form of [9]
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To increase the efficiency of calculation by for-
mula (14); the ranges of value of each variable
may be divided into smaller parts, what gives a
possibility to obtait the necessary accuracy with-
out -enlarging of values of the parameters m,, m,,
md-’
For the presented algorithm testing, the inte-
gral (10) was directly calculated at 2000 arbitrary
choosed points. After filling in the array

S(Ekx,Eky,gkd), the interpolation was per-

formed in the same points. The absolute accuracy
of interpolation e=10-5 was achieved with the fol-
lowing parameters of interpolation polynomial:
m,=m,=m,;=5; number of parts for wave length for
appropriate arguments: /[ =/=[=8. Maximum
relative error has not exceeded 0.01%, and -
0.001% at the majority points. The time of integral
(10)  calculation at 1000, points  was
2 minutes 1.88 séconds; the time of its calculation

me—l(gkx) Tmy_‘(gky) Tm‘,—l(gk,,)

_@(X)CXP[ixB]V|

=0 (12)
X 0

Such polynomial interpolates approximately an
arbitrary function ¢(t). Equality (13) is an accu-
rate one for the case, when ¢(t) is a polynomial of
order not higher than n-1. Indefinite form in the
case of matching of the interpolation point with a
node x, is exposured using Lopitall’s rule and
taking into account Chebyshev’s first type poly- .
nom definition:

T,(t)=cos[narccost],
M - (—l)k n
&=l sing,

Acting likewise for the case of three variables:
x=R{z}; y=3{z},d, and supposing, that for two
arbitrary arguments the function S(x,y,d) is ap-
proximated by a polynomial with respect to the
third one, by an analogy to [10], we obtain

k=1 k,=1 k=1 £, —x

S(Er, Ex, 1)

Eky—y gk‘,—d

X

(14

using the interpolation procedure is 4.89 seconds.
Particular case for d=0.51 A =n and some z=x+iy
is presented in the Table. With significant decrease
of evaluation time, the achieved relative accuracy
of calculation using the interpolation polynomial,
is commensurable with the accuracy of direct cal-
culation of integral (10). It gives the ground to
confirm the high efficiency of the used approach.
Note, that Green function contains the endless
sum of Hankel functions, so, if z-f,+d=0 the ad-
dends S, (;,z,d,) may admit stationary loga-
rithmic singularities. For their evaluation in such
cases the next expressions were used

S,(t,z,d,p) =
_ exixdsinB(ZI.H})l)()d d¥q)+S.(t ?d,z,d,ﬁ))
(15)
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Thus, the proposed algorithm allows to calcu-
late the diffracted field in the near zone, as in the
far one.” Besides, the interpolation polynomial
utilization essentially decreases the evaluation
time preserving the accuracy, what essentially in

creases the efficiency of the algorithm utilization, -
and in the case of scatterer in the form of diffrac
tion grating gives a possibility to solve diffraction
problems in the acceptable time.

Table
calculated absolute
Coordinates Integral’s value: —— Interpolation error; ————————
: interpolated realtive(%)
y X R 3 R 3

0.000 3.142 -.314106E+00 -.285398E+00 -.301003E-05 -.378489E-05
-.314109E+00 -.285402E+00 0.0011 0.0002

4.398 .146192E+00 -312767E+00 .146031E-05 -.414252E-05
.146193E+00 -312772E+00 0.0013 0.0001

5.655 .294246E+00 .387681E-01 .238419E-05 -.294298E-06
.294249E+00 .387678E-01 0.0008 0.0002

6.912 467053E-01 .259454E+00 -.357628E-05 -.169873E-05
.467053E-01 .259452E+00 0.0009 0.0012

8.168 -211233E+00 112342E+00 813603E-05 -.206977E-04
-.211225E+00 J12321E+00 0.0072 0.0060

-6.283 3.142 -.179931E+00 .326995E+00 -.183284E-05 .324845E-05
-.179932E+00 .326998E+00 0.0010 0.0000

4.398 -.272924E+00 .147816E+00 -.336766E-05 .146031E-05
-.272928E+00 1478 18E+00 0.0012 0.0001

5.655 -.263374E+00 . -.558049E-0! -.241399E-05 -.101700E-05
-.263377E+00 -.558059E-01 0.0009 0.0002

6.912 -.124999E+00 -.206255E+00 -.402331E-06 -.268221E-05
-.124999E+00 -.206258E+00 0.0010 0.0004

8.168 J781408E-01 -.206672E+00 465661E-05 .640750E-06
.781455E-01 -.206671E+00 0.0004 0.0021
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HnrepnonsuMoHHbIH METOX OLICHKH
nepoanyeckoii gynicumuu I'puna B 3a8a4ax
audpakuun

3. Hazapuyk, O. Oscannukos, T. Cennx

ITpemioxkeH anropuTM mm pacueTa q)ym(uun
Tpuna is  3agauyM  AUGPaKUKH MJIOCKOM
3NMEKTPOMArHUTHON BONHBI Ha  BECKOHE4HOH
NepHOANYECKOMR pelIeTKe.

InTepnossuiiiHuii MeTON OLiHKH NePioANHOT
dynkuii [pina B 3anauax mudpaxuii

3. Hazapuyk, O. Opcannnkos, T. Cexik

3anporoHOBaHO ANTOPUTM ANA oByucnenHs
dyHkuii [piva pna 3ajgaui audpakuii miockot
eNEKTPOMATHITHOI  XBIUL  HA  HECKiHYEHHiH
nepioanyHiit rpaTLi.
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