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Can Physics Be Constructed Axiomatically?
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The number of essences
should not be increased
beyond necessity

(after W. Ockham)

Attempt is made to build up the physics axiomatically. A number of known facts established by experience is
taken for granted. The systems under examination are considered as Hamiltonian after that the equations of
classical and quantum mechanics and electrodynamics are deduced without supplementary assumptions.

The ancient Greeks called mathematics the Queen
of sciences because of the accuracy and logic perfec-
tion of mathematical theories and beautiful elegance
of the final conclusions.

The typical structure of a mathematical theory is
as follows. The foundation is formed by a set of axi-
oms, either related to the real world or appearing as a
product of pure thought. The number of axioms in
the set necessary and sufficient for constructing the
theory is determined by Goedel’s theorem [1]. The rest
is more development of the first principles. Each step
is strictly controlled, every new assertion is proven in
a way excluding any logic deficiency. This is what is
termed mathematical rigour. Introducing new postu-
lates during the game is strictly forbidden.

Theories of the kind are remarkably beautiful,
however the very possibility of their development is
conditioned by the simplicity (one should rather say
primitive simplicity) of the object. It is essential that
the initial assumptions, i. e. the set of axioms, are
taken for granted. They are absolute truth subject to
no discussions.

In a sense, mathematical theories are standards to
be referred to for the construction of other sciences
or, speaking of lofty style, they are the ideal. It cannot
be reached in a theoretical description of objects of
greater complexity but, as of any ideal, its value is in
indicating the goal to strive for.

After mathematics, the second simplest science is
physics dealing with inanimate matter. While cer-
tainly being simpler than, for instance, biology or
physiology, it greatly exceeds mathematics in com-
plexity as it studies real rather than ideal object. The
knowledge on those objects is limited in view of the
limitations of experiment. The situation is further
aggravated by the fact that, instead of studying the
object in its integrity, the physicist concentrates on a
particular manifestation. The physical problem actu-
ally consist of two parts, i. e. of collecting the neces-
sary information and abstracting from the irrelevant.
The art of the researcher is to separate one from the
other.
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Application of the mathematical formalism be-
comes possible through substantially simplified de-
scription of the object, since mathematics is suited to
represent relatively simple processes. This simplifica-
tion is the philesophy of theoretical physics, practi-
cally implemented in the form of small parameter
methods. The value of theoretical results is tested by
their capacity for predicting new effects that can be
detected in experiment. Thus, the process conforms to
the scheme as follows.

1. Experimental result become a foundation for a
theoretical description of a physical phenomenon.

2. The theory developed is used to explain known
but poorly understood effects and to predict new
ones.

3. The predicted effects are discovered in experi-
ment.

4. The process is continued until the theory fails,
after which

5. A new set of experimental data is collected, with
the aim of either extending the validity of existing
theories, or developing new ones to include the former
as particular or limiting cases.

Then everything is started again from point 1 on.

The natural question is whether physics can be
constructed in a way similar to mathematics, with at
least partial use of the scheme 1 through 5. The part
of basic axioms apparently should be played by a set
of experimental data represented by some equations,
which give the way to implementing article 3 of the
above program. At this point it would be desirable to
have some considerations for indicating the mini-
mum number of experiments to allow constructing a
theory of greatest generality. In principle, it should be
so general and complete as to spare us of articles 4
and 5. An analog of Goedel’s theorem would have
been useful, however it is obviously impossible in
physics. Perhaps, it can be substituted by Ockham’s
“razor blade criterion”, i. e. the statement formulated
as the epigraph to this article.

To the best of the author’s knowledge, the only at-
tempt of axiomatic construction of physics has been
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undertaken by L. Landau and E. Lifschitz in their
famous Course of Theoretical Physics [2,3]. The very
fact of propounding the problem proved to be a seri-
ous achievement, however Landau and Lifschitz
failed to fulfil the program.

The reasons have been many, the main apparently
being an unfortunate choice of the set of postulates,
lacking a direct relation to experiment. Besides, the
program was strictly adhered to only in the first two
books of the Course, i. e. Mechanics and Field The-
ory.

The principal postulate of Landau and Lifschitz
was the least action principle. However, it does not
follow directly from experiment and the values in-
volved in the formulation, namely action and La-
grange’s function, have no immediate physical sense,
and hence cannot be measured.

The present paper is another attempt of con-
structing physics in an axiomatic way.

We will consider Hamiltonian systems.

A system is called Hamiltonian if it can be de-

scribed in terms of two N-dimensional vectors, P
and ¢ in the Euclidean space, depending on the pa-
rameter . The vector p(Z) is known as momentum,

g(t) is the coordinate, and the parameter / is called
time. Time obeys the condition

dar>0, €))
i. e. time can only increase. This is the principle of
causality. A dynamic system represented by time and
coordinates alone will be called a vacuum, while a
system determined by 3-D momentum and coordinate
vectors and time is a particle.

The equations governing the time dependence of
coordinates and momenta are equations of motion, or
evolutionary equations.

They follow from the law

dH(p.g.t) _ OH(5,d.1)
dt ot

where H(p,q,t) is known as the Hamilton function.
It is the dynamic system’s energy represented in terms
of coordinates and momenta. Eq. (2) represents the
energy conservation law that can be formulated as
follows. The energy of a system varies with time if the
system’s Hamiltonian function is time dependent
explicitly. Otherwise, the energy is conserved. Indeed
oH 0 inf
— =0 infers
ot
H(p,q) = const. 3)

To derive the evolution equations from Eq. (2), re-

call that the full derivative of H is

dH_oHdp dHdq oH

@

di opdi oG di o’

whence
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oH dp oH dgj
op di T oG dt

This identity holds if p(z) and g(f) obey either
of the two equation sets,

dp oH dj oH

=0.

di” "o di op @
or

g _oH dj oH

L, A= &

d o5’ dt
Egs. (4) and (5) are equivalent and can be trans-
formed one to the other by simple substitutions , e. g.
g --q and p— p. They are known as Hamilton’s

equations. In what follows, we will use Eq. (4). It can
be further transformed in the following way. Let us
go from the Lagrange variables in which terms Eq. (4)

is written, over to Euler’s. Then p will be a function

of both ¢ and ¢. The first equation in the set takes
the form (with account of the second)

%, op0H_ _oH

LT 6
o oG op T 6q ©
op
—=-V_H 7
6t q b ( )

where V ; denotes the full derivative with respect to

c}. It is evident from Eq. (7) that ﬁ is a potential
function. Let the respective potential be S,

p=V;(S). ®)
Then it obeys the equation

oS -

é; +H(V5S,q,t)=0. )

In mechanics § bears the name of action and Eq.
(9) is known as the Hamilton-Jacobi equation. It is a
different form of Hamilton’s equation. Similarly, one
can obtain

oo -
E—H(p,vi,c,t)z(), (10)

in which equation the action & is regarded as a func-
tion of Z) and ¢, and Zj is defined as

Eq. (4) implies the conservation laws as follows.
If H is independent of ¢ , then p = const, while

an H independent of p implies g = const . In case
H depends solely on absolute values of p and ¢,
i.e. H(p,q,t)=H(p,q.t), the only conservative

value is the moment of momentum M =g x p,
which can be checked by differentiation of Eq. (4).
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The conservation laws listed here (conservation of
energy, of momentum, and coordinate) are charac-
teristic by their tight relation to properties of the sys-
tem with respect to time and the momentum and co-
ordinate spaces. The energy conservation law is asso-
ciated with stationarity of the system. The momentum
conservation law reflects invariance of its Hamilto-
nian with respect to arbitrary translations in the co-
ordinate space, while the coordinate conservation law
suggests the Hamiltonian translational invariance in
the momentum space.

If the Hamiltonian function of a particle is inde-
pendent of time and the spatial coordinates then the
particle is called free. Hamilton’s function of a set of
free particles is a sum of their individual Hamiltoni-
ans, i. e.

N
H(By»o-Bire P ) = 2 Hi () (12)

i=1
The specific form of a free particle’s Hamiltonian
can be found from the demand that H and p were

components of a Lorentz-invariant four-vector. The
dimensionality of Hamilton’s function in the CGSE

system is that of energy, hence in order that H and
D could form a four-vector ip should be multiplied
by a factor of velocity dimensionality. We will denote
it ¢. Thus, a free particle is characterized by the four-
vector (H, icp). Its square should be a positive value

that will be denoted as m2c4,

H? - p* = m?ct, (13)
where 1 is called mass.
Eq. (13) yields

H=(mc* +c*p*)". (14)
Besides, it allows the Hamilton-Jacobi equation to
be brought to the form

2
1 (as) 2
— | = —(VS) =mPc. (15
c2 at ( ) )

Before advancing furtber, let us dwell on some
purely mathematical problem, noting the results but
omitting the derivations for brevity. Consider the
equation

| 0 3,
h—=,ih—, = 16
L{r,t,zhar zhat h}w 0 (16)

where /i is a parameter. Let /i be small and the opera-
tor L be a holomorphic function of its last argument
(i. e. /). By expanding the operator in powers of this
argument we can bring Eq. (16) to the form

= A 0 0
ika L {7 tih—=,ih— 0wy =0, 17
; ak k{r 1 57 1 51 }\V ( )

Eq. (16) cannot be expanded in powers of the 7
standing in front of the derivatives as the solution is

not analytic with respect to this A. As is known, the
solution can be sought in the form

¥ = e"ﬁs""’(z h A )+ Y By (")(F,t)),
=0 n=1
(18)

Zeroth-order approximations in 4 result in the
equation for S,

. 08 08
Lo{r,t,a;. ,"5;}—0 : 19

If Eq. (19) is known explicitly, it allows restating
the initial equation for Y in the lowest-order non-

vanisting approximation in 7, i. e.

~ . .0 .0
Lo{r,t,zha;,zhat}\p =0 20)

Comparison (19) and (20) points to the simple re-
sult of L, restoration. Eq. (20) will be named the

wave equation and y the wave function. The physi-
cal object that can be described in terms of a wave
function call complete. If the initial form is the Ham-
ilton-Jacobi equation (Eq. (9)), then the correspond-
ing wave equation is

oy Al. .0
h——~H h— v =0.
in 37 {r,t,l ar}\v 0 Qn

In the case of a free particle with the Hamilton-
Jacobi equation like Eq. (14), the wave equation (21)
takes the familiar form

g
&4@—c&,?—\£=——mc %4 v,
ot 0x, h
where /=1,2, and 3; summation is meant over the
repeated indices; and a I &4 are Dirac’s matrices.

(2)

The function  in this equation is a bispinor.

The wave equation corresponding to the initial
Hamilton-Jacobi equation Eq. (15) is the Klein-
Gordon equation,

1 0%y m*c’

AYy ——— = 5V. 23
Voo = i ¥ *)
As founds in experiment, there are particles of

zero mass, m=0, for which \y is a four-dimensional

Lorentz vector, {2, l¢} . The field described in terms

of this four-vector is the electromagnetic field. ¢ and

;‘i obey d’Alambert’s equations

238 Pazmodusnka 1 paguoactposoMus, 1997, 1. 2, Ne2



Can Physics Be Constructed Axiomatically?

1 8%
AP ———=0
¢ c2 t2 s (24)
- 18%4
—25—17=0.

Note the constant parameter 7 is not to appear in
the d’Alambert equation. ¢ is known as the scalar
electromagnetic potential and A the vector potential.
Neither the scalar, nor the vector potential have a
physical meaning. Measurable values are the electric,
E , and the magnetic, H, field vectors, related to the
potentials as

. 104 . >
E=—-"2_vy, H=Vx 4 25
.o, Vo (25)
By applying the V x (curl) operator to the first of

these equations and V - to the second we obtain

- 10H
VXE=-——F- 26
X ¢ Ot (26)
V.-H=0 Q7

These equations are known as the first pair of
Maxwell equations. They involve vector values that
are physically meaningful.

Let us derive the second pair of Maxwell equa-
tions. As is known (and is apparent from Eq. (25)),

I -
the vector {id),‘* A} is not defined uniquely. Equal
C

values of E' and ﬁ can be obtained from different
A and ¢. Profiting by this, let us impose additional

conditions upon A4 and , e. g.

¢=0andV-2=0, (28)
then, combining the second equation (24), Egs. (25)

and the equality V x V x 4 = —AA, we arrive at
VxH=-"-— 29)

V.E=0. (30)
Finally, let us write the equations determining the
interaction of an electromagnetic field with a particle

of charge e. The set consists of equations for ¢ and

A and Dirac equation, viz.

—

1 82A -

o T
| 0% @31

P o T
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, 0
{y(— zh5;+e¢] +

(32)
0 e
+v, -c(ha—xl—zzA,) +mcz}w =0.
Here ] is current of charges
Jr=leyyy, 33)
p - the charge density
pP=eyy,y. G4

In principle, the equations of the last section allow
constructing, without additional experiments, the
classical and the quantum mechanics and electrody-
namics, as well as statistical mechanics and Kkinetic
theory. The same theory includes gravitation fields
and elementary particles in a natural way.

Now we can enumerate the basic experimental
facts that can be regarded as axioms for theoretical
physics.

1. The possibility of Hamiltonian description of
physical systems and the energy conservation law
(Equation (21).

2. The fact that energy and momentum make up an
invariant four-vector, providing the characteristic
particle velocities and mass #71. These values should
be measurable in experiment (Eq. (13)).

3. The possibility of classical-to-quantum mechanics
transition, characterized by the parameter /A
(Plank’s constant) that should be measurable in ex-
periment.

4, Ascertainment of the electromagnetic field as a
physical reality and derivation of Maxwell’s equa-
tions (Egs. (24),(29) and (30)).

5.Establishment of a relation between the electro-
magnetic field and charged particles. The reality and

measurement of the charge e.
Total: 5 axioms.
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06 aKCHOMATHYECKOM TIOCTPOECHNN uBHKH
®.T. bace

JlenaeTcsi MOMBITKA aKCHOMAaTHYECKOrO MOCTPOC-
Hus GU3KKU. B kauecTse axCHOM NMPHHAT PAX U3BECT-
HBIX (DAKTOB, YCTAHOBIEHHBIX OMbBITHBIM MYyTEM. ITo-
CTYIUpyeTcss TaMHJIBTOHOBOCTb PAcCMAaTPHBACMBIX
cHcTeM, 63 MpUBJIEYEHHS JONOJHUTENbHBIX Npeano-
JOXKEHHii BLIBOJATCA YPABHEHMA KIIACCHYECKOH H
KBAHTOBOM MEXaHHKH H 3JIEKTPOAUHAMHUKH.

TIpo axcioMaTH9Hy n00YA0BY (i3nKy
®.T. Bace

3pobneno cripoby akciomaTWyHoi MOOYIOBH
disuky. 3a akciomH NPUIHATO PSA BiLOMHX (aKTis,
AKi OynM BCTAHOBJICHI €KCIIEPUMCHTAIbHHM LUJIAXOM.
IocTYMOETHCA TaMilbTOHOBICTE CHCTEM, IO PO3IIA-
naoThed, 6€3 3alyueHHs NONATKOBHUX MPUNYMIEHD
BUBOJATHCA PIiBHAHHA KIACM4HOI i KBAaHTOBOI Me-
XaHikH Ta eJIEKTPOAMHAMIKH.
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