УДК 517.9.53

В. В. ЩЕРБАК

Институт радиофизики и электроники им. А. Я. Усикова НАН Украины, ул. Ак. Проскуры, 12, г. Харьков, 61085, Украина E-mail: shcherbak@ire.kharkov.ua

ДИЭЛЕКТРИЧЕСКИЕ ОКНА С ПЛОСКОВЕРШИННОЙ ХАРАКТЕРИСТИКОЙ РАДИОПРОЗРАЧНОСТИ

Предлагаем и оптимизируем конструкцию радиопрозрачных перегородок в волноводе с существенно улучшенным согласованием с трактом в широком диапазоне частот. Это – ленточная диафрагма внутри слоя диэлектрика. На этой основе создан также эффективный абсорбер.

Ключевые слова: диэлектрик, диафрагма, плосковершинная характеристика

1. Введение

В технике СВЧ актуально согласование волноведущего тракта с перегораживающими его диэлектрическими элементами. Например, в электронике необходимо широкодиапазонное подавление отражения волн от слюдяных вакуумных окон, чтоб устранить паразитные резонансы, приводящие к неравномерной (изрезанной резкими провалами) частотной характеристике генератора в полосе комбинированной перестройки [1]. Для компенсации отражений непригодны элементы с резко выраженными резонансными свойствами. Использовались неоднородности сосредоточенного типа, например, тонкая диафрагма, помещаемая у слюдяного окна [2, 3]. При оптимальном подборе корректора его индуктивность компенсирует реактивность диэлектрика (емкостную при малой толщине слоя). Согласование оказалось широкополосным, однако резко ухудшающимся при сдвиге к краю рабочей полосы частот. Предлагаем новации, обеспечивающие равномерность частотной характеристики узла (ее плоскую вершину). Увеличиваем также толщину диэлектрической преграды для избежания нежелательных резонансных эффектов (и для ее прочности).

2. Решение задач о рассеянии волн

В плоском волноводе шириной π имеем отрезок длиной $2r\pi$ с диэлектрическим заполнением. Ранее [3] толщина диэлектрического включения считалась малой ($r \ll 1$) и для его просветления на торце диэлектрического слоя помещали тонкую ленточную диафрагму. Предлагаем помещать диафрагму посреди слоя (рис. 1, *a*, *б*), т. е. слой диэлектрика берем двойным (и не тонким). Ищем поля дифракции в структуре при синфазном или противофазном

© В. В. Щербак, 2013

Рис. 1. Простейшие варианты рассматриваемых структур

(±) возбуждении со сторон $z > r\pi$ и $z < -r\pi$ волной $TE_{p,0}$ (p = 1, 2, 3...) единичной амплитуды. Представим E_y в четырех ($k = 1 \div 4$) частичных областях, $z > r\pi$, $r\pi > z > 0$, $0 > z > -r\pi$ и $z > -r\pi$, в виде рядов Фурье:

$$E_{y}^{1} = \sum_{n} \left\{ D_{n} \exp\left(-i\gamma_{n}^{1}z_{1}\right) + C_{n}^{1\pm} \exp\left(i\gamma_{n}^{1}z\right) \right\} \exp(ig_{n}x),$$

$$E_{y}^{2} = \sum_{n} C_{n}^{2\pm} \left\{ e_{n} \exp\left(-i\gamma_{n}^{2}z\right) \pm \exp\left(i\gamma_{n}^{1}z\right) \right\} \exp(ig_{n}x),$$

$$(1)$$

$$E_{y}^{5-k}(-z) = E_{y}^{k}(z),$$

где $D_n = \delta_n^p - \delta_n^{-p-2s}$; $z_1 = z - r$; $e_n = \exp\{i\pi\gamma_n^2 r\}$; $\gamma_n^2 = \sqrt{\kappa^2 \varepsilon - g_n^2}$; $\gamma_n^1 = \sqrt{\kappa^2 - g_n^2}$; $g_n = n + s$, s = 0либо s = 1/2 в случае симметричной диафрагмы; κ –волновое число; ε – диэлектрическая проницаемость среды; δ – символ Кронекера. Для определения амплитуд $C_n^{k\pm}$ сошьем поля (1) при z = 0 и на торцах $z = \pm r$ диэлектрического слоя. Получим сумматорные уравнения:

$$\sum_{n} x_{n}^{p} \left(|n+s|d_{n}-\zeta_{n} \right) \exp(inx) =$$

$$= i\gamma_{p}^{1} \left[\delta_{n}^{p} - \delta_{n}^{-p-2s} \right] \exp(ipx), \quad \pi\theta \leq |x| \leq \pi; \quad (2)$$

$$\sum_{n} x_{n}^{p} d_{n} \exp(inx) = 0, \quad |x| \leq \pi\theta;$$

$$\text{rge } \zeta_{n} = |n+s|d_{n} + (2-d_{n})i\gamma_{n}^{2} \sim \kappa^{2}/n,$$

$$r_{n} + 1 = t_{n} = 2\gamma_{n}^{1} / \left(\gamma_{n}^{1} + \gamma_{n}^{2}\right),$$

$$d_{n} = 1 - r \cdot e^{-2}$$

для вычисления величин $\tilde{x}_n^p = x_n^p \cdot e_p \tilde{t}_p / d_p$, связанных с $C_n^{k,\pm}$ при $\tilde{t}_p = 2 - t_p$ как

$$B_{n}^{p} \equiv \left(C_{n}^{1+} - C_{n}^{1-}\right) / 2 = \tilde{x}_{n}^{p} \cdot e_{n} \tilde{t}_{n},$$

$$A_{n}^{p} \equiv \left(C_{n}^{1+} + C_{n}^{1-}\right) / 2 =$$

$$= \left(\tilde{x}_{n}^{p} - D_{n} \cdot e_{p} \tilde{t}_{p} / d_{p}\right) \cdot e_{n} \tilde{t}_{n} + D_{n} r_{p}.$$
(3)

Уравнения (2) отличаются от аналогичных для одного слоя диэлектрика иным выражением для параметров малости (вместо $\zeta_n = |n+s|d_n + [d_n i \gamma_n^1 + (2-d_n)i \gamma_n^2]/2)$ в [4]. Сопоставляя их с задачей Римана–Гильберта [5], заменим (2) хорошо сходящейся системой линейных алгебраических уравнений (СЛАУ)

$$mx_m d_m - \sum_n x_n \zeta_n y_m^n = i\gamma_p^1 \left(y_m^p - y_m^{-p-2s} \right), \tag{4}$$

где $2y_m^n = (P_m P_{-n} - P_{-m} P_n)/(m-n)$. Если вместо асимметричной диафрагмы используем симметричную (рис. 1, δ), то получим аналогичную СЛАУ для s = 1/2 и p = 0. Интересуемся случаем падения волны $TE_{1,0}$ со стороны $z > r\pi$. Поэтому вместо $C_n^{k\pm}$ вычисляем для p = n = 1 величины

 A_n^p и B_n^p , имеющие смысл коэффициентов отражения и прохождения *TE*_{1.0} волны, падающей слева (ее эпюра Е, показана на рис. 1). Табулируем (рис. 2) зависимости от к, θ, ε энергетических коэффициентов отражения $R = \left|A_p^p\right|^2$ и прохождения $T = \left| B_p^p \right|^2$ для s = 0. Из-за усложненного (по сравнению со случаем одного слоя среды) вывода выражений для ζ_n СЛАУ (4) относится к узлу, изображенному на рис. 1, в целом (без отдельных расчетов для биений волн на границах z = 0, $z = \pm \pi r$ внутри него). То есть обеспечен эффективный расчет искомых величин. Однако на этом регуляризации не заканчиваются. С помощью метода [6] заменим (4) на СЛАУ с параметрами ζ_n асимптотами $\zeta_n \sim i\gamma_n^1 - i\gamma_n^1 \Big|_{\kappa=\kappa_0}$ (вместо $\sim |n+s| + i\gamma_n^1$) и иными, определенными при опорном $\kappa = \kappa_0$, реактивностями y_m^n . Это существенно улучшает сходимость алгоритмов. При $\kappa_0 = 0.5$ и $\kappa = \kappa \sim 1$ параметр ζ_0 уменьшим вдвое, а при $\kappa - \kappa_0 \ll 1$ заменим СЛАУ явной формулой.

Рис. 2. Зависимости коэффициентов отражения R и прохождения T (по энергии) $TE_{1,0}$ -волны от параметра к для r = 0.2 (a) и r = 0.48 (δ) при различных ширинах щели $\pi\theta$ и $\varepsilon = 2$ в структуре, изображенной на рис. 1, a

ISSN 1027-9636. Радиофизика и радиоастрономия. Т. 18, № 3, 2013

3. Анализ результатов расчета

Если толщина слоя диэлектрика $2r\pi$ соизмерима с половиной длины волны, то даже при отсутствии в нем диафрагмы возможно нулевое отражение $R = \left| A_n^p \right|^2$ основной волны. Однако оно достигается в одной точке, отклонение от которой при $\varepsilon \gg 1$ приводит к резкому (более сильному, чем в случае, показанном на рис. 2, а) ухудшению согласования. Если же диэлектрик разделить диафрагмой на два слоя, то образуется каскад из двух резонансных объемов. Для него кривая резонансного прохождения $T = \left| B_p^p \right|^2$ будет двугорбой. При соответствующей оптимизации провал между ее пиками устраняем (как на графике зависимости коэффициента T на рис. 2, δ). При $\varepsilon = 2$ и асимметричной диафрагме (см. рис. 1, а) добиваемся плоской вершины графика Т (на уровне $T \approx 1$) в диапазоне 1.11 < к < 1.78. Однако уже при $\varepsilon > 3$ ситуация резко ухудшается. Увеличение ε ведет не только к обострению продольных резонансов на *TE*₁₀-волне. При не малых *r* проявляют себя резонансы на запертых высших $TE_{1,0}$ -волнах в диэлектрике, добавляющие новые осцилляции кривой T (более резкие, чем при к > 1.7 на рис. 2, б). Выход из этой ситуации в использовании таких типов диафрагм, которые не связывают основную волну с высшими. В этом смысле замена асимметричной диафрагмы на симметричную – полумера, так как приводит к подавлению лишь ТЕ2.0-волны. Остающийся при этом резонанс на TE_{30} -волне не мешает, однако, получить согласование не хуже 99 % (рис. 3) в полосе 1.585 < к < 1.855 для ε > 7 (слюда).

Переход в двухмодовый диапазон $2 < \kappa < 3$ вызывает при $\varepsilon = 7$ необходимость борьбы даже с волной $TE_{7,0}$ и соответственно более радикальной меры. Подавить резонансы на запертых высших волнах $TE_{2,0}$, $TE_{3,0}$, ..., $TE_{7,0}$ удается лишь четырехленточной периодичной диафрагмой (рис. 4, *a*). Расчет рассеяния волн на ней возможен с использованием СЛАУ (4) при замене в ней реактивностей y_m^n на соответствующие величины для периодических диафрагм [7]. Оказалось, что при значениях *r*, необходимых для плосковершинного согласования, достигнутая плосковершинная широкополосность (рис. 4, *c*) скромнее, чем при несовершенном согласовании, рассмотренном в работе [3], для $r \ll 1$ (рис. 5, *a*),

Рис. 3. Зависимости коэффициентов отражения *R* и прохождения *T* (по энергии) $TE_{1,0}$ -волны от параметра к для r = 0.25 (*a*) и r = 0.18 (*б*) при различных ширинах щели $\pi\theta$ и $\varepsilon = 7$ в структуре, изображенной на рис. 1, *б*

возможном даже в диапазоне $6 < \kappa < 7$, где при $\varepsilon = 7$ не затухает даже запертая волна $TE_{18,0}$. При не малых *r* дальнейшее улучшение согласования (рис. 5, δ) требует большего, чем при $r \ll 1$, числа лент диафрагмы.

Есть еще одна трудность. Данные эксперимента [2] отличаются от теоретических наличием дополнительных осцилляций величины $R = \left|A_p^p\right|^2$ на "дне" кривой минимального отражения. Это вызвано резонансами во фланцевых выступах слюды из волновода. В данном случае увеличение толщины слоя диэлектрика дает возможность закрепить его без таких выступов в емкостную (вдоль ребер диафрагмы) сторону.

4. Приложения к родственным задачам

Пусть теперь узел, изображенный на рис. 1, *a*, находится в плоском волноводе со стенками из идеального магнетика (рис. 6, *a*) и возбуждается *TEM*-волной. Это соответствует аналогично-

Рис. 4. Периодические диафрагмы с 2M = 8 ребрами (*a*) и 2M = 6 ребрами (*б*) в диэлектрике и квазипериодическая диафрагма (*в*); зависимости коэффициентов отражения *R* и прохождения *T TE*_{1,0} -волны от к и θ для $\varepsilon = 7$ и M = 4 при не малом *r* (*z*)

му размещению решетки в слое среды в свободном пространстве. Формально поменяв в наших алгоритмах параметр s = 1 на s = 0, получим алгоритм и для такой задачи согласования. Расчет привел нас к данным, показанным на рис. 6, δ с полосой согласования $\kappa = 0.315 \div 1$ (на уровне 0.99). В похожей ситуации ранее (см. [8], рис. 68) была получена полоса согласования $\kappa = 0.45 \div 0.93$, худшая, чем на рис. 6, δ и тем более чем на рис. 2, δ ($\kappa = 1.1 \div 1.8$). Но дело не в этом. Главное, что данные [8] не относились к диафрагмам в плоском металлическом волноводе и, прежде всего, к многоэлементным, необходимым для наших согласований в многомодовом волноводе.

Еще одно наше построение относится к модификации структуры, представленной на рис. 4, *a*, с пятью щелями (с четырьмя лентами между ними). Здесь возможен упрек, относящийся к сложности такой конструкции. Что ж, можно упростить ее, уменьшив число щелей до трех. Для этого расположим ленты квазипериодично, так чтобы крайние из них касались стенок волновода. Используя методологию [9], найдем пара-

Рис. 5. Зависимости коэффициентов отражения R и прохождения T волны $TE_{1,0}$ от к и θ при $\varepsilon = 7$ для периодической диафрагмы в диэлектрике с M = 4 щелями при $r \ll 1$ (*a*) и с M = 12 при не малых $r(\delta)$

метры квазипериодичности, устраняющие связь волны $TE_{1.0}$ с семью ближайшими высшими $TE_{n.0}$ -волнами, как это было в случае строго периодической диафрагмы (рис. 4, *a*). (Аналогичный переход от четырехленточной диафрагмы к двухленточной представлен на рис. 4, δ -*e*.) И тогда возможен более простой согласованный узел. Для расчета его реактивностей y_m^n в (4) служит метод [10], не использовавшийся при получении упомянутых данных [8].

5. Вариации конструкций при Im є > 0

Учет потерь в диэлектрике (Im ε < 0) в исследуемых структурах необходим и для оценки опасности их сгорания в системах CBЧ большой мощности. Оказалось, что при Im ε = -0.005 в одном из вариантов рассеивателя (рис. 1, δ) поглощалось не более 8 % энергии дифрагирующего поля и обеспечивалась безотражательность устройства, не хуже 0.5 %.

Рис. 6. Полупериод решетки в слое среды (*a*); зависимость коэффициентов отражения *R* и прохождения *T* от κ и θ при $\varepsilon = 1.5$ для *TEM*-волны (δ)

Более интересны результаты расчетов при увеличении Ітє как полезного фактора. Они проведены, однако, не для структур, представленных на рис. 1 и рис. 4, *а*. Рассмотрены конструкции типа представленных на рис. 7, *а* и *б* из двух (Nr = 2) и более (Nr = 3 и 4) диафрагм, обрамленных двойными слоями диэлектрика.

Структура, изображенная на рис. 7, а и б, проявилась как регулируемый (посредством изменения параметра θ) аттенюатор, сохраняющий при перестройке плосковершинную АЧХ (рис. 7, r) при не слишком больших значениях Im ϵ , не портящих безотражательность ее узлов (аналогично при узлах с диафрагмой, изображенной на рис. 7, в). При таких же ограничениях, накладываемых на Imɛ, увеличение числа диафрагм Nr до четырех синтезирует эффективный широкополосный безотражательный поглотитель (поглощение 96 % и лучше). Регулировка ослабления T (через изменение θ путем выдвижения крайних лент диафрагм модулей (рис. 1)) не нужна. Поэтому, используя $Nr \ge 4$ узлов типа приведенных на рис. 4, создадим такой поглотитель для многомодового (1 < κ < M, M > 2) тракта или улучшим его характеристики для двухмодового тракта (рис. 8).

Рис. 7. Каскад из двух асимметричных диафрагм с диэлектриком (*a* и δ) или симметричных (*b*); зависимость коэффициентов *R*, *T* от параметров к и θ при $\varepsilon = 2 + i0.1$ для двух (*Nr* = 2) асимметричных диафрагм (*c*). Стрелками под осью к указаны точки резонансов собственных режимов дифракции

6. О ключевых моментах работы

Представленное исследование нацелено на синтез устройств для многомодовых волноводов. Поэтому работы (например [8]) по одномодовым узлам детально не обсуждаем. Существенный момент также - использование многореберных диафрагм, периодических и квазипериодических. Поэтому вместо метода [5] используем метод многоразрывной задачи Римана-Гильберта [10]. Он отличается тремя регуляризациями исходных операторов задачи и служит для более точного расчета реактивностей yⁿ_m многореберных диафрагм. Одна из регуляризаций сводит сингулярные интегралы, рассмотренные Л. Н. Литвиненко, [5] в быстро сходящийся ряд. О технологическом аспекте, связанном с размерами лент: они не узки в сравнении с λ. При увеличении числа лент их размеры не уменьшаем, так как пропорционально растет ширина волновода. О количестве лент: здесь их несколько. В квазиоптических поляризаторах из скрещенных решеток [11] - сотни ламелей, миниатюрных в сравнении с λ.

Рис. 8. Зависимость коэффициентов *R*, *T* от параметров κ и θ для одной (*Nr* = 1) асимметричной диафрагмы (*a*), а также при $\theta = 0.6$ для различного числа *Nr* = 1÷4 диафрагм (*б*)

7. Выводы

Раздвоение диафрагмой слоя диэлектрика создает пару резонансных объемов с двугорбой АЧХ, оптимизируемой к плосковершинной широкополосной. Каскад из $Nr \ge 2$ диафрагм в слоях диэлектрика при наличии диэлектрических потерь может быть широкополосным безотражательным абсорбером (как в режиме аттенюатора с регулируемым ослаблением сигнала, так и в режиме поглощающей нагрузки). При многоленточных диафрагмах АЧХ наших устройств расширяется в многомодовый диапазон частот.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шестопалов В. П. Дифракционная электроника. Харьков: Выща школа, 1976. 242 с.
- Демченко М. Ю., Щербак В. В. О широкополосном согласовании с нагрузкой диэлектрического вакуумного окна СВЧ генераторов // Вісник Харківського національного університету імені В. Н. Каразіна. – № 570. – 2002. – С. 139–141.

- 3. Щербак В. В. Широкополосные согласователи прямоугольного волновода с поперечной диэлектрической перегородкой // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электроники НАН Украины. – 2004. – Т. 9, № 2. – С. 335–340.
- Щербак В. В. Дифракция э. м. волн на ленточной диафрагме с магнитодиэлектриком // Радиотехника. – Харьков: Изд-во ХГУ, 1966. – № 2. – С. 3–17.
- 5. Шестопалов В. П., Литвиненоко Л. Н., Масалов С. А., Сологуб В. Г. Дифракци волн на решетках. – Харьков: Изд-во ХГУ, 1973. – 288 с.
- Щербак В. В. Матричные операторы в задачах дифракции. Метод обобщенной матрицы реактивностей // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электроники НАН Украины. – Т. 2, № 1. – 1997. – С. 11–16.
- 7. Щербак В. В. Поперечные металлические решетки в прямоугольном волноводе // Радиотехника. – Харьков: Изд-во ХГУ, 1968. – № 7. – С. 49–51.
- Шестопалов В. П., Кириленко А. А., Масалов С. А., Сиренко Ю. К. Дифракционные решетки. Т. 1–2. – Киев: Наук. думка, 1986. – 232 с.
- 9. Шестопалов В. П., Щербак В. В. О подавлении связи мод многоэлементными диафрагмами // Письма в ЖТФ. 1996. Т. 22, № 10. С. 90–94.
- Щербак В. В. Розв'язок задач дифракції хвиль на неоднорідностях з довільною кількістю стрічок та щілин на періоді // ДАН УРСР. Сер. А. – 1982. – № 12. – С. 51–54.
- Щербак В. В. Нетривиальные режимы кроссполяризации в каскадах скрещенных ленточных решеток // Радиофизика и электроника. 2012. Т. 17, № 3. С. 16–23.

В. В. Щербак

Інститут радіофізики та електроніки ім. А. Я. Усикова НАН України, вул. Ак. Проскури, 12, м. Харків, 61085, Україна

ДІЕЛЕКТРИЧНІ ВІКНА З ПЛОСКОВЕРШИННОЮ ХАРАКТЕРИСТИКОЮ РАДІОПРОЗОРОСТІ

Пропонуємо і оптимізуємо конструкцію радіопрозорих перегородок у хвилеводі з істотно покращеним узгодженням з трактом у широкому діапазоні частот. Це – стрічкова діафрагма всередині шару діелектрика. На цій основі створено також ефективний абсорбер.

V. V. Shcherbak

A. Usikov Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine,
12, Akad. Proskura St., Kharkiv, 61085, Ukraine

DIELECTRIC WINDOWS WITH A FLAT-TOPPED CHARACTERISTIC OF TRANSPARENCY

The construction of radiotransparent bafflers in a waveguide with essentially improved matching with the tract is suggested and optimized in a broad frequency range. This being a strip diaphragm inside a dielectric layer. Also, on this basis, the efficient absorber is created.

Статья поступила в редакцию 05.06.2013