РАДИОФИЗИКА ГЕОКОСМОСА

УДК 550.385.4, 550.358:550.388 C. B. КАЦКО¹, И. Ф. ДОМНИН¹, Л. Я. ЕМЕЛЬЯНОВ¹, M. B. ЛЯШЕНКО¹, Л. Ф. ЧЕРНОГОР^{1,2} ¹Институт ионосферы НАН и МОН Украины, ул. Краснознаменная, 16, г. Харьков, 61002, E-mail: sophiaharytonova@gmail.com ² Харьковский национальный университет имени В. Н. Каразина,

пл. Свободы, 4, г. Харьков, 61022, Украина E-mail: Leonid.F.Chernogor@univer.kharkov.ua

ИОНОСФЕРНАЯ БУРЯ 5-6 АВГУСТА 2011 Г.: РЕЗУЛЬТАТЫ РАСЧЕТОВ ОСНОВНЫХ ЭФФЕКТОВ

Приведены результаты расчетов параметров динамических и тепловых процессов во время сверхсильной магнитной бури 5–6 августа 2011 г. ($K_{p\,max} = 8-$). Магнитная буря сопровождалась отрицательной ионосферной бурей над Харьковом, которая вызвала ряд изменений в ионосфере. На фоне уменьшения концентрации электронов в F-области наблюдался нагрев плазмы, который сопровождался изменениями в составе нейтральной атмосферы и в динамике ионосферы.

Ключевые слова: магнитная буря, некогерентное рассеяние, ионосферная буря, нейтральная атмосфера

1. Введение

Исследование влияния геокосмических бурь (ГБ) на околоземную среду является одной из важнейших задач современной геофизики и физики солнечно-земных связей [1–4]. Особый интерес при исследовании эффектов ГБ вызывает формирование глобальной системы переноса плазмы. Одной из проблем теории и моделирования состояния околоземной космической плазмы является создание моделей, достоверно отображающих поведение среды не только в спокойных, но и в возмущенных гелиофизических условиях.

Известно, что нейтральная атмосфера существенно влияет на поведение ионосферной плазмы. К числу параметров, определяющих состояние верхней атмосферы, относятся концентрация нейтралов и их температура. Важны также энергия, подводимая к электронам, потоки тепла, переносимые электронами из плазмы в ионосферу, потоки заряженных частиц, скорость нейтрального ветра и т. д. Эти величины можно рассчитать, привлекая экспериментальные данные некогерентного рассеяния (НР) (значения концентрации электронов N, температур электронов T_e и ионов T_i , скорости движения плазмы), используя известные теоретические соотношения и параметры нейтральной среды, рассчитанные с помощью современных моделей атмосферы.

Целью представленной работы является численное моделирование вариаций параметров динамических и тепловых процессов в ионосфере, сопутствовавших сверхсильной магнитной буре (МБ) 5–6 августа 2011 г. (индексы геомагнитной активности достигали значений $K_{p \text{ max}} = 8$ –, $D_{st \min} = -113$ нТл, $AE_{\max} = 1740$ нТл), наблюдение эффектов которой проводилось на радаре НР Ионосферной обсерватории Института ионосферы вблизи г. Харькова. Результаты эксперимента, проведенного с 3 по 7 августа 2011 г., изложены в работах [4, 5]. Данная МБ сопровождалась отрицательной ионосферной бурей (ИБ) 6 августа, которая вызвала ряд существенных изменений в ионосфере.

2. Результаты расчетов

2.1. Вариации температуры нейтралов

Одним из эффектов, сопровождающих ГБ, является нагрев нейтрального газа. Температуру нейтралов T_n можно рассчитать из уравнения теп-

[©] С. В. Кацко, И. Ф. Домнин, Л. Я. Емельянов, М. В. Ляшенко, Л. Ф. Черногор, 2014

лового баланса ионного газа [6] с привлечением атмосферной модели NRLMSISE-00 [7]. Как и в работах [8–10], считалось, что на высотах $250 \div 400$ км, где теплопроводностью газа можно пренебречь, скорость нагрева ионов O⁺ (за счет теплообмена с электронами) можно приравнять к скорости их охлаждения (за счет передачи тепла нейтральным частицам). В расчетах использовались измеренные значения N, T_i , T_e и концентрации нейтральных компонент, рассчитанные по модели NRLMSISE-00. Временные вариации измеренных T_i и рассчитанных T_n для 3–7 августа 2011 г. представлены на рис. 1. Для сравнения там же приведены временные вариации температуры нейтралов T_{nMSIS} , рассчитанные по модели NRLMSISE-00. В качестве контрольного выбран

Рис. 1. Временные вариации измеренной температуры ионов T_i (точки) и рассчитанных температур нейтралов T_n по данным радара HP (сплошная линия) и по модели NRLMSISE-00 T_{nMSIS} (пунктир) в период 3–7 августа 2011 г. на высотах 250, 300, 350 и 400 км

день 4 августа 2011 г., когда имели место магнитоспокойные условия.

Анализ результатов расчета T_n показывает следующие особенности во временных вариациях этого параметра. На высоте 250 км T_n и T_i равны. С ростом высоты значения температур увеличиваются, причем T_i становится больше T_n . В ночное время с 5 на 6 августа во время главной фазы МБ, когда наблюдался аномальный нагрев плазмы на фоне уменьшения концентрации электронов [5], температуры T_i и T_n резко увеличились. Так, на высоте 250 км температура T_n возросла в 2.2 раза, достигнув 1390 К (в невозмущенных условиях она составляла 645 К), на высоте 300 км – в 1.7 раза (до 1250 К), а на высоте 350 км и выше – в 1.4 раза (свыше 800 К).

Рост T_n в возмущенный день 6 августа по сравнению с контрольным днем наблюдался во всем диапазоне высот. В среднем температура нейтралов в 12:00 (здесь и далее всемирное время UT) увеличилась в 1.2 раза. На высотах 250, 300, 350 и 400 км значения T_n превышали 1200, 1300, 1300 и 1400 К соответственно.

Расчеты T_n по данным радара HP и модели NRLMSISE-00 показали, что в рассматриваемом эксперименте высота термопаузы z_T , где температура атмосферы достигает своего максимального значения, увеличилась до 350 км, тогда как в спокойных условиях (по данным модели NRLMSISE-00) эта высота составляла около 300 км. Из анализа полученных данных видно также, что в возмущенные сутки модель дает заниженные значения T_n .

7 августа наблюдалось постепенное восстановление температур к значениям, характерным для спокойных условий.

2.2. Вариации концентрации нейтралов

Нейтральная атмосфера оказывает влияние на поведение ионосферной плазмы как в спокойных, так и в возмущенных условиях. Перенос плазмы, фотохимические процессы, изменение концентрации электронов и другие процессы, происходящие в ионосфере, определяются, в частности, составом нейтральной атмосферы.

На рис. 2 приведены временные вариации концентрации основных компонент нейтраль-

Puc. 2. Временные вариации концентрации основных компонент нейтральной атмосферы и параметра $p = N(O)/(N(N_2) + N(O_2))$ на высоте 300 км 3–7 августа 2011 г.

ной атмосферы: молекулярного азота $N(N_2)$, атомарного кислорода N(O) и молекулярного кислорода $N(O_2)$, – на высоте 300 км. Нейтральный состав атмосферы определялся из атмосферной модели NRLMSISE-00, которая учитывает поток солнечного радиоизлучения на волне 10.7 см $F_{10.7}$ и индекс геомагнитной активности A_p . На рис. 2 представлен также параметр $p = N(O)/(N(N_2) + N(O_2))$ (тоже для высоты 300 км), который, как известно, в стационарных условиях определяет соотношение процессов образования и потерь ионов O⁺ и прямо пропорционален концентрации электронов в области F ионосферы.

Явно выраженные флуктуации концентрации электронов в максимуме слоя F2 во время главной фазы MБ, как показывает модель, не сопровождались вариациями концентраций основных компонент нейтральной атмосферы – они почти не изменялись (по сравнению со значениями в спокойный день 4 августа 2011 г.). Изменения в составе нейтральной атмосферы начали отмечаться 6 августа после 12:00 и наблюдались во время всего периода ионосферного возмущения: концентрации компонент нейтральной атмосферы возросли.

7 августа в околополуденные часы концентрация N(O) увеличилась в 1.8 раза, $N(N_2)$ – в 2.1 раза, а $N(O_2)$ – в 2.4 раза. Из-за усиления процессов образования ионов параметр *p* уменьшился в 1.5 раза.

Во время главной фазы МБ концентрация электронов уменьшилась на 90 % [5], а концентрация основных компонент нейтральной атмосферы на высоте 300 км, согласно модели NRLMSISE-00, по сравнению со значениями в контрольный день почти не изменилась. Соответственно, параметр p с 5 на 6 августа также оставался практически неизменным. Из этого следует, что модель NRLMSISE-00 в магнитовозмущенные сутки требует коррекции для достоверного отображения процессов в ионосфере.

2.3. Подвод энергии к электронам

Как известно, нагрев тепловых электронов осуществляется в процессе термализации сверхтепловых фотоэлектронов (см., например, [11]). Ниже 300 км он носит локальный характер из-за малости длин свободного пробега электронов. Выше

200 км основными механизмами охлаждения электронного газа являются кулоновские соударения с ионами, а также возбуждение уровней тонкой структуры атомов кислорода и теплопроводность электронного газа [12, 13]. В работах [14, 15] приведен вывод уравнения теплового баланса для стационарных условий на высотах 200÷350 км, которое имеет вид

$$Q = L_{ei} + L_e,$$

где Q – энергия, передаваемая тепловым электронам при кулоновских столкновениях со сверхтепловыми фотоэлектронами; L_{ei} – энергия, теряемая при столкновении электронов с ионами; L_e – энергия, затрачиваемая на возбуждение тонкой структуры атомов кислорода. При расчете составляющих L_{ei} и L_e (см., например, [14, 15]) использовались значения T_e , T_i и N, полученные методом HP, а также данные о T_n и N(O), взятые из модели NRLMSISE-00.

На рис. 3 приведены результаты расчета энергии Q/N, подводимой к электрону в единицу времени, а также составляющих потерь энергии электронного газа в процессе теплообмена с ионами, L_{ei}/N , и нейтралами, L_e/N . Расчеты проводились для 3–7 августа 2011 г.

Из рис. З видно, что вклад двух составляющих L_{ei}/N и L_e/N в процесс охлаждения электронного газа на протяжении всего периода измерений был разным. В невозмущенный день 4 августа на высотах 300 и 350 км потери энергии электронов в кулоновских соударениях с ионами преобладали над потерями в результате соударений с нейтралами, тогда как на высоте 250 км ситуация была обратной. Во время ИБ 6 августа вклад составляющих потерь энергии и скорости нагрева электронного газа изменился: в диапазоне высот 250÷300 км вклад всех составляющих уменьшился по сравнению с контрольными значениями. Максимальное уменьшение скорости нагрева (в 1.4 раза) наблюдалось на высоте 250 км. На высоте 350 км ионосферное возмущение слабо отразилось на процессах нагрева и теплообмена, вклад составляющей L_e/N почти не изменился. В период восхода Солнца 6 августа наблюдались явно выраженные флуктуации всех трех составляющих (подвода и потерь энергии), как это было с концентрацией электронов в это же время на этих высотах [5].

Рис. 3. Временные вариации скоростей нагрева электронного газа Q/N и теплообмена электронов с ионами L_{ie}/N и атомами кислорода L_e/N на высотах 250, 300 и 350 км 3–7 августа 2011 г.

7 августа наблюдалось постепенное восстановление параметров к их значениям в невозмущенных условиях, причем на высоте 300 км во время восхода Солнца потери L_{ei}/N и L_e/N равнялись друг другу.

2.4. Потоки тепла, переносимого электронами

Потоки тепла, переносимого электронами, характеризуют приток энергии к электронному газу из плазмосферы за счет теплопроводности электронов.

Результаты расчета плотности потока тепла Π_T на высотах 200÷300 км приведены на рис. 4. Видно, что наибольшее абсолютное значение Π_T наблюдалось во время отрицательной фазы бури 6 августа и в первой половине дня 7 августа. Это объясняется тем, что плотность потока тепла сильно зависит от температуры электронов

 $(\Pi_T \sim T_e^{5/2})$. Значительному увеличению $|\Pi_T|$, почти в 1.9 раза, в околополуденные часы 6 августа на высоте 200 км предшествовало существенное увеличение $|\Pi_T|$, почти в 2 раза, около 06:00. 7 августа с 12:00 наблюдалось постепенное восстановление значений плотности потока тепла.

2.5. Потоки плазмы

Высотное распределение параметров ионосферы выше максимума ионизации в значительной степени определяется потоками заряженных частиц. Перенос плазмы осуществляется вдоль магнитных силовых линий. В дневное время плазма движется вверх из F2-слоя ионосферы под действием повышенного давления в нем. Ночью, когда прекращается действие солнечного источника ионизации и давление плазмы падает, поток направлен вниз и подпитывает истощенный за счет рекомбинации F2-слой ионосферы.

Рис. 4. Временные вариации плотности потока тепла П_T, переносимого электронами из плазмосферы в ионосферу, на высотах 200 ÷ 300 км 3–7 августа 2011 г. Здесь и далее вертикальной линией (*SC*) отмечено внезапное начало МБ

Плотность вертикального потока плазмы $\Pi_{pl} = Nv_z$, значения вертикальной скорости переноса плазмы v_z и концентрации электронов N известны из эксперимента [5]. На рис. 5 показаны временные вариации плотности потока плазмы в диапазоне высот $200 \div 350$ км с 3 по 7 августа 2011 г. Из рисунка видно, что во время отрицательной фазы бури плотность потока $|\Pi_{pl}|$ значительно уменьшилась. Это связано с уменьшением N [4]. Так, 6 августа около 12:00 значение $|\Pi_{pl}|$ уменьшилось почти в 2 раза (на высоте 200 км) относительно значения в контрольный день 4 августа.

Вариации Π_{pl} 4 августа сохраняли основные черты суточного поведения (восходящий поток во время восхода Солнца и нисходящий в период захода). Отличное от регулярного поведение Π_{pl} наблюдалось в возмущенные сутки 6–7 августа и заключалось в опережении утреннего восходящего потока относительно момента восхода Солнца и уменьшении $|\Pi_{pl}|$ 6 августа в 2÷1.3 раза на высотах 200÷300 км соответственно. В возмущенные сутки 6 и 7 августа вариации плотности потока заметно отличались от ее вариаций в невозмущенные сутки.

2.6. Зональное электрическое поле и перенос плазмы за счет электромагнитного дрейфа

Как известно, в отсутствие возмущений в геокосмосе эффектами электрических полей в средних широтах можно пренебречь. Однако во время сильных ГБ имеет место усиление электрических полей вследствие магнитосферной конвекции, что существенно влияет на динамику среднеширотной ионосферы. В возмущенных условиях в средних широтах и в пренебрежении эффектами склонения геомагнитного поля основной вклад в вертикальный перенос плазмы вносит зональное электрическое поле. Электрическое поле, направленное на восток, вызывает дрейф плаз-

Рис. 5. Временные вариации плотности потока плазмы П_{*pl*} по данным харьковского радара НР на высотах 200÷350 км 3–7 августа 2011 г.

мы вверх, а поле, направленное на запад – перенос ионосферной плазмы вниз. Оценим значение зональной компоненты электрического поля, а также вклад вертикальной составляющей движения плазмы за счет электромагнитного дрейфа в динамический режим ионосферы во время МБ 5–6 августа 2011 г.

Для оценки значения зональной компоненты электрического поля воспользуемся выражением, приведенным в [16]:

$$E_v = (0.55 - 0.01AE) \cdot 10^{-3}$$
,

где AE – индекс авроральной активности, нТл; а E_v измеряется в В/м.

Как показали расчеты, во время главной фазы МБ величина E_y достигала значения –17 мВ/м. Тогда как в спокойных условиях значение зональ-

ной компоненты электрического поля не превышало -5 мВ/м. Временные вариации *AE*-индекса и E_v приведены на рис. 6.

Выражение для расчета скорости переноса плазмы за счет электромагнитного дрейфа в пренебрежении эффектами склонения имеет вид [11]

$$v_{EB} \approx \frac{E_y}{R} \cos I,$$

где *В* – модуль индукции геомагнитного поля, *I* – наклонение геомагнитного поля.

На рис. 6 (нижняя панель) представлены результаты расчета скорости электромагнитного дрейфа во время МБ и в спокойных условиях. Оказалось, что во время главной фазы МБ v_{EB} достигала значения 430 м/с, тогда как в магнитоспокойных условиях перенос плазмы за счет электромагнитного дрейфа практически отсутствовал.

Рис. 6. Временные вариации индекса авроральной активности *AE* (Мировой центр геомагнитных данных WDC Kyoto), зонального электрического поля *E_y* (расчет) и скорости переноса частиц за счет электромагнитного дрейфа *v_{EB}* (расчет) на высоте 300 км 3–9 августа 2011 г.

2.7. Скорость переноса плазмы за счет амбиполярной диффузии

Суточные вариации вертикальной составляющей скорости амбиполярной диффузии для ионов отражают особенности процессов переноса и обмена плазмой между ионосферой и плазмосферой и их роль в высотном распределении концентрации ионов. На высотах $200 \div 500$ км, где ионы O^+ являются доминирующими, вертикальная составляющая скорости амбиполярной диффузии v_{dz} описывается выражением [11, 17]:

$$\nu_{dz} = -D_a \sin^2 I \left(\frac{1}{H_p} + \frac{1}{N} \frac{\partial N}{\partial z} + \frac{1}{T_p} \frac{\partial T_p}{\partial z} \right),$$

где

$$D_a = \frac{kT_p}{m_i \sum_n v_{in}}$$

коэффициент амбиполярной диффузии, k – постоянная Больцмана, m_i – масса иона кислорода,

 v_{in} – суммарная частота соударений ионов с основными компонентами нейтрального газа; $H_p = kT_p/mg$ – приведенная высота плазмы, $T_p = T_e + T_i$ – плазменная температура, g – ускорение свободного падения; N – концентрация ионов кислорода; z – высота. Вывод данного уравнения приводится, например, в [18, 19].

Временные вариации скорости диффузии ионов O⁺ на высотах 200÷350 км с 3 по 7 августа представлены на рис. 7. Из рисунка видно, что в магнитоспокойных условиях (3 августа) скорость v_{dz} в ночное время отрицательная. Нисходящая скорость v_{dz} составляла около –10, –15, –25 и –50 м/с на высотах 200, 250, 300 и 350 км соответственно. В дневное время скорость переноса плазмы за счет амбиполярной диффузии незначительна (не более 2÷3 м/с).

После внезапного начала МБ (19:03 UT 5 августа) поведение v_{dz} заметно изменилось. В ночь с 5 на 6 августа на высотах 250, 300 и 350 км v_{dz} достигала –22, – 50 и –150 м/с соответственно. Во время главной фазы МБ (6 августа) в дневные часы на высоте 300 км $v_{dz} \approx -12$ м/с (в спокойных условиях $v_{dz} \approx 0$ м/с).

Рис. 7. Временные вариации вертикальной составляющей скорости переноса плазмы за счет амбиполярной диффузии v_{dz} (расчет) на высотах 200÷350 км 3–7 августа 2011 г.

2.8. Нейтральные ветры в ионосфере

В средних широтах вертикальная составляющая скорости ветрового увлечения ионов обусловлена меридиональной составляющей скорости горизонтального движения нейтрального газа. Нейтральный ветер, направленный к экватору, вызывает движение плазмы вверх по магнитным силовым линиям, а ветер, имеющий направление к полюсу, – движение плазмы вниз вдоль геомагнитных силовых линий [11].

Выражение для расчета меридиональной составляющей скорости нейтрального ветра v_{nx} в пренебрежении эффектами склонения геомагнитного поля имеет вид [11]:

$$v_{nx} = \frac{v_z - v_{dz} - v_{EB}}{\sin I \cos I}.$$

Здесь v_z – вертикальная составляющая скорости движения плазмы по данным харьковского радара НР [5], v_{dz} – вертикальная составляющая

скорости переноса плазмы за счет амбиполярной диффузии, v_{EB} – вертикальная составляющая скорости переноса плазмы за счет электромагнитного дрейфа.

На рис. 8 приведены временные вариации меридиональной скорости нейтрального ветра v_{nx} во время МБ и в спокойные дни. Видно, что в спокойных условиях скорость v_{nx} варьируется в пределах от -60 до -120 м/с в рассматриваемом диапазоне высот. После начала МБ и во время главной фазы имело место усиление направленного к полюсу нейтрального ветра. Наибольшая скорость v_{nx} , как показали расчеты, наблюдалась в диапазоне высот 200÷300 км и достигала значения -500 м/с. На высоте 350 км $v_{nx} \approx -400$ м/с.

3. Обсуждение

Механизм формирования ионосферных возмущений и физическая схема их развития сложны и требуют учета многих факторов (см., например, [1, 2, 11, 12]). Исследование вклада каждого фак-

Рис. 8. Временные вариации меридиональной компоненты скорости нейтрального ветра v_{nx} (расчет) на высотах 200÷350 км 3–7 августа 2011 г.

тора проводится с помощью глобальных моделей ионосферы. Как показывает практика, применяемые модели требуют коррекции. Поэтому экспериментальные наблюдения новых ГБ дают возможность для уточнения и развития существующих моделей.

Проанализируем полученные результаты численного моделирования параметров ионосферы в течение ГБ 5–6 августа 2011 г. и сравним их с параметрами ионосферы во время подобных (по значениям индекса $K_{p \text{ max}}$) бурь 25 сентября 1998 г. [17, 20, 21] и 30–31 мая 2003 г. [8, 22, 23]. Индексы геомагнитной активности и характерные параметры каждой ГБ представлены в табл. 1. Несмотря на то, что значения индексов K_p были близкими, значения индексов $D_{st \text{ min}}$ и энергии ГБ E_{ms} существенно отличались (см. табл. 1). При расчете E_{ms} использовалось соотношение, приведенное, например, в [17].

Все три ГБ сопровождались отрицательными ИБ, во время которых наблюдался нагрев нейт-

рального газа [24]. Рост температуры нейтралов *T_n* объясняется высокоширотным нагревом термосферы, переносимым теплом из высоких широт в средние за счет усиления меридионального ветра к экватору и локальным джоулевым нагревом, связанным с проникновением магнитосферных электрических полей в средние широты. Так, на высоте 300 км в период главной фазы ГБ 25 сентября 1998 г. в ночное время Т, увеличилась относительно своего значения в спокойных условий в 1.3 раза (до ~1460 К), а во врем ГБ 5-6 августа 2011 г. – в 1.7 раза (до 1250 К). Что касается ГБ 30-31 мая 2003 г., известно, что во время главной фазы бури в ночь с 30 на 31 мая на высоте 300 км T_n составляла ~1200 К, а в следующую ночь во время фазы восстановления уменьшилась примерно на 320 К.

Нагрев термосферы привел к ее расширению и, соответственно, росту высоты термопаузы z_T во всех трех случаях: в течение ГБ 25 сентября 1998 г. – до 450 км, 30–31 мая 2003 г. – до 400 км,

	МБ	МБ	МБ
Параметр	25 сентября	30-31 мая	5-6 августа
	1998 г.	2003 г.	2011 г.
$K_{p \max}$	8+	8	8–
<i>D_{st min}</i> , нТл	-210	-131	-113
<i>Е_{ms}</i> , Дж	$12 \cdot 10^{15}$	$8 \cdot 10^{15}$	$5.9 \cdot 10^{15}$
E_y , MB/M	21	19	17
<i>z_T</i> , км	450	400	350
AE_{\max} , нТл	2200	2000	1740
$\left(\frac{(N_m F2)_0}{N_m F2}\right)_{\max}$	≈ 3.3	≈ 2.5	≈ 2
$\left(\frac{T_{n0}}{T_n}\right)_{\max}$ (300 км)	≈ 0.8	_	≈ 0.6
$\left(\frac{(Q/N)_0}{(Q/N)}\right)_{\text{max}}$	≈2	≈1.7	≈1.4
$\left\ \frac{\Pi_{T0}}{\Pi_T} \right\ _{\text{max}} (350 \text{ km})$	0.7	0.6	0.4

Таблица 1. Параметры, характеризующие геокосмические бури

Примечание. Символ N_m F2 – концентрация электронов в максимуме слоя F2, индекс "0" относится к значениям при невозмущенных условиях.

5-6 августа 2011 г. – до 350 км. (В спокойный день для всех ГБ $z_T \approx 300$ км.) Значения z_T были тем больше, чем больше энергия E_{ms} ГБ (см. табл. 1).

Нагрев термосферы сопровождался изменением нейтрального состава атмосферы. Расчеты, выполненные с использованием модели NRLMSISE-00, показали, что 5 августа 2011 г. около 21:00, когда отмечалось наибольшее падение концентрации электронов N (на 90 %), значения концентраций $N(N_2)$ и $N(O_2)$ изменились несущественно. В результате параметр р остался почти таким же, как был до начала МБ. Результаты расчета р не позволяют объяснить наблюдаемое на этой высоте сильное падение N, т. е. модель NRLMSISE-00 дает заведомо заниженные значения $N(N_2)$ и $N(O_2)$. К такому выводу пришли и авторы работ [8, 17, 20, 21], в которых отмечалось, что изменение нейтрального состава не могло привести к такому существенному уменьшению концентрации электронов в максимуме слоя F2: в 3.5 раза во время ГБ 25 сентября 1998 г. и в 2.5 раза во время 30-31 мая 2003 г.

Рассмотрим подвод энергии к электронам. Из рис. 3 видно, что в разные сутки вклад составляющих L_{ei}/N и L_e/N в процессе охлаждения электронного газа был различным. Например, в спокойные сутки 4 августа на высоте 250 км преобладали потери в процессе неупругого теплообмена электронов с нейтралами за счет высокой разности температур $T_e - T_i$ при малых значениях N, что характерно для условий средней солнечной активности. На высотах ниже 300 км вклад двух механизмов охлаждения электронов, по-видимому, сравнялся. С ростом высоты начали преобладать потери энергии электронов в кулоновских соударениях.

6 августа в условиях отрицательной ИБ потери L_{ei}/N на высоте 250 км были малы. На высотах $z \ge 300$ км значения L_{ei}/N стали преобладать над значениями L_e/N , что объясняется нагревом и расширением термосферы, при котором концентрация атомарного кислорода N(O) уменьшается медленно.

30 мая 2003 г. в условиях отрицательной ИБ и уменьшения N потери L_{ei}/N также были малы. Они сравнялись со значениями L_e/N только на высоте 390 км. 31 мая вблизи полудня на высотах 250÷270 км значение энергии, подводимой к электронному газу, Q/N составляло приблизительно $0.8 \cdot 10^{-21}$ Дж/с. В спокойные сутки $Q/N \approx 1.3 \cdot 10^{-21}$ Дж/с, т. е. уменьшилась примерно в 1.6 раза. Отметим, что в течение ГБ 5–6 августа 2011 г. энергия Q/N уменьшилась в 1.4 раза, а во время ГБ 25 сентября 1998 г. – в 1.9 раза. Видно, что эффекты ГБ 25 сентября 1998 г. в вариациях Q/N были более существенными.

Уменьшение локального нагрева электронного газа приводит к увеличению потока энергии фотоэлектронов, покидающих область F ионосферы. Избыточная энергия, переносимая фотоэлектронами, вызывает дополнительный нагрев плазмосферы и объясняет увеличение теплового потока в возмущенный день (см. рис. 4). Результаты расчетов плотностей потоков тепла соответствуют существующим представлениям об их величине и характеризуют взаимодействие основных процессов, контролирующих тепловой баланс ионосферы и плазмосферы во время бури.

Известно [8, 21, 23], что на высоте 350 км во время ГБ 25 сентября 1998 г., 30–31 мая 2003 г. и 5–6 августа 2011 г. плотность потока тепла $|\Pi_T|$ максимально увеличилась в 1.4, 1.2 и 2.8 раза соответственно. До 5 августа 2011 г. временные вариации плотности вертикального потока плазмы Π_{pl} сохранили свои основные черты суточного поведения, а именно: восходящий поток во время восхода Солнца и нисходящий в период захода (см. рис. 5). С ростом высоты значение плотности потока уменьшалось за счет падения *N*. Из рисунка видно, что 5 августа на высоте 200 км $|\Pi_{pl}|$ увеличилась в 1.4 раза по сравнению со значением 4 августа, а 6 августа снова уменьшилась. На высотах $z \ge 200$ км ИБ также повлияла на форму суточного хода Π_{pl} .

ГБ 5–6 августа 2011 г. существенно проявилась и в вариациях электрического поля над Харьковом. Как показали расчеты, во время главной фазы ГБ имело место увеличение значений зональной компоненты электрического поля E_y до –17 мВ/м, тогда как в невозмущенные периоды она составляла 1÷5 мВ/м.

Увеличение напряженности электрического поля во время ГБ привело к интенсификации движения плазмы, обусловленного электромагнитным дрейфом [25, 26]. Как показало численное моделирование, в спокойных условиях скорость переноса частиц v_{BE} близка к нулю, а во время внезапного начала МБ она достигала значения 430 м/с. Результаты расчетов, выполненных в настоящей работе, хорошо согласуются с расчетами, представленными в [15].

ГБ 5–6 августа 2011 г., как и две другие рассматриваемые бури, привела к заметной перестройке динамического режима ионосферной плазмы и тем самым существенно повлияла на высотное распределение параметров геокосмоса выше максимума ионизации области F ионосферы. Как показали расчеты, во время ГБ имело место увеличение нисходящей скорости переноса частиц за счет амбиполярной диффузии v_{dz} , что свидетельствует об отклонении распределения концентрации ионов от диффузионно-равновесного в период возмущения.

Во время ГБ 5–6 августа 2011 г. имело место усиление направленного к полюсу нейтрального ветра. Такое поведение ветра указывает на то, что эффекты бури хорошо проявились в вариациях параметров глобальной термосферной циркуляции. Подобное поведение скорости нейтрального ветра наблюдалось также во время ГБ 25 сентября 1998 г. [17, 20, 21]. Результаты проведенных расчетов согласуются с результатами других авторов, представленными в работах [27, 28].

Сравнительный анализ ГБ еще раз продемонстрировал, что каждая буря уникальна и эффекты схожих (по значениям индекса $K_{p \max}$) бурь могут быть различными.

Результаты настоящей работы подтвердили тезис [1–4] о том, что ГБ представляет собой синергетически взаимодействующие бури во всех внешних геооболочках.

4. Выводы

1. В течение главной фазы МБ 5 августа (около 23:00), когда наблюдался необычный нагрев плазмы на фоне уменьшения клнцентрации Nв области F ионосферы, температура T_n увеличилась в 2.2÷1.4 раза относительно значений в невозмущенных условиях 4 августа и составляла 1390÷1160 К на высотах 250÷400 км соответственно. Во время отрицательной ИБ 6 августа значения T_n в этом же диапазоне высот были на 230÷140 К выше, чем в магнитоспокойных условиях. Нагрев термосферы привел к ее расширению и подъему высоты термопаузы до 350 км в течение главной фазы МБ, в то время как в спокойные сутки ее высота составляла около 300 км.

2. Подтверждено, что модель NRLMSISE-00 дает заниженные значения концентрации составляющих нейтральной атмосферы, не полностью отображая уменьшение концентрации электронов во время главной фазы МБ и последующие возмущенные сутки 6 августа. Следовательно, модель требует дальнейшей корректировки. 7 августа концентрации компонент нейтральной атмосферы увеличились: N(O) – примерно в 2.1 раза, $N(N_2)$ – в 3.6 раза, а $N(O_2)$ – в 5.2 раза, соответственно параметр p уменьшился в 1.5 раза.

3. Во время ИБ 6 августа вклад потерь энергии электронного газа в процессе теплообмена с ионами и нейтралами уменьшился. Максимальное уменьшение (почти в 1.4 раза) скорости нагрева электронов имело место на высоте 250 км.

4. Полученные значения плотности потока тепла, переносимого электронами, и потока плазмы свидетельствуют о том, что ИБ повлияла на их суточный ход: абсолютные значения Π_T увеличились за счет роста T_e , а абсолютные значения Π_{pl} уменьшились за счет уменьшения N.

5. Во время главной фазы МБ значение зональной компоненты электрического поля E_v достигло -17 мВ/м, тогда как в спокойных условиях эта величина не превышала единиц милливольт на метр.

6. Эффекты сверхсильной МБ хорошо проявились в вариациях динамических процессов в ионосфере. Во время бури абсолютные значения вертикальной составляющей скорости переноса плазмы за счет амбиполярной диффузии составляли 22, 50 и 150 м/с на высотах 250, 300 и 350 км соответственно. Скорость движения плазмы за счет электромагнитного дрейфа во время главной фазы МБ достигала 430 м/с, тогда как в невозмущенных условиях перенос плазмы за счет электромагнитного дрейфа был незначительным. Как показало численное моделирование, эффекты МБ заметно проявились в вариациях глобальной термосферной циркуляции. Во время ГБ имело место усиление направленного к полюсу нейтрального ветра, скорость которого достигала -500 м/с в диапазоне высот 200÷300 км.

СПИСОК ЛИТЕРАТУРЫ

- Черногор Л. Ф. Физика Земли, атмосферы и геокосмоса в свете системной парадигмы // Радиофизика и радиоастрономия. – 2003. – Т. 8, № 1. – С. 59–106.
- Черногор Л. Ф. Земля атмосфера ионосфера магнитосфера как открытая динамическая нелинейная физическая система. 1 // Нелинейный мир. 2006. Т. 4, № 12. С. 655–697.
- Черногор Л. Ф. Земля атмосфера ионосфера магнитосфера как открытая динамическая нелинейная физическая система. 2 // Нелинейный мир. 2007. Т. 5, № 4. С. 225–246.
- 4. Черногор Л. Ф., Домнин И. Ф. Физика геокосмических бурь. – Харьков: Из-во ХНУ имени В. Н. Каразина, 2014. – 407 с.
- Домнин И. Ф., Емельянов Л. Я., Ляшенко М. В., Харитонова С. В., Черногор Л. Ф. Ионосферные процессы, сопровождавшие геокосмическую бурю 5–6 августа 2011 г. // Радиофизика и радиоастрономия. – 2012. – Т. 17, № 4. – С. 320–332.
- Эванс Дж. Теоретические и практические вопросы исследования ионосферы методом некогерентного рассеяния радиоволн // ТИИЭР. – 1969. – Т. 57, № 4. – С. 139–177.
- Picone J. M., Hedin A. E., Drob D. P., and Aikin A. C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues // J. Geophys. Res. Space Phys. – 2002. – Vol. 107, Is. A12. – P. 1–16.
- Григоренко Е. И., Пазюра С. А., Таран В. И., Черногор Л. Ф., Черняев С.В. Динамические процессы в ионосфере во время сильнейшей магнитной бури 30–31 мая 2003 г. // Геомагнетизм и аэрономия. 2005. Т. 45, № 6. С. 803–823.
- Salah J. E. and Evans J. V. Measurements of thermospheric temperature by incoherent scatter radar // Space Res. – 1973. – Vol. 13. – P. 267–286.

- Salah J. E., Evans J. V., Alcayde D., and Bauer P. Comparison of exospheric temperatures at Millstone Hill and St-Santin // Ann. Geophys. – 1976. – Vol. 32, No. 3. – P. 257–266.
- Брюнелли Б. Е., Намгаладзе А. А. Физика ионосферы. М.: Наука, 1987. – 528 с.
- 12. Бэнкс П. М. Тепловая структура ионосферы // ТИИЭР. – 1969. – Т. 57, № 3. – С. 6–30.
- Schunk R. W. and Nagy A. F. Ionospheres: Physics, Plasma Physics, and Chemistry. – Cambridge, UK: Cambridge University Press, 2004. – 572 p.
- Banks P. M. Charged particle temperatures and electron thermal conductivity in the upper atmosphere // Ann. Geophys. – 1966. – Vol. 22. – P. 577–584.
- Dalgarno A. and Degges T. C. Electron cooling in the upper atmosphere // Planet. Space Sci. – 1968. – Vol. 16, Is. 1. – P. 125–127.
- Сергеенко Н. П. Оценки электрических полей во время ионосферных возмущений. В кн.: Ионосферное прогнозирование. – М.: Наука, 1982. – С. 91–96.
- Григоренко Е. И., Лысенко В. Н., Таран В. И., Черногор Л. Ф. Результаты радиофизических исследований процессов в ионосфере, сопровождавших сильнейшую геомагнитную бурю 25 сентября 1998 г. // Успехи современной радиоэлектроники. – 2003. – № 9. – С. 57–94.
- 18. Кринберг И. А., Тащилин А. В. Ионосфера и плазмосфера. – М.: Наука, 1984. – 189 с.
- Фаткуллин М. Н., Зеленова Т. И., Козлов В. К., Легенька А. Д., Соболева Т. Н. Эмпирические модели среднеширотной ионосферы. – М.: Наука, 1981. – 256 с.
- Григоренко Е. И., Лазоренко С. В., Таран В. И., Черногор Л. Ф. Волновые возмущения в ионосфере, сопровождающие вспышку на Солнце и сильнейшую магнитную бурю 25 сентября 1998 г. // Геомагнетизм и аэрономия. – 2003. – Т. 43, № 6. – С. 770–787.
- Григоренко Е. И., Дзюбанов Д. А., Лысенко В. Н., Таран В. И., Черногор Л. Ф. Магнитная, ионосферная и атмосферная бури большой интенсивности в сентябре 1998 года: сравнение результатов измерений и моделирования // Космічна наука і технологія. – 2003. – Т. 9, № 4. – С. 132–143.
- 22. Григоренко Е. И., Емельянов Л. Я., Пазюра С. А., Таран В. И., Черногор Л. Ф. Возмущения ионосферной плазмы во время сверхсильной магнитной бури 29–31 мая 2003 года: результаты наблюдений на харьковском радаре некогерентного рассеяния // Успехи современной радиоэлектроники. 2005. № 4. С. 21–39.
- Григоренко Е. И., Пазюра С. А., Таран В. И., Черногор Л. Ф. Сильнейшая геокосмическая буря 30–31 мая 2003 г.: результаты измерений и моделирования // Космічна наука і технологія. 2005. Т. 11, № 3/4. С. 20–37.
- 24. Данилов А. Д. Реакция области F на геомагнитные возмущения (обзор) // Гелиогеофизические исследования. – 2013. – № 5. – С. 1–33.
- Sojka J. J., David M., Schunk R. W., and Heelis R. A. A modeling study of the longitudinal dependence of storm time midlatitude dayside total electron content enhancements // J. Geophys. Res. Space Phys. – 2012. – Vol. 117, Is. A2, A02315, doi:10.1029/2011JA017000.
- 26. David M., Sojka J. J., Schunk R. W., Liemohn M. W., and Coster A. J. Dayside midlatitude ionospheric response to storm time electric fields: A case study for 7 September

ISSN 1027-9636. Радиофизика и радиоастрономия. Т. 19, № 1, 2014

2002 // J. Geophys. Res. Space Phys. - 2011. - Vol. 116, Is. A12, A12302, doi: 10.1029/2011JA16988

- Richards P. G., Torr D. G., Buonsanto M. J., and Sipler D. P. Ionospheric Effects of the March 1990 Magnetic Storm: Comparison of Theory and Measurement // J. Geophys. Res. Space Phys. – 1994. – Vol. 99, Is. A12. – P. 23359–23365.
- Buonsanto M. J. Millstone Hill Incoherent Scatter F Region Observations During the Disturbances of June 1991 // J. Geophys. Res. Space Phys. - 1995. -Vol. 100, Is. A4. - P. 5743-5755.

С. В. Кацко¹, І. Ф. Домнін¹, Л. Я. Ємельянов¹, М. В. Ляшенко¹, Л. Ф. Чорногор^{1,2}

¹Інститут іоносфери НАН і МОН України, вул. Червонопрапорна, 16, м. Харків, 61002, Україна

²Харківський національний університет імені В. Н. Каразіна, м. Свободи, 4, м. Харків, 61022, Україна

ІОНОСФЕРНА БУРЯ 5–6 СЕРПНЯ 2011 Р.: РЕЗУЛЬТАТИ РОЗРАХУНКІВ ОСНОВНИХ ЕФЕКТІВ

Наведено результати розрахунків параметрів динамічних і теплових процесів під час надпотужної магнітної бурі 5–6 серпня 2011 р. ($K_{p \max} = 8$ –). Магнітна буря супроводжувалася негативним іоносферним збуренням над Харковом, яке викликало низку змін в іоносфері. На фоні змен-

шення концентрації електронів у F-області спостерігався нагрів плазми, що супроводжувався змінами у складі нейтральної атмосфери та у динаміці іоносфери.

S. V. Katsko¹, I. F. Domnin¹, L. Ya. Emelyanov¹, M. V. Lyashenko¹, and L. F. Chernogor^{1,2}

¹Institute of Ionosphere, National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, 16, Chervonopraporna St., Kharkiv, 61002, Ukraine

²V. Kazarin National University of Kharkiv, 4, Svoboda Sq, Kharkiv, 61022, Ukraine

IONOSPHERIC STORM OF AUGUST 5–6, 2011: CALCULATION OF MAIN EFFECTS

Calculation of dynamic and thermal processes parameters during the severe magnetic storm of August 5–6, 2011 ($K_{p \text{ max}} = 8$ –) are presented. The magnetic storm was accompanied by negative ionospheric disturbance over Kharkiv which caused a number of changes in ionosphere. Plasma heating was observed during electron concentration depression in the F-layer which was accompanied by changes in neutral atmosphere composition and ionospheric dynamics.

Статья поступила в редакцию 09.12.2013