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EIGEN-OSCILLATIONS OF PLANAR-CHIRAL BILAYER OBJECTS
GIVE RISE TO ARTIFICIAL OPTICAL ACTIVITY

Subject and Purpose. The research focuses on how the resonance frequencies, the Q-factor of resonances, and the polarization plane
rotation ability are influenced by the topology of individual components of a planar-chiral double-layer object consisting of a pair of con-
jugated irises having rectangular slots and accommodated in a circular waveguide.

Methods and Methodology. All the numerical results are obtained by the mode-matching technique (MMT) and the transverse reso-
nance method on the basis of our own proprietary MWD-03 software package.

Results. By the waveguide example, it has been shown that the internal structure of individual components and dihedral symmetry
of the conjugated bilayer allow all the conclusions of the spectral theory (theory of eigen-oscillations) to be carried over to all the objects
of the type. On the other hand, these objects behave as symmetric two-port waveguide components with conventionally "symmetric” and
"antisymmetric” eigen-oscillations. The mutual coupling of these eigen-oscillations depends on the bilayer parameters. Where the frequen-
cies of these eigen-oscillations are close enough, the polarization plane rotation and the transmission bandwidth reach their highest. It has
been demonstrated that as a slot number increases, the resonance frequency decreases. The theoretical results have been confirmed by the
measurements at the X range of frequencies for pairs of conjugated irises with various numbers of rectangular slots.

Conclusions. A pair of conjugated chiral irises can rotate the polarization plane. The iris topology, iris spacing, and the mutual ro-
tation angle alter resonance frequencies. The resonance frequencies can be reduced by increasing the rectangular slot length and/or slot
number. Even though they have not longitudinal symmetry, such objects have properties of two-port waveguide components. In particular,
the phase shift of their reflection and transmission coefficients is modulo 90°. Besides, a possibility exists to divide eigen-oscillations into
conventionally "symmetric” and "antisymmetric” based on the proximity of their fields to those whose type of symmetry is known before-
hand. This makes it possible to approximate the reflection and transmission coefficients through corresponding eigenfrequencies.
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Introduction

Among the metamaterials that provide artificial opti-
cal activity (AOA), bilayer structures occupy a special
place with the vast majority of publications. Dating
back to work [1], a variety of planar chiral metasur-
faces have been proposed. Square cells (meta-atoms)
of the periodic structures are tailored using thin metal
patches or slotted screens (fish-net structures). Meta-
surface cells should not possess symmetry planes, i.e.
they are supposed to be planar-chiral forms with C;
rotational symmetry. See, for example, angular-shift
rosettes in Fig. 1, a [1] with 3D chirality occurring at
nonzero angular shift. Such bilayers bestow the most
fascinating properties when the first and second lay-
ers have conjugated geometries (Fig. 1, b) [2]. Also,
worthy of mention are composite bilayer metasur-
faces (Fig. 1, ¢) [3] containing double-mirror-sym-
metry metal inserts improving matching and objects
with S-shaped metal patches providing the double-
band AOA phenomenon (Fig. 1, d) [4]. The affini-
ty of the properties gives rise to waveguide applica-
tions of bilayers as three-dimensional chiral devices
(Figs. 1, e [6] and 1, f[7]). The conclusions made fur-
ther in the paper and concerning eigen-oscillations
of such open microwave structures with a discrete
spatial spectrum are valid for each object in Fig. 1.
All the bilayers in Fig. 1 except the one in Fig. 1, a
have D, (dihedral) symmetry. Many other examples
can be found, e.g., in [5].

For the plane-wave normal incidence, the afore-
mentioned bilayers provide the polarization plane
(PP) rotation in the transmitted field and the ab-
sence of cross-polarized waves in the reflected field.
Also, this is the case for 2D-periodic structures ar-
ranged in hexagonal lattices when the scatterer geo-
metry has both rotational (Cg) and required transla-
tion symmetry. An AOA example in the hexagonal
lattice case is given in [8].

Normally, the AOA analysis reduces to studying
distributions of surface electric (for patches) or mag-
netic (for slots) currents in the two layers of the meta-
atom cell. Then, by analogy with the Faraday effect,
the equivalent parameters of the "imaginary homo-
geneous” medium are reconstructed. Work [6] uses
a waveguide example and interprets the AOA phe-
nomenon in terms of special eigen-oscillations in-
side the internal gap of a bilayer object. We call them
dihedral eigen-oscillations because of dihedral sym-

metry of their eigenfields. In principle, this concept
is consistent with early works [9] on bilayer screens.

Below, the above-mentioned concept is genera-
lized to waveguide bilayers with arbitrary-order di-
hedral symmetry. We will demonstrate how the reso-
nance properties of meta-atom components them-
selves affect the AOA manifestation. The waveguide
example is very important in the practical sense be-
cause it, for instance, broadens the application scope
of compact polarization rotators based on slotted
irises [10] or corrugated flanges [7]. Its scientific
importance is in opening up research prospects for
further exploration of the D, symmetry cases with
arbitrary n rather than n = 2, 4, 6 for two-layer pe-
riodic lattices only.

In this paper, we consider a bilayer planar-chiral
pair from Fig. 2. Each iris has n rectangular slots uni-
formly distributed in azimuth. We use a and b nota-
tions for, respectively, the x and y dimensions of the
rectangular slot sides, as shown in the lower left cor-
ner of the first iris in Fig. 2.

All the presented numerical results are due to our
own proprietary MWD-03 software package enab-
ling us to employ the mode matching technique
(MMT) and the transverse resonance method for
the electromagnetic analysis of 3D boundary-value
problems with piecewise coordinate boundaries, in-
cluding the eigen-oscillation analysis in the complex
frequency plane. To calculate the plane junctions
(PJs) between the waveguides in Cartesian and polar
coordinates, the approach proposed in [11] is adop-
ted. The calculation accuracy is controlled with pa-
rameter f.,. which bounds from above the values of
cutoft frequencies of the projection bases of all regu-
lar waveguides in the structure. In most theoretical
calculations throughout the work, f,,., = 100 GHz,
which is sufficient for high-quality results. But some-
times to get a detailed comparison with the experi-
ment, f., = 340 GHz was also used. The f,, in-
crease from 100 to 340 GHz raises the resonance fre-
quency by no more than 400 MHz.

The present work is a continuation and an essen-
tial extension of conference paper [12]. We seek to
control the artificial optical activity characteristics
by altering the topology of a bilayer of conjugated
planar-chiral irises. A primary focus is on the general
spectral properties of bilayers of waveguide irises
and planar screens.
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1. General features
of eigen-oscillations of a bilayer

Let us consider two closely spaced objects accom-
modated inside a certain waveguide line or in the
free space with a discrete mode basis which we think
of as either waveguide modes or Floquet waves. As
known, the dispersion equation that determines the
set of eigen-oscillations of such an "open" object is

det(I— RERE) =0, (1)

where R and R are the generalized matrices descri-
bing the multiple reflection of waveguide modes or
Floquet waves from the external components (in-
terfaces) of the "bilayer” and I is the identity matrix.
The diagonal matrix E = E(I) describes the process of
propagation or reactive attenuation of these waves in
the bilayer gap of size I.

In some cases, Eq. (1) can split in two factors. Spe-
cifically, in the case of an ordinary longitudinally
symmetric object, R =R, and Eq. (1) splits into the
pair

det(I+RE)=0 )

describing the well-known oscillations with PMW
("perfect magnetic wall" in the plane of symmetry
z = 0) or with PEW ("perfect electric wall", z = 0).
They are solutions to Eq. (2) with sign "-" or sign "+",
respectively. Eigen-oscillations with PEW and PMW
in the plane of symmetry have different eigenfre-
quencies.

A particular case of the longitudinally symmetric
object of the kind is a single iris or a screen as a bilayer
of interfaces. They also are bilayer forms and have
corresponding pairs of eigen-oscillations [13]. The
eigen-oscillations with PMW are the origin of the
well-known "half-lambda" resonances of slots in irises
or in screens. The oscillations with PEW usually
have a very high Q and could not be detected ex-
perimentally for a long time because of their loca-
tion right before the multimode band. These eigen-
oscillations of bilayers provide the phenomenon of
extraordinary optical transmission (EOT) through
below-cutoff holes in waveguide irises or in perfora-
ted screens [14].

Consider now a bilayer of irises or screens. Sup-
pose that both bilayer components are identical and
show planar chirality. In this case, they can form two
kinds of 3D chiral objects that show the AOA. The

Fig. 1. Investigated examples of bilayer structures

counterparts can be either "conjugated” (with dihed-
ral symmetry) or azimuthally shifted with respect to
each other about the longitudinal axis. Some essen-
tial differences in the electromagnetic behavior of
these pairs are numerically examined in [15].

The fundamental difference between these two
objects from a microwave standpoint is that only the
conjugated variant obeys the properties of a symmet-
ric two-port network, as will be shown below.

Let in a bilayer structure, the second iris (layer)
be given by the rotation of its counterpart through
7 about the y-axis and through an angle ¢ about the
structure axis z. These transformations correspond
to the definition of a dihedral symmetry object. If
the first iris has rotational symmetry C,, then the bi-
layer of the two conjugated irises has dihedral sym-
metry D,,.
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Fig. 2. A pair of conjugated multislot planar-chiral irises with
dihedral symmetry

According to the scattering problem solution in
the lossless case, at the output port of the illuminated
object with rotational symmetry C,, n > 3, the linea-
rity of the incident wave is preserved [9]. The real ang-
le & of the PP rotation comes from

tana = Re Sz( fross’co) / Re Sz( fo’co) (3)

and must be found numerically. It is determined by
the frequency, the constitutive parameters of the ob-
. . (cross,co) (co,co)
ject, and its geometry. Here S,; and S,,
are the transmission coeflicients into the cross- and
co-polarized modes (waves), respectively.

If the scatterer possesses dihedral symmetry, the

relation

arg Sl(lC oc0) - arg Sz(fross’co) +7/2 (4)
is satisfied. This is the reason to consider such an ob-
ject as a two-port network of special symmetry.

On the contrary, a pair of identical non-conju-
gated planar-chiral irises with a mutual angular shift,
which also provides the AOA, is an asymmetric two-
port network. For it, relation (4) is not satisfied.

Next, to further investigate the AOA phenomena,
we only consider objects with D, symmetry, n > 4.
In this case, (a) the scattered field polarization in the
far zone remains linear, (b) the effect of the PP rota-
tion does not depend on the polarization of the inci-
dent mode, (c) there are no cross-polarized modes in
the reflected field [16], and (d) the structure has the

widest single-mode frequency band which is limited
from above by the cutoff frequency of the TM;; mode.
Note that the evanescent modes inside the bilayer
gap play a decisive role in the excitation of eigen-oscil-
lations and determine their distinctive features. Thus,
for conventional resonators at regular waveguide sec-
tions, the real parts of neighboring eigenfrequencies
generated inside the bilayer gap move downward to-
gether as the gap increases. However, the first pair of
the oscillations formed in the bilayer narrow gap be-
have out-of-standard due to the intense interaction
of the evanescent fields. In the considered dihed-
ral case, the spectral lines can converge or diverge
depending on the width of the gap between the meta-
atom components in different layers. This property
bestows a double-hump shape on the AOA curves.

2. Resonances
of bilayer components

First of all, we turn to resonances of a single iris in
the structure in Fig. 2 which one way or another af-
fect the bilayer excitation governed by the solutions
of Eq. (1). In this case, R is the reflection matrix of
multichannel line modes incident on the plane junc-
tion (PJ) with the circular waveguide, where the mul-
tichannel line consists of n small-size rectangular
waveguides. According to [13], such PJs have aperture
eigen-oscillations with complex-valued frequencies
Jeigen,py close to the cutoff frequency of the high-order
TM;; mode of the circular waveguide. For example,
if the circular waveguide radius is R = 16 mm, the
slot sides are a = 12 mm and b = 1 mm, and n = 6,
this PJ is characterized by a pair of degenerate cross-
polarized aperture oscillations at the frequency
Jeigen,py= (1141 —i0.0008) GHz. This eigenfrequency
value was obtained by the MMT method. It is a pole
of characteristic Eq. (1) for the irises formed by the
mentioned plane junctions.

Let the iris thickness be ¢ = 2.5 mm. Two aper-
ture oscillations inherent to the input and output
PJs come into the interaction. Altogether, a set of
six slots participating in the event yields a symmet-
ric oscillation at fejgen iris= (11.22 — 10.04) GHz and
an extremely high-Q antisymmetric oscillation at
Foigeniiris= (114262 — 3.12:107°) GHz located im-
mediately before the cutoff frequency f . (TM;;) =
=11.4265 GHz of the first high-order mode of the
circular waveguide.
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The resonance frequencies of a single multi-slot iris
and the bandwidths are listed in order of increasing
n in Table 1 [12]. It turns out that the resonance fre-
quencies are quite close to Re( fefgen,iris ) despite the
fact that the Im( fefgen,iris ) values are rather large. It
was shown that 1) the slot number growth reduced
the resonance frequency and the Q-factor, 2) the slot
narrowing had little effect on the characteristics, and
3) resonances of thin irises, compared to thick ones,
were shifted down in frequency and Q.

3. Eigen-oscillations
and resonances of a dihedral pair

The interaction of two planar-chiral irises adds new
pairs of eigen-oscillations with corresponding reso-
nances on the frequency response. The fundamental
difference of such a 3D chiral unit lies in the rotation of
the polarization plane of the transmitted field relative
to the incident field. For this reason, the correspon-
ding eigen-oscillations with different PPs of the radi-
ated at the outer ports eigenfields were called dihed-
ral oscillations. As a microwave component, such a
bilayer is still a two-port network, and its frequency
response can be approximately described by the ana-
Iytical representations based on a pair (or more) of
eigenfrequencies [17] (see Section 5).

The device under consideration is characterized
by resonances formed due to the peculiarities of both
topological components. They are resonances of the
irises (screens) themselves and resonances formed in
the gaps between them. Both are well recognized in
the 2D patterns (Fig. 3) of the reflection coefficient
Su(f 1) forR=16 mm,n=6,t=0.1 mm, a=12 mm,
b=0.5 mm, and dy = 0. The bands of good matching
are shown dark grey. The bands of strong reflec-
tion are shown white. Fig. 3 illustrates the cases of
non-chiral (Fig. 3, a) and chiral (Fig. 3, b) irises. When
dx = (R\/E —a)/2=5.31 mm (Fig. 3, a), there exist
2n mirror-symmetry planes for the irises and 2n + 1
such planes for the collective 3D object. Fig. 3, b dis-
plays the case of maximum (dx = 0) shifts of the slot
centers from the centers of the sides of a square in-
scribed in the cross-section of the circular wave-
guide.

Near Re( feigen,iris ) at 9.6 GHz for dx =~ 5.31 mm
and 10.6 GHz for dx =0, apparent bands of good
matching are observed in both Figs. 3, a and b for
large gaps, where the near fields of the irises are

dx=82"2_6 mm
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Fig. 3. Reflection coefficient S;;( f,]) of a bilayer consisting of
6-slot non-chiral (a) or chiral (b) irises in the gap-frequency co-
ordinates

practically evanescent. The "iris resonance" line is
crossed by several "gap resonance" lines arrayed
along / at approximately a A,/ 2 interval, which is the
half-wavelength of the dominant TE;; mode.

Fig. 3, a corresponds to a longitudinally symmet-
ric structure with non-chiral irises, the dashed and
dotted curves represent the real parts of the first two
eigen-oscillations of the bilayer. In this case, the eigen-
oscillations with PEW and PMW in the plane of
symmetry are independent, for they are solutions of
different boundary value problems. Therefore, the
Re ( feigen) curves for symmetric and antisymmetric
eigen-oscillations can meet. The meeting is viewed
at the gap / = 9.2 mm. Around this value of the gap,
within the interval / = 8.4 to 10.6 mm, a strong re-
flection is revealed over the entire single-mode fre-
quency band.

The structure analyzed in Fig. 3, b does not have
longitudinal symmetry. The Re(fejgen) curves in
Fig. 3, b represent conventionally antisymmetric and
symmetric eigen-oscillations of the bilayer in this
case. We define eigen-oscillations as conventionally
symmetric or antisymmetric depending on the proxi-
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Fig. 4. The action of azimuthal shift between planar-chiral irises
at the level of transmitted cross-polarized mode for different slot
numbers (marked on the graphs)

mity of their fields to those whose type of symmetry
is known beforehand. That is, we call an eigen-oscil-
lation conventionally symmetric (or "symmetric" in
quotes) if the angle between its electric field vectors
at the output ports and at largest amplitude peaks is
acute. If obtuse, an eigen-oscillation is called conven-
tionally antisymmetric ("antisymmetric" in quotes).
For each eigen-oscillation of the first pair, there is a
gap value at which this angle equals 90°. These are
points where, by our definition, the eigen-oscilla-
tions change the type of conventional symmetry. At
frequencies close to the corresponding Re( feigen),
the PP rotates by 90° in the corresponding scatte-
ring problem. The zone of the PP rotation through
90 + 5° is also seen (Fig. 3, b).

The most fascinating region in Fig. 3, b is the area
of small gaps, where the irises interact by their near
fields, and the AOA phenomenon occurs. There the
simple dependences for large [ are violated.

The chirality introduction dramatically changes the
frequency response behavior. The reflection bands
are replaced by the bands of good matching as the
dashed and dotted lines of Re( feigen) approach each
other (compare Figs. 3, a and b). A similar pheno-
menon was investigated analytically and called the
"inter-coupling” of converging eigen-oscillations [18].
The suggested [19] analytical interpretation of the
"mode spectrum transformation” for open objects
brought remarkable practical achievements.

In addition, the geometric chirality enhancement
from its absence (Fig. 3, a) to a maximum (Fig. 3, b)
raises the Q-factor of the resonances of both types.

4. Bilayer topology
as a factor of AOA control

The interaction between the separate irises within
the bilayer gap depends radically on the spectrum of
waveguide modes actually excited between the irises.
Specifically, when the dominant TE;; mode of the
circular waveguide is incident, the interaction is car-
ried out by the TE(TM)LDnﬂLq modes, p=0,1,2, ...
and g =1,2, ... due to C, symmetry of the compo-
nents. It is clear that for n = 3, the single-mode fre-
quency band is terminated by the TE,; mode cutoff
frequency. But for n > 4, the single-mode operation
holds up to f.,(TM;;). Most importantly, as the slot
number grows, the waveguide mode spectrum inside
the gap becomes increasingly sparse until finally only
three parts of the mode spectrum remain under in-
teraction. These are 1) a cross-polarized pair of the
dominant TE;;modes, 2) a pair of the first, slightly
decaying high-order TM;; modes, and 3) a lot of fast
decaying TElq and TMlq modes, g=2,3, ... So, with
large n, the decisive role in forming the collective fre-
quency and polarization responses of 3D chiral bi-
layers in a circular waveguide is played by the quad-
ruple of the TE;; and the TM;; modes of horizontal
and vertical polarizations.

In our analysis of the effect caused by the azimu-
thal shift of bilayer components, we only focus on maxi-
mum-chirality irises. Due to the rotational sym-
metry, the azimuthal shift ¢ dependences (see Fig. 2)
have a 277/ n period.

Fig. 4 contains information on the TE;; cross-
component level in the transmitted field at the first
resonance of the multislot planar-chiral bilayer
in the single-mode frequency band as n increases.
The geometry parameters are R = 16 mm, [=1mm,
t=0.1mm, dx=dy=0,a=10 mm, and b=0.5 mm.
The different-n lines display the contours of the
TE = TESS  conversion values at 0.5 (solid
lines) and 0.8 (dashed lines) levels of the transmit-
ted cross-polarized wave. So, the dashed lines cir-
cumscribe a strong conversion into the cross-pola-
rized mode.

For the first resonance, the most pronounced reso-
nance frequency oscillations with a change in ¢ are
observed for n = 4. Such resonance frequency oscil-
lations are practically unnoticeable for n = 18, when
the average level of the AOA resonance frequency is
shifted down by 2 GHz from 9.8 to 7.8 GHz owing
to the slot number increase.
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The considered structures with all the n num-
bers have the second resonance at approximately the
same frequency, which is characterized by a lower
AOA performance level.

We suppose that the limiting positions of the AOA
resonances for very large n can be determined by the
resonances of a bilayer of irises having azimuthal
“strips of anisotropic conductivity" inclined to the
radius.

5. Analytical approximation
of dihedral bilayer frequency response

In work [17], analytical representations of the reflec-
tion and transmission coefficients were obtained for
a symmetric two-port network through a set of its
eigenfrequencies and due to its S-matrix unitarity.
Despite the fact that a pair of conjugated chiral irises
does not have longitudinal symmetry, let us check
the possibility for these approximate formulas based
on the separation of conventionally symmetric and
antisymmetric eigen-oscillations to be applied to the
conjugated structure. Such structures differ from the
longitudinally symmetric geometry by the PP rota-
tion at the output. The actual angle of this rotation
can be found numerically from the relevant inhomo-
geneous boundary value problem solution.

In our case, the reflection and transmission coeffi-
cients are approximated as

R ==5(F" 4 P), T(N==2(F" =P7),  (3)

where

Y= Vel eni {7V + y-e'_—i en,i)

1 7= Peens (7 + 7%

i=1 \ 7 ~ Veigen,i y+7:fi en,i)
(7 = Vgens (7 + 72

1, N* =0,

V = fz - fczut’ V-etigen,i = \/(fe%gen,i )2 - fczut’ Ni—are

the numbers of symmetric (for +) and antisymmetric
(for —) eigen-oscillations taken into account in the
approximation formula, fei{gen’i are the correspon-
ding eigenfrequencies, and f. is the cutoff frequen-
cy of the dominant mode. In our case with a circular
waveguide of 16 mm radius, the cutoff frequency is
feut(TE 1) = 5.49058 GHz. The bar above the symbol
denotes complex conjugation.

The available analytical representation of the fre-
quency response makes it possible to estimate posi-

, N* >0,

-~ 1.0 __ e
=] = —
g ; 4 “3 l/
% g:\; 1 \ (]
gjg 0.8 - '.
g8
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S
43 1—=3S8y
g a 0.4+ . 2— S(zclross,co) ;
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= . . . .

Frequency, Re(feigen), GHz

Fig. 5. The accurately calculated frequency response (curve 1)
and its approximation (curve 3) from formula (5) using the pair
of bilayer eigenfrequencies

tions of perfect matching points (PMPs) and, in par-
ticular, to predict their merging zone, an important
tool in the development of possible polarizers, con-
sidering that the merging produces a double-humped
broadband response. The condition of PMP merging
for the i-th and j-th neighboring eigenfrequencies is

_ 2
( yeigen,j |) <
= 4Im(‘y:igen,i )Im(/)/e_igen,j ) (6)

Note that the convergence and divergence of the
resonance curves (see Fig. 3) generating strong re-
flection zones or double-humped curves strongly de-
pend not only on the proximity of Re ( feigen) values
but on the Q-factors of these eigen-oscillations, too.

Fig. 5 compares the results of the scattering prob-
lem direct solution by the MMT and the frequency
response reconstruction from (5) via two eigenfre-
quencies. The geometry parameters are R = 16 mm,
I=1mm, t=0.1mm,n=14,dx=dy=0,a=12 mm,
and b = 0.5 mm. The eigenfrequencies of the rotator
with these parameters are

+
Yeigen,i | -

feigen = (7.796 —i0.104 ) GHz,
fotgen = (11.171 - i0.085 ) GHz.

The eigenfrequency positions in the complex
plane are marked with crosses at negative values of
the ordinate axis (Fig. 5). The approximation results
are in a very good agreement with the exact calcu-
lations in the given case. Note that the eigenvalues
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Fig. 6. Design of a broadband 14-slot double-layer planar-chiral
converter with an internal gap adjustment
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Fig. 7. Comparison with experiment for frequency dependences
of the reflection coeflicient (a) and the angle of PP rotation (b)
for two pairs of irises with 9 and 18 slots

were found by using the same matrix operators as in
the scattering problem. The cross-polarized compo-
nent of the field at the bilayer output is shown with

curve 2 (Fig. 5). It has two peaks of the perfect trans-
mission with simultaneous rotation of the PP.

As the two eigenfrequencies become closer, the ap-
proximation results differ more and more significantly
from the accurate figures. The convergence of the ei-
genfrequencies can be controlled by varying the bilay-
er gap. Fig. 6 illustrates the response transformation
as the "symmetric" and "antisymmetric" eigen-oscil-
lations get closer. The geometry parameters except [

are the same as in Fig. 5. Here, the |Im f;fgen values
are within 0.27 to 0.46 GHz, and both eigen-oscilla-
tions have low Q-factors. The black color dependen-
ces (1,2, 3,and 4) in Fig. 6 report the accurate results,
while the curves of gray shades depict the approxi-
mations. Formula (5) approximates the true figures
worse if eigen-oscillations have low-Q factors. So, the
approximations and the accurate results differ sub-
stantially for /= 7.1 and 7.3 mm. The approximation
curves slightly narrow the band between the PMP
pair. As a result, condition (6) is a bit inaccurate for
low-Q oscillations (I = 7.3 mm). The PMPs obtained
by the approximation at / = 7.3 mm merge, while the
exact curve predicts that the matching bandwidth is
of nonvanishing size.

Nevertheless, a good agreement between the ap-
proximation and accurate results in the majority
of cases shows that based on two eigenfrequencies,
some important characteristics of the frequency re-
sponse can be qualitatively a priori predicted. And
this is true even if the scatterer does not have longi-
tudinal symmetry.

Fig. 6 further illustrates the possibility of the AOA
bandwidth expansion up to 5.3% as two eigenfre-
quencies converge (see dotted curve 3 for the trans-
mission to the cross-polarized mode).

6. Experimental verification

A few pairs of conjugated irises with different numbers
of rectangular slots were prepared to experimentally
check the theoretical results. The irises were made of
copper foil 0.1 mm thick. Rectangular 10 X 0.5 mm
slots were burned out by laser. The insets in Fig. 7, b
give photographic images of two pairs of conjugated
irises with 9 and 18 slots. A pair of irises is installed
inside a circular waveguide with a 16 mm radius. The
rest parameters are [ = 2.77 mm and dx = dy = 0. The
distance between the irises is changed by using ring
spacers. One iris in the pair can rotate by a desired
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angle about the longitudinal axis of the structure. The
inset in Fig. 7, a gives a photographic image of the
waveguide network, the black arrow points at a gonio-
meter with divisions.

The VSWR measurements of the signal reflected
from a conjugated pair of irises were conducted ver-
sus microwave signal frequency on the experimental
setup described in [20]. The confidence interval of
the reflection coefficient is determined by the mea-
suring device parameters (Fig. 7, a).

The reflection coefficient measurements were car-
ried out using frequency sweeping within 8 to 12 GHz.
The frequencies at which the VSWR was a minimum
were registered. During transmitted signal mea-
surements, the receiving block with a reflectometer
can rotate about the longitudinal axis, enabling us
to measure polarization characteristics of the trans-
mitted signal. The measurement results are reported
in Fig. 7.

As seen from Fig. 7, a, the measurements (dots)
and the calculations (solid lines) agree well. For n=9,
the minima of the reflection coeflicient are observed
at frequencies 9.892 and 11.407 GHz in experiment
and at 9.800 and 11.349 GHz in theory, with the dif-
ference in frequency being 92 and 58 MHz for the
low- and high-frequency resonances, respectively.
Both resonances therewith are of —20 dB level. For
n = 18, the reflection coefficient shows a minimum
at 9.187 and 11.300 GHz in experiment and at 9.135
and 11.205 GHz in theory. The difference in frequen-
cy is 52 and 95 MHz for the low- and high-frequen-
cy resonances, respectively. The reflection coefficient
amounts —34 dB for the low-frequency resonance and
-32 dB for the high-frequency resonance. Hence, the
experiment confirms the theoretically made conclu-
sion that the AOA resonance frequencies decrease as
the number of rectangular slots increases.

The points in Fig. 7, b for the angles of PP rotation
correspond to low- and high-frequency resonances
of minimum reflection. They agree with the calcu-
lations. Some disagreement between the calcula-
tion and measurement results may be attributed to
inaccuracies in the fabrication and misalignment of
the irises.

Conclusions

1. A sequential chain of eigen-oscillations of planar-
chiral objects forming a bilayer with strong optical

activity in a circular waveguide has been demon-
strated, beginning with slot-aperture oscillations of
a single iris and ending with a collective bilayer as a
3D chiral object.

2. A bilayer of conjugated planar-chiral irises with
dihedral symmetry of the order n > 3 has properties
of a two-port network. The phases of their reflection
and transmission coefficients differ by 90°.

3.If a bilayer only has rotational symmetry; it still
creates optical activity bands (e.g., when the first and
second layers of the "meta-atom" are not conjugated
but identical and angularly twisted). In this case, the
bilayer behaves like an asymmetric two-port net-
work with corresponding peculiarities of the fre-
quency response.

4. It has been shown that the frequencies of low-Q
symmetric oscillations of a planar-chiral iris belong
to the single-mode frequency band of the waveguide,
while antisymmetric high-Q eigen-oscillations are
very close to the cutoff frequency of the first high-
order mode.

5. A strong wave interaction via evanescent fields
occurs between the layers when the layer spacing is
small. This interaction is the most pronounced when
eigenfrequencies of "symmetric” and "antisymmetric”
oscillations come close, ending up with the "mode
transformation”. In the scattering problem context,
this manifests itself by forming a relatively broad-
band zone of good matching.

6. The peculiarity of dihedral bilayers is that the
"zone" of strong mutual coupling of the first pair of
eigen-oscillations is crossed by the line of 90° PP ro-
tation. It is at these parameters of the object that the
AOA manifestation is the most pronounced.

7.The quality factor of optical activity reso-
nances strongly depends on the number of slots in
planar-chiral irises. Namely, the Q-factor of the first
eigen-oscillations and corresponding resonance fre-
quencies decrease as the slot number n increases,
particularly at a small iris spacing. This was experi-
mentally verified at the X band and makes it possible
to expand the bandwidth of PP rotators under the
AOA effect.

8. As in the case of a longitudinally symmetric
two-port network, an object with dihedral symmet-
ry of the order n > 3 admits a simple analytical ap-
proximation of the reflection and transmission coef-
ficients by a set of eigenfrequencies.
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B/IACHI KOJIMBAHHS B INTAHAPHO-KIPAJIbHMX IBOITAPOBMX OB’ €EKTAX
MMOPOPKYIOTDL ITYYHY OIITUYHY AKTMBHICTD

ITpepmet i MeTa po6OTH — JIOCTI)KEHHA BIUIMBY TOIONMOTII OKpeMMX KOMIIOHEHTIB I/TaHapHO-KipaIbHOTO JBOIIAPOBOro 00 €KTa,
[0 CK/IAJIAETHCA 3 TAPU CIIPsKEHNX Jiiadparm 3 NPAMOKYTHUMU IIITMHAMM Y KPYIJIOMY XBUIEBOJI, Ha /100 Pe30HAHCHI YacToTu,
ZOOPOTHICTb pe30HAHCIB Ta Ha 3HATHICTh 00ePTaTH IVIOLVIHY HOJIAPU3aLlil.

MeTopu Ta MeToponoria. Yci uncenbHi pesynbTaté 6y OTPMMaHi 3a JOIIOMOTOI0 BIACHOTO NMPOTPAMHOTO 3abe3IeyeHHA
MWD-03 Ha 0CHOBi METOAY YaCTKOBUX 00/IACTeIl i METOAY HOMEPEIHOTO PE3OHAHCY.
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Pesynbrarn. Ha npukmnazi XsuneBosiy HOKa3aHo, 110 BHYTPIIIHA CTPYKTypa OKPeMMX KOMIIOHEHTIB i fliefipanbHa CUMETPis crips-
JKEHOTO 6iIllapy HO3BOJLIOTH HOLIMPUTI BICHOBKM CIIEKTPA/IbHOI Teopil (Teopil BIacHMX KONMBaHb) Ha BCi Taki 06’€kTH. 3 iHIIOrO
00Ky, BOHU TIOBOZATBCA AK CYMETPMYHI ABOIOPTOBI XBIU/IEBIHI BY3/IM 3 YMOBHUMM «CUMETPUYHUMI» T «QHTUCUMETPUIHUMI»
B/IACHVMU KOIMBAHHAMM. B3aeMHMIT BIUIMB 1MX B/IACHUX KO/IMBAHb 3a/IeXNUTh Bijj TapameTpiB biluapy, i came B 30Hi 30/MDKeHHS 1X
JacTOT JOCATAIOTHCSA MAaKCHMA/IbHII IIOBOPOT IUIOIVHY TTO/APU3aLil i Hajliypia cMyra IporyckanH:. [TokasaHo, 1110 30iIblIeH-
Hs KiZIbKOCTi IIIi/TMH 3MEHIIIy€e Pe30HaHCHY YacTOTy. TeopeTUyHi pesynbTaTy MiiTBep/KeHi eKCIiepMMeHTabHUMM BUMipIOBaHHSA-
M, IIPOBEJEHVIMI [UIS ITAp CIPsDKEHNX AiadparM 3 pisHOK KiZbKICTIO MPSIMOKY THUX LinuH B X-7iamasoHi 4acToT.

BucHoBxku. ITapa cripshkeHNX Kipa/lbHUX fiadparM Moyke BMKOPUCTOBYBATHCA /I 0OepTaHH: IUIOLMHM HojsApu3aii. Tomoso-
rist giadparm, BiicTaHb MiXK HMMM i B3aEMHMIT KyT [OBOPOTY BIUIMBAIOTh Ha PE30HAHCHI YaCTOTH. SHM3UTH PE3OHAHCHI 4aCTOTH
MO>KHa, 361/IbIIYIOUN JOBXUHY MPAMOKYTHMX IIUIMH i/a60 iX KinbKicTb. He3Baskaioun Ha BiCYTHICTb MO3IOBKHbBOI CUMeTPii, Taki
00’€KTU MaIOTh BIACTMBOCTI JBOIOPTOBMX XBIU/IEBIIHNUX BY3/IiB. 30KpeMa, (pasoBuit 3cyB ix KoeillieHTiB BifOUTTS i MPOXOKeHHs
3a MofyaeM cTaHOBUTb 90°. Jlo TOro »X MOX/IMBICTD IOy BIACHMX KONMBAaHb Ha YMOBHI «CMMETPUYHI» i «aHTMCHMMeTPIUYHI» 32
6/1M3bKICTIO iX MOJIiB O IOJIiB KO/MMBAHb BifJIIOBIAHOI CMMETPIl Z03BOJISAE BUKOPUCTOBYBATI HAO/MVDKeHI GOPMYIIN /Is allpoKCUMa-
1jii KoeilieHTiB BiffOMTTS i TPOXOIKEHHs Yepe3 BIaCHI YaCTOTH.

Kniouosi cnosa: eénacti xonusans, 06ouiaposi 06’ ekmu, 3D-KipanvHicmo, WmyuHa onmu4Ha aKkmuseHicmo, 0iedpanvHa cumempis,
naaHapHo-Kipanvi diagpazmu, nepemeoprosani nonApUaY.
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