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EIGEN-OSCILLATIONS OF PLANAR-CHIRAL BILAYER OBJECTS 
GIVE RISE TO ARTIFICIAL OPTICAL ACTIVITY

Subject and Purpose. Th e research focuses on how the resonance frequencies, the Q-factor of resonances, and the polarization plane 
rotation ability are infl uenced by the topology of individual components of a planar-chiral double-layer object consisting of a pair of con-
jugated irises having rectangular slots and accommodated in a circular waveguide. 

Methods and Methodology. All the numerical results are obtained by the mode-matching technique (MMT) and the transverse reso-
nance method on the basis of our own proprietary MWD-03 soft ware package. 

Results. By the waveguide example, it has been shown that the internal structure of individual components and dihedral symmetry 
of the conjugated bilayer allow all the conclusions of the spectral theory (theory of eigen-oscillations) to be carried over to all the objects 
of the type. On the other hand, these objects behave as symmetric two-port waveguide components with conventionally "symmetric" and 
"antisymmetric" eigen-oscillations. Th e mutual coupling of these eigen-oscillations depends on the bilayer parameters. Where the frequen-
cies of these eigen-oscillations are close enough, the polarization plane rotation and the transmission bandwidth reach their highest. It has 
been demonstrated that as a slot number increases, the resonance frequency decreases. Th e theoretical results have been confi rmed by the 
measurements at the X range of frequencies for pairs of conjugated irises with various numbers of rectangular slots.

Conclusions. A pair of conjugated chiral irises can rotate the polarization plane. Th e iris topology, iris spacing, and the mutual ro-
tation angle alter resonance frequencies. Th e resonance frequencies can be reduced by increasing the rectangular slot length and/or slot 
number. Even though they have not longitudinal symmetry, such objects have properties of two-port waveguide components. In particular, 
the phase shift  of their refl ection and transmission coeffi  cients is modulo 90. Besides, a possibility exists to divide eigen-oscillations into 
conventionally "symmetric" and "antisymmetric" based on the proximity of their fi elds to those whose type of symmetry is known before-
hand. Th is makes it possible to approximate the refl ection and transmission coeffi  cients through corresponding eigenfrequencies. 

Keywords: eigen-oscillations, bilayer objects, 3D-chirality, artifi cial optical activity, dihedral symmetry, planar-chiral irises, polariza-
tion converters. 
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Introduction
Among the metamaterials that provide artifi cial opti-
cal activity (AOA), bilayer structures occupy a special 
place with the vast majority of publications. Dating 
back to work [1], a variety of planar chiral metasur-
faces have been proposed. Square cells (meta-atoms) 
of the periodic structures are tailored using thin metal 
patches or slotted screens (fi sh-net structures). Meta-
surface cells should not possess symmetry planes, i.e. 
they are supposed to be planar-chiral forms with C4 
rotational symmetry. See, for example, angular-shift  
rosettes in Fig. 1, a [1] with 3D chirality occurring at 
nonzero angular shift . Such bilayers bestow the most 
fascinating properties when the fi rst and second lay-
ers have conjugated geometries (Fig. 1, b) [2]. Also, 
worthy of mention are composite bilayer metasur-
faces (Fig. 1, c) [3] containing double-mirror-sym-
metry metal inserts improving matching and objects 
with S-shaped metal patches providing the double-
band AOA phenomenon (Fig. 1, d) [4]. Th e affi  ni-
ty of the properties gives rise to waveguide applica-
tions of bilayers as three-dimensional chiral devices 
(Figs. 1, e [6] and 1, f [7]). Th e conclusions made fur-
ther in the paper and concerning eigen-oscillations 
of such open microwave structures with a discrete 
spatial spectrum are valid for each object in Fig. 1. 
All the bilayers in Fig. 1 except the one in Fig. 1, a 
have D4 (dihedral) symmetry. Many other examples 
can be found, e.g., in [5]. 

For the plane-wave normal incidence, the afore-
mentioned bilayers provide the polarization plane 
(PP) rotation in the transmitted fi eld and the ab-
sence of cross-polarized waves in the refl ected fi eld. 
Also, this is the case for 2D-periodic structures ar-
ranged in hexagonal lattices when the scatterer geo-
metry has both rotational (C6) and required transla-
tion symmetry. An AOA example in the hexagonal 
lattice case is given in [8].

Normally, the AOA analysis reduces to studying 
distributions of surface electric (for patches) or mag-
netic (for slots) currents in the two layers of the meta-
atom cell. Th en, by analogy with the Faraday eff ect, 
the equivalent parameters of the "imaginary homo-
geneous" medium are reconstructed. Work [6] uses 
a waveguide example and interprets the AOA phe-
nomenon in terms of special eigen-oscillations in-
side the internal gap of a bilayer object. We call them 
dihedral eigen-oscillations because of dihedral sym-

metry of their eigenfi elds. In principle, this concept 
is consistent with early works [9] on bilayer screens.

Below, the above-mentioned concept is genera-
lized to waveguide bilayers with arbitrary-order di-
hedral symmetry. We will demonstrate how the reso-
nance properties of meta-atom components them-
selves aff ect the AOA manifestation. Th e waveguide 
example is very important in the practical sense be-
cause it, for instance, broadens the application scope 
of compact polarization rotators based on slotted 
irises [10] or corrugated fl anges [7]. Its scientifi c 
importance is in opening up research prospects for 
further exploration of the Dn symmetry cases with 
arbitrary n rather than n  2, 4, 6 for two-layer pe-
riodic lattices only. 

In this paper, we consider a bilayer planar-chiral 
pair from Fig. 2. Each iris has n rectangular slots uni-
formly distributed in azimuth. We use a and b nota-
tions for, respectively, the x and y dimensions of the 
rectangular slot sides, as shown in the lower left  cor-
ner of the fi rst iris in Fig. 2.

All the presented numerical results are due to our 
own proprietary MWD-03 soft ware package enab-
ling us to employ the mode matching technique 
(MMT) and the transverse resonance method for 
the electromagnetic analysis of 3D boundary-value 
problems with piecewise coordinate boundaries, in-
cluding the eigen-oscillation analysis in the complex 
frequency plane. To calculate the plane junctions 
(PJs) between the waveguides in Cartesian and polar 
coordinates, the approach proposed in [11] is adop-
ted. Th e calculation accuracy is controlled with pa-
rameter fmax which bounds from above the values of 
cutoff  frequencies of the projection bases of all regu-
lar waveguides in the structure. In most theoretical 
calculations throughout the work, fmax   100  GHz, 
which is suffi  cient for high-quality results. But some-
times to get a detailed comparison with the experi-
ment, fmax  340 GHz was also used. Th e fmax in-
crease from 100 to 340 GHz raises the resonance fre-
quency by no more than 400 MHz. 

Th e present work is a continuation and an essen-
tial extension of conference paper [12]. We seek to 
control the artifi cial optical activity characteristics 
by altering the topology of a bilayer of conjugated 
planar-chiral irises. A primary focus is on the general 
spectral properties of bilayers of waveguide irises 
and planar screens.
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1. General features 
of eigen-oscillations of a bilayer 
Let us consider two closely spaced objects accom-
modated inside a certain waveguide line or in the 
free space with a discrete mode basis which we think 
of as either waveguide modes or Floquet waves. As 
known, the dispersion equation that determines the 
set of eigen-oscillations of such an "open" object is 

det( ) 0, I RERE


  (1)

where R and R


 are the generalized matrices descri-
bing the multiple refl ection of waveguide modes or 
Floquet waves from the external components (in-
terfaces) of the "bilayer" and I is the identity matrix. 
Th e diagonal matrix E  E (l) describes the process of 
propagation or reactive attenuation of these waves in 
the bilayer gap of size l. 

In some cases, Eq. (1) can split in two factors. Spe-
cifi cally, in the case of an ordinary longitudinally 
symmetric object, ,R R


 and Eq. (1) splits into the 

pair 

 det 0 I RE   (2)

describing the well-known oscillations with PMW 
("perfect magnetic wall" in the plane of symmetry 
z   0) or with PEW ("perfect electric wall", z   0). 
Th ey are solutions to Eq. (2) with sign "−" or sign "+", 
respectively. Eigen-oscillations with PEW and PMW 
in the plane of symmetry have diff erent eigenfre-
quencies.

A particular case of the longitudinally symmetric 
object of the kind is a single iris or a screen as a bilayer 
of interfaces. Th ey also are bilayer forms and have 
corresponding pairs of eigen-oscillations [13]. Th e 
eigen-oscillations with PMW are the origin of the 
well-known "half-lambda" resonances of slots in irises 
or in screens. Th e oscillations with PEW usually 
have a very high Q and could not be detected ex-
perimentally for a long time because of their loca-
tion right before the multimode band. Th ese eigen-
oscillations of bilayers provide the phenomenon of 
extraordinary optical transmission (EOT) through 
below-cutoff  holes in waveguide irises or in perfora-
ted screens [14]. 

Consider now a bilayer of irises or screens. Sup-
pose that both bilayer components are identical and 
show planar chirality. In this case, they can form two 
kinds of 3D chiral objects that show the AOA. Th e 

counterparts can be either "conjugated" (with dihed-
ral symmetry) or azimuthally shift ed with respect to 
each other about the longitudinal axis. Some essen-
tial diff erences in the electromagnetic behavior of 
these pairs are numerically examined in [15]. 

Th e fundamental diff erence between these two 
objects from a microwave standpoint is that only the 
conjugated variant obeys the properties of a symmet-
ric two-port network, as will be shown below. 

Let in a bilayer structure, the second iris (layer) 
be given by the rotation of its counterpart through 
p about the y-axis and through an angle j about the 
structure axis z. Th ese transformations correspond 
to the defi nition of a dihedral symmetry object. If 
the fi rst iris has rotational symmetry Cn , then the bi-
layer of the two conjugated irises has dihedral sym-
metry Dn . 

Fig. 1. Investigated examples of bilayer structures

                           a                                                      b

                           c                                                      d

                           e                                                      f
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According to the scattering problem solution in 
the lossless case, at the output port of the illuminated 
object with rotational symmetry Cn , n  3, the linea-
rity of the incident wave is preserved [9]. Th e real ang-
le a of the PP rotation comes from

(cross,co) (co,co)
21 21tan Re ReS Sα   (3)

and must be found numerically. It is determined by 
the frequency, the constitutive parameters of the ob-
ject, and its geometry. Here (cross,co)

21S  and (co,co)
21S  

are the transmission coeffi  cients into the cross- and 
co-polarized modes (waves), respectively. 

If the scatterer possesses dihedral symmetry, the 
relation

(co,co) (cross,co)
11 21arg arg 2S S π   (4)

is satisfi ed. Th is is the reason to consider such an ob-
ject as a two-port network of special symmetry. 

On the contrary, a pair of identical non-conju-
gated planar-chiral irises with a mutual angular shift , 
which also provides the AOA, is an asymmetric two-
port network. For it, relation (4) is not satisfi ed.

Next, to further investigate the AOA phenomena, 
we only consider objects with Dn symmetry, n  4. 
In this case, (a) the scattered fi eld polarization in the 
far zone remains linear, (b) the eff ect of the PP rota-
tion does not depend on the polarization of the inci-
dent mode, (c) there are no cross-polarized modes in 
the refl ected fi eld [16], and (d) the structure has the 

widest single-mode frequency band which is limited 
from above by the cutoff  frequency of the TM11 mode. 

Note that the evanescent modes inside the bilayer 
gap play a decisive role in the excitation of eigen-oscil-
lations and determine their distinctive features. Th us, 
for conventional resonators at regular waveguide sec-
tions, the real parts of neighboring eigenfrequencies 
generated inside the bilayer gap move downward to-
gether as the gap increases. However, the fi rst pair of 
the oscillations formed in the bilayer narrow gap be-
have out-of-standard due to the intense interaction 
of the evanescent fi elds. In the considered dihed-
ral case, the spectral lines can converge or diverge 
depending on the width of the gap between the meta-
atom components in diff erent layers. Th is property 
bestows a double-hump shape on the AOA curves.

2. Resonances 
of bilayer components
First of all, we turn to resonances of a single iris in 
the structure in Fig. 2 which one way or another af-
fect the bilayer excitation governed by the solutions 
of Eq. (1). In this case, R is the refl ection matrix of 
multichannel line modes incident on the plane junc-
tion (PJ) with the circular waveguide, where the mul-
tichannel line consists of n small-size rectangular 
waveguides. According to [13], such PJs have aperture 
eigen-oscillations with complex-valued frequencies 
feigen,PJ close to the cutoff  frequency of the high-order 
TM11 mode of the circular waveguide. For example, 
if the circular waveguide radius is R   16 mm, the 
slot sides are a  12 mm and b  1 mm, and n  6, 
this PJ is characterized by a pair of degenerate cross-
polarized aperture oscillations at the frequency 
feigen,PJ  (11.41 − i 0.0008) GHz. Th is eigenfrequency 
value was obtained by the MMT method. It is a pole 
of characteristic Eq. (1) for the irises formed by the 
mentioned plane junctions. 

Let the iris thickness be t    2.5 mm. Two aper-
ture oscillations inherent to the input and output 
PJs come into the interaction. Altogether, a set of 
six slots participating in the event yields a symmet-
ric oscillation at eigen,irisf   (11.22 − i 0.04) GHz and 
an extremely high-Q antisymmetric oscillation at  

eigen,irisf   (11.4262 − i 3.12∙10−6) GHz located im-
mediately before the cutoff  frequency fcut(TM11)  
 11.4265  GHz of the fi rst high-order mode of the 
circular waveguide. 

Fig. 2. A pair of conjugated multislot planar-chiral irises with 
dihedral symmetry
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Th e resonance frequencies of a single multi-slot iris 
and the bandwidths are listed in order of increasing 
n in Table 1 [12]. It turns out that the resonance fre-
quencies are quite close to  eigen,irisRe f   despite the 
fact that the  eigen,irisIm f   values are rather large. It 
was shown that 1) the slot number growth reduced 
the resonance frequency and the Q-factor, 2) the slot 
narrowing had little eff ect on the characteristics, and 
3) resonances of thin irises, compared to thick ones, 
were shift ed down in frequency and Q.

3. Eigen-oscillations 
and resonances of a dihedral pair
Th e interaction of two planar-chiral irises adds new 
pairs of eigen-oscillations with corresponding reso-
nances on the frequency response. Th e fundamental 
diff erence of such a 3D chiral unit lies in the rotation of 
the polarization plane of the transmitted fi eld relative 
to the incident fi eld. For this reason, the correspon-
ding eigen-oscillations with diff erent PPs of the radi-
ated at the outer ports eigenfi elds were called dihed-
ral oscillations. As a microwave component, such a 
bilayer is still a two-port network, and its frequency 
response can be approximately described by the ana-
lytical representations based on a pair (or more) of 
eigenfrequencies [17] (see Section 5). 

Th e device under consideration is characterized 
by resonances formed due to the peculiarities of both 
topological components. Th ey are resonances of the 
irises (screens) themselves and resonances formed in 
the gaps between them. Both are well recognized in 
the 2D patterns (Fig. 3) of the refl ection coeffi  cient 
S11( f, l ) for R  16 mm, n  6, t  0.1 mm, a  12 mm, 
b  0.5 mm, and dy  0. Th e bands of good matching 
are shown dark grey. Th e bands of strong refl ec-
tion are shown white. Fig.  3 illustrates the cases of 
non-chiral (Fig. 3, a) and chiral (Fig. 3, b) irises. When 
dx =  ( 2 ) / 2R a ≈ 5.31 mm (Fig. 3, a), there exist 
2n mirror-symmetry planes for the irises and 2n  1 
such planes for the collective 3D object. Fig. 3, b dis-
plays the case of maximum (dx  0) shift s of the slot 
centers from the centers of the sides of a square in-
scribed in the cross-section of the circular wave-
guide. 

Near  eigen,irisRe f   at 9.6 GHz for dx ≈ 5.31 mm 
and 10.6 GHz for dx ≈ 0, apparent bands of good 
matching  are observed in both Figs. 3, a and b for 
large gaps, where the near fi elds of the irises are 

practically evanescent. Th e "iris resonance" line is 
crossed by several "gap resonance" lines arrayed 
along l at approximately a lg / 2 interval, which is the 
half-wavelength of the dominant TE11 mode. 

Fig. 3, a corresponds to a longitudinally symmet-
ric structure with non-chiral irises, the dashed and 
dotted curves represent the real parts of the fi rst two 
eigen-oscillations of the bilayer. In this case, the eigen-
oscillations with PEW and PMW in the plane of 
symmetry are independent, for they are solutions of 
diff erent boundary value problems. Th erefore, the 
Re ( feigen) curves for symmetric and antisymmetric 
eigen-oscillations can meet. Th e meeting is viewed 
at the gap l  9.2 mm. Around this value of the gap, 
within the interval l  8.4 to 10.6 mm, a strong re-
fl ection is revealed over the entire single-mode fre-
quency band. 

Th e structure analyzed in Fig. 3, b does not have 
longitudinal symmetry. Th e Re ( feigen) curves in 
Fig. 3, b represent conventionally antisymmetric and 
symmetric eigen-oscillations of the bilayer in this 
case. We defi ne eigen-oscillations as conventionally 
symmetric or antisymmetric depending on the proxi-

a

Fig. 3. Refl ection coeffi  cient S11(  f, l  ) of a bilayer consisting of 
6-slot non-chiral (a) or chiral (b) irises in the gap-frequency co-
ordinates
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mity of their fi elds to those whose type of symmetry 
is known beforehand. Th at is, we call an eigen-oscil-
lation conventionally symmetric (or "symmetric" in 
quotes) if the angle between its electric fi eld vectors 
at the output ports and at largest amplitude peaks is 
acute. If obtuse, an eigen-oscillation is called conven-
tionally antisymmetric ("antisymmetric" in quotes). 
For each eigen-oscillation of the fi rst pair, there is a 
gap value at which this angle equals 90. Th ese are 
points where, by our defi nition, the eigen-oscilla-
tions change the type of conventional symmetry. At 
frequencies close to the corresponding Re ( feigen), 
the PP rotates by 90 in the corresponding scatte-
ring problem. Th e zone of the PP rotation through 
90  5 is also seen (Fig. 3, b). 

Th e most fascinating region in Fig. 3, b is the area 
of small gaps, where the irises interact by their near 
fi elds, and the AOA phenomenon occurs. Th ere the 
simple dependences for large l are violated.

Th e chirality introduction dramatically changes the 
frequency response behavior. Th e refl ection bands 
are replaced by the bands of good matching as the 
dashed and dotted lines of Re ( feigen) approach each 
other (compare Figs. 3, a and b). A similar pheno-
menon was investigated analytically and called the 
"inter-coupling" of converging eigen-oscillations [18]. 
Th e suggested [19] analytical interpretation of the 
"mode spectrum transformation" for open objects 
brought remarkable practical achievements.  

In addition, the geometric chirality enhancement 
from its absence (Fig. 3, a) to a maximum (Fig. 3, b) 
raises the Q-factor of the resonances of both types.

4. Bilayer topology 
as a factor of AOA control
Th e interaction between the separate irises within 
the bilayer gap depends radically on the spectrum of 
waveguide modes actually excited between the irises. 
Specifi cally, when the dominant TE11 mode of the 
circular waveguide is incident, the interaction is car-
ried out by the TE(TM)|pn±1|,q modes, p  0, 1, 2, … 
and q  1, 2, … due to Cn symmetry of the compo-
nents. It is clear that for n  3, the single-mode fre-
quency band is terminated by the TE21 mode cutoff  
frequency. But for n  4, the single-mode operation 
holds up to fcut(TM11). Most importantly, as the slot 
number grows, the waveguide mode spectrum inside 
the gap becomes increasingly sparse until fi nally only 
three parts of the mode spectrum remain under in-
teraction. Th ese are 1) a cross-polarized pair of the 
dominant TE11modes, 2) a pair of the fi rst, slightly 
decaying high-order TM11 modes, and 3) a lot of fast 
decaying TE1q and TM1q modes, q  2, 3, … So, with 
large n, the decisive role in forming the collective fre-
quency and polarization responses of 3D chiral bi-
layers in a circular waveguide is played by the quad-
ruple of the TE11 and the TM11 modes of horizontal 
and vertical polarizations.

In our analysis of the eff ect caused by the azimu-
thal shift  of bilayer components, we only focus on maxi-
mum-chirality irises. Due to the rotational sym-
metry, the azimuthal shift  j dependences (see Fig. 2) 
have a 2p / n period. 

Fig. 4 contains information on the TE11 cross-
component level in the transmitted fi eld at the fi rst 
resonance of the multislot planar-chiral bilayer 
in the single-mode frequency band as n increases. 
Th e geometry parameters are R  16 mm, l  1 mm, 
t  0.1 mm, dx  dy  0, a  10 mm, and b  0.5 mm. 
Th e diff erent-n lines display the contours of the 

11 11
inc crossTE TE  conversion values at 0.5 (solid 

lines) and 0.8 (dashed lines) levels of the transmit-
ted cross-polarized wave. So, the dashed lines cir-
cumscribe a strong conversion into the cross-pola-
rized mode. 

For the fi rst resonance, the most pronounced reso-
nance frequency oscillations with a change in j are 
observed for n  4. Such resonance frequency oscil-
lations are practically unnoticeable for n  18, when 
the average level of the AOA resonance frequency is 
shift ed down by 2 GHz from 9.8 to 7.8 GHz owing 
to the slot number increase. 

Fig. 4. Th e action of azimuthal shift  between planar-chiral irises 
at the level of transmitted cross-polarized mode for diff erent slot 
numbers (marked on the graphs)
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Th e considered structures with all the n num-
bers have the second resonance at approximately the 
same frequency, which is characterized by a lower 
AOA performance level.

We suppose that the limiting positions of the AOA 
resonances for very large n can be determined by the 
resonances of a bilayer of irises having azimuthal 
"strips of anisotropic conductivity" inclined to the 
radius.

5. Analytical approximation 
of dihedral bilayer frequency response 
In work [17], analytical representations of the refl ec-
tion and transmission coeffi  cients were obtained for 
a symmetric two-port network through a set of its 
eigenfrequencies and due to its S-matrix unitarity. 
Despite the fact that a pair of conjugated chiral irises 
does not have longitudinal symmetry, let us check 
the possibility for these approximate formulas based 
on the separation of conventionally symmetric and 
antisymmetric eigen-oscillations to be applied to the 
conjugated structure. Such structures diff er from the 
longitudinally symmetric geometry by the PP rota-
tion at the output. Th e actual angle of this rotation 
can be found numerically from the relevant inhomo-
geneous boundary value problem solution.  

In our case, the refl ection and transmission coeffi  -
cients are  approximated as 

1( ) ( ),2R f P P     1( ) ( ),2T f P P   
 

(5)

where

  
  

eigen, eigen,

1 eigen, eigen,
, 0,

1, 0,

N
i i

i i i
N

P

N

γ γ γ γ

γ γ γ γ

  

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



  
 

  






2 2
cut ,f fγ     2 2

eigen, eigen, cut ,i if fγ    Nare 
the numbers of symmetric (for ) and antisymmetric 
(for −) eigen-oscillations taken into account in the 
approximation formula, eigen,if   are the correspon-
ding eigenfrequencies, and fcut is the cutoff  frequen-
cy of the dominant mode. In our case with a circular 
waveguide of 16 mm radius, the cutoff  frequency is 
fcut(TE11)  5.49058 GHz. Th e bar above the symbol 
denotes complex conjugation.

Th e available analytical representation of the fre-
quency response makes it possible to estimate posi-

tions of perfect matching points (PMPs) and, in par-
ticular, to predict their merging zone, an important 
tool in the development of possible polarizers, con-
sidering that the merging produces a double-humped 
broadband response. Th e condition of PMP merging 
for the i-th and j-th neighboring eigenfrequencies is 

 
   

2
eigen, eigen,

eigen, eigen,4 Im Im .
i j

i j

γ γ

γ γ

 

 

 


 (6)

Note that the convergence and divergence of the 
resonance curves (see Fig.  3) generating strong re-
fl ection zones or double-humped curves strongly de-
pend not only on the proximity of Re ( feigen) values 
but on the Q-factors of these eigen-oscillations, too.

Fig. 5 compares the results of the scattering prob-
lem direct solution by the MMT and the frequency 
response reconstruction from (5) via two eigenfre-
quencies. Th e geometry parameters are R  16 mm, 
l  1 mm, t  0.1 mm, n  14, dx  dy  0, a  12 mm, 
and b  0.5 mm. Th e eigenfrequencies of the rotator 
with these parameters are 

 eigen 7.796 0.104 GHz,f i    

 eigen 11.171 0.085 GHz.f i  

Th e eigenfrequency positions in the complex 
plane are marked with crosses at negative values of 
the ordinate axis (Fig. 5). Th e approximation results 
are in a very good agreement with the exact calcu-
lations in the given case. Note that the eigenvalues 

Fig. 5. Th e accurately calculated frequency response (curve 1) 
and its approximation (curve 3) from formula (5) using the pair 
of bilayer eigenfrequencies 
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curve 2 (Fig. 5). It has two peaks of the perfect trans-
mission with simultaneous rotation of the PP.

As the two eigenfrequencies become closer, the ap-
proximation results diff er more and more signifi cantly 
from the accurate fi gures. Th e convergence of the ei-
genfrequencies can be controlled by varying the bilay-
er gap. Fig. 6 illustrates the response transformation 
as the "symmetric" and "antisymmetric" eigen-oscil-
lations get closer. Th e geometry parameters except l 
are the same as in Fig. 5. Here, the Im eigenf   values 
are within 0.27 to 0.46 GHz, and both eigen-oscilla-
tions have low Q-factors. Th e black color dependen-
ces (1, 2, 3, and 4) in Fig. 6 report the accurate results, 
while the curves of gray shades depict the approxi-
mations. Formula (5) approximates the true fi gures 
worse if eigen-oscillations have low-Q factors. So, the 
approximations and the accurate results diff er sub-
stantially for l  7.1 and 7.3 mm. Th e approximation 
curves slightly narrow the band between the PMP 
pair. As a result, condition (6) is a bit inaccurate for 
low-Q oscillations (l  7.3 mm). Th e PMPs obtained 
by the approximation at l  7.3 mm merge, while the 
exact curve predicts that the matching bandwidth is 
of nonvanishing size. 

Nevertheless, a good agreement between the ap-
proximation and accurate results in the majority 
of cases shows that based on two eigenfrequencies, 
some important characteristics of the frequency re-
sponse can be qualitatively a priori predicted. And 
this is true even if the scatterer does not have longi-
tudinal symmetry. 

Fig. 6 further illustrates the possibility of the AOA 
bandwidth expansion up to 5.3% as two eigenfre-
quencies converge (see dotted curve 3 for the trans-
mission to the cross-polarized mode).  

6. Experimental verifi cation
A few pairs of conjugated irises with diff erent numbers 
of rectangular slots were prepared to experimentally 
check the theoretical results. Th e irises were made of 
copper foil 0.1 mm thick. Rectangular 10  0.5 mm 
slots were burned out by laser. Th e insets in Fig. 7, b 
give photographic images of two pairs of conjugated 
irises with 9 and 18 slots. A pair of irises is installed 
inside a circular waveguide with a 16 mm radius. Th e 
rest parameters are l  2.77 mm and dx  dy  0. Th e 
distance between the irises is changed by using ring 
spacers. One iris in the pair can rotate by a desired 

Fig. 6. Design of a broadband 14-slot double-layer planar-chiral 
converter with an internal gap adjustment 

Fig. 7. Comparison with experiment for frequency dependences 
of the refl ection coeffi  cient (a) and the angle of PP rotation (b) 
for two pairs of irises with 9 and 18 slots

a

were found by using the same matrix operators as in 
the scattering problem. Th e cross-polarized compo-
nent of the fi eld at the bilayer output is shown with 

b
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angle about the longitudinal axis of the structure. Th e 
inset in Fig. 7, a gives a photographic image of the 
waveguide network, the black arrow points at a gonio-
meter with divisions.

Th e VSWR measurements of the signal refl ected 
from a conjugated pair of irises were conducted ver-
sus microwave signal frequency on the experimental 
setup described in [20]. Th e confi dence interval of 
the refl ection coeffi  cient is determined by the mea-
suring device parameters (Fig. 7, a). 

Th e refl ection coeffi  cient measurements were car-
ried out using frequency sweeping within 8 to 12 GHz. 
Th e frequencies at which the VSWR was a minimum 
were registered. During transmitted signal mea-
surements, the receiving block with a refl ectometer 
can rotate about the longitudinal axis, enabling us 
to measure polarization characteristics of the trans-
mitted signal. Th e measurement results are reported 
in Fig. 7. 

As seen from Fig. 7,  a, the measurements (dots) 
and the calculations (solid lines) agree well. For n  9, 
the minima of the refl ection coeffi  cient are observed 
at frequencies 9.892 and 11.407 GHz in experiment 
and at 9.800 and 11.349 GHz in theory, with the dif-
ference in frequency being 92 and 58 MHz for the 
low- and high-frequency resonances, respectively. 
Both resonances therewith are of −20 dB level. For 
n  18, the refl ection coeffi  cient shows a minimum 
at 9.187 and 11.300 GHz in experiment and at 9.135 
and 11.205 GHz in theory. Th e diff erence in frequen-
cy is 52 and 95 MHz for the low- and high-frequen-
cy resonances, respectively. Th e refl ection coeffi  cient 
amounts –34 dB for the low-frequency resonance and 
–32 dB for the high-frequency resonance. Hence, the 
experiment confi rms the theoretically made conclu-
sion that the AOA resonance frequencies decrease as 
the number of rectangular slots increases.

Th e points in Fig. 7, b for the angles of PP rotation 
correspond to low- and high-frequency resonances 
of minimum refl ection. Th ey agree with the calcu-
lations. Some disagreement between the calcula-
tion and measurement results may be attributed to 
inaccuracies in the fabrication and misalignment of 
the irises.

Conclusions
1. A sequential chain of eigen-oscillations of planar-
chiral objects forming a bilayer with strong optical 

activity in a circular waveguide has been demon-
strated, beginning with slot-aperture oscillations of 
a single iris and ending with a collective bilayer as a 
3D chiral object.

2. A bilayer of conjugated planar-chiral irises with 
dihedral symmetry of the order n  3 has properties 
of a two-port network. Th e phases of their refl ection 
and transmission coeffi  cients diff er by 90. 

3. If a bilayer only has rotational symmetry, it still 
creates optical activity bands (e.g., when the fi rst and 
second layers of the "meta-atom" are not conjugated 
but identical and angularly twisted). In this case, the 
bilayer behaves like an asymmetric two-port net-
work with corresponding peculiarities of the fre-
quency response.  

4. It has been shown that the frequencies of low-Q 
symmetric oscillations of a planar-chiral iris belong 
to the single-mode frequency band of the waveguide, 
while antisymmetric high-Q eigen-oscillations are 
very close to the cutoff  frequency of the fi rst high-
order mode.  

5. A strong wave interaction via evanescent fi elds 
occurs between the layers when the layer spacing is 
small. Th is interaction is the most pronounced when 
eigenfrequencies of "symmetric" and "antisymmetric" 
oscillations come close, ending up with the "mode 
transformation". In the scattering problem context, 
this manifests itself by forming a relatively broad-
band zone of good matching. 

6. Th e peculiarity of dihedral bilayers is that the 
"zone" of strong mutual coupling of the fi rst pair of 
eigen-oscillations is crossed by the line of 90 PP ro-
tation. It is at these parameters of the object that the 
AOA manifestation is the most pronounced. 

7. Th e quality factor of optical activity reso-
nances strongly depends on the number of slots in 
planаr-chiral irises. Namely, the Q-factor of the fi rst 
eigen-oscillations and corresponding resonance fre-
quencies decrease as the slot number n increases, 
particularly at a small iris spacing. Th is was experi-
mentally verifi ed at the X band and makes it possible 
to expand the bandwidth of PP rotators under the 
AOA eff ect.  

8. As in the case of a longitudinally symmetric 
two-port network, an object with dihedral symmet-
ry of the order n  3 admits a simple analytical ap-
proximation of the refl ection and transmission coef-
fi cients by a set of eigenfrequencies.
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ВЛАСНІ КОЛИВАННЯ В ПЛАНАРНО-КІРАЛЬНИХ ДВОШАРОВИХ ОБ’ЄКТАХ 
ПОРОДЖУЮТЬ ШТУЧНУ ОПТИЧНУ АКТИВНІСТЬ 

Предмет і мета роботи — дослідження впливу топології окремих компонентів планарно-кірального двошарового об’єкта, 
що складається з пари спряжених діафрагм з прямокутними щілинами у круглому хвилеводі, на його резонансні частоти, 
добротність резонансів та на здатність обертати площину поляризації.

Методи та методологія. Усі чисельні результати були отримані за допомогою власного програмного забезпечення 
MWD-03 на основі методу часткових областей і методу поперечного резонансу. 
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Результати. На прикладі хвилеводу показано, що внутрішня структура окремих компонентів і діедральна симетрія спря-
женого бішару дозволяють поширити висновки спектральної теорії (теорії власних коливань) на всі такі об’єкти. З іншого 
боку, вони поводяться як симетричні двопортові хвилевідні вузли з умовними «симетричними» та «антисиметричними» 
власними коливаннями. Взаємний вплив цих власних коливань залежить від параметрів бішару, і саме в зоні зближення їх 
частот досягаються максимальний поворот площини поляризації і найширша смуга пропускання. Показано, що збільшен-
ня кількості щілин зменшує резонансну частоту. Теоретичні результати підтверджені експериментальними вимірювання-
ми, проведеними для пар спряжених діафрагм з різною кількістю прямокутних щілин в X-діапазоні частот.

Висновки. Пара спряжених кіральних діафрагм може використовуватися для обертання площини поляризації. Тополо-
гія діафрагм, відстань між ними і взаємний кут повороту впливають на резонансні частоти. Знизити резонансні частоти 
можна, збільшуючи довжину прямокутних щілин і/або їх кількість. Незважаючи на відсутність поздовжньої симетрії, такі 
об’єкти мають властивості двопортових хвилевідних вузлів. Зокрема, фазовий зсув їх коефіцієнтів відбиття і проходження 
за модулем становить 90. До того ж можливість поділу власних коливань на умовні «симетричні» і «антисиметричні» за 
близькістю їх полів до полів коливань відповідної симетрії дозволяє використовувати наближені формули для апроксима-
ції коефіцієнтів відбиття і проходження через власні частоти.

Ключові слова: власні коливання, двошарові об’єкти, 3D-кіральність, штучна оптична активність, діедральна симетрія, 
планарно-кіральні діафрагми, перетворювачі поляризації.


