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NATURAL ELECTROMAGNETIC MODES

OF A COMPOSITE OPEN STRUCTURE INVOLVING
A PERFECTLY CONDUCTING STRIP GRATING,
AN INHOMOGENEOUS FERRITE LAYER,

AND A MONOLAYER OF GRAPHENE

Subject and Purpose. Considered are the natural modes and their correspondent eigenfrequencies of a composite structure which is
nonuniform along one of the coordinates and consists of a lossy ferromagnetic layer placed in a static magnetic field. The layer involves a
perfectly conducting strip grating at one of its boundaries and a graphene monolayer at the other.

Methods and Methodology. The above stated problem can be approached within the analytical regularization procedure developed for
dual series equations. The latter concern a broad class of diffraction problems which include, in particular, the diffraction of monochromatic
plane waves on strip gratings placed at the boundary of a gyromagnetic medium. The amplitudes of the electromagnetic eigenmodes can
be obtained from the infinite set of homogeneous linear algebraic equations solvable within a truncation technique. The roots of the
system’s determinant represent complex-valued eigenfrequencies of the system under investigation. The material parameters adopted in
our computations for the ferromagnetic layer correspond to such of yttrium iron garnet.

Results. A number of numerical programs have been developed which permit analyzing the dependences of wave field eigenfunctions
and complex eigenfrequencies upon geometrical parameters of the structure (such as grating slot width and period, and thickness of the
lossy layer), as well as on electrodynamic parameters of the ferromagnet and graphene characteristics, specifically the chemical potential
and relaxation energy of electrons. A number of behavioral regularities have been established, as well as the effect of non-uniformity of
ferrite layer parameters upon the structure’s eigenfrequencies and wave field eigenfunctions.

Conclusions. The structure under study has been shown to be is an open oscillatory system with a set of complex-valued natural
frequencies demonstrating finite points of accumulation. The real parts of these eigenfrequencies lie in a certain interval determined by
characteristic frequencies of the ferrite layer, while the imaginary parts are negative, such that the correspondent natural modes show
an exponential decay with time. The grating edges represent the mirrors which the natural surface oscillations are reflected from, being
supported at that by the ferromagnetic medium. The results obtained in this paper can be useful for creating the elemental base for
microwave devices and the devices themselves.
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Introduction

The effects accompanying resonant interaction of
electromagnetic waves with such media as magnetic
materials, dielectrics, ferromagnets or plasma-like
materials, currently are at the center of researchers’
attention [1—7]. On the one hand, this is due to the
development of technologies for synthesizing new
artificial materials which may possess unusual elec-
tromagnetic (EM) properties in the microwave band.
On the other hand, there is a pressing need for crea-
ting both highly reflective and EM-absorbent struc-
tures with controllable scattering properties [5, 6].
As shown in [6, 7], the presence of a periodic stripe
grating at the boundary of a ferromagnet gives rise to
specific resonance effects associated with excitation
of magnetostatic surface waves [8, 9]. Furthermore,
should there exist a periodic boundary, many fami-
liar phenomena like the non-reciprocity effect, Fara-
day’s effect, etc. [10] might manifest themselves in a
highly unusual manner.

Graphene is characterized by a low-dimensional
structure consisting of a single atomic layer of graphite.
Owing to its unusual crystalline and electronic struc-
tures, graphene manifests unique electronic and op-
tical properties, particularly suitable for designing
devices that implement the principles of ballistic
electronics, spintronics, optoelectronics, nanoplas-
monics — and other prospective alternatives to the
traditional semiconductor electronics. Graphene,
of all solids, is characterized by the highest elec-
tron mobility which is controllable. Consequently,
the problem of studying, by means of mathematical
modeling, the interaction of electromagnetic radia-
tion with graphene monolayers [11—15], is highly
relevant. The modeling proceeds from solution of
the Maxwell equation set together with material re-
lations for grapheme, thus underlying the design of
new types of quick, electronically controllable devi-
ces for the microwave and the terahertz bands.

The present paper is aimed at developing an analy-
tical regularization procedure for the dual series
equations which appear in a wide class of problems
concerning monochromatic plane wave diffraction
by a strip grating located at the boundary of a gy-
romagnetic medium. The procedure will be used for
studying natural oscillations and eigenfrequencies
of the composite structure placed in a magnetostatic
field and involving a non-uniform, lossy ferromag-
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netic layer with a perfectly conductive strip grating
at one of its boundaries. The other boundary of the
ferromagnet hosts a graphene monolayer.

As noted in paper [16], understanding the behavior
of eigenfrequencies of a structure in dependence on
its geometric and electrodynamic parameters could
be useful for the analysis of its resonant properties.
In the case of the present problem, taking into ac-
count the inhomogeneity of the ferromagnetic layer
along one of the coordinates could permit finding out
its impact on electrodynamic characteristics of the
structure proposed, which has not yet been studied
sufficiently.

1. Boundary-value problem:
Formulation and solution

Let an open structure consisting of an inhomoge-
neous, lossy and gyrotropic ferromagnetic layer of
thick-ness h be placed in a vacuum (the dielectric
constant and the magnetic permeability of the vacu-
um are, respectively, &, and i) (Fig. 1). The structure
occupies the spatial region —h <z <0, —0 < x < oo,
—o0 < y<oo, characterized by a tensorial magne-
tic permeability fi(z). The upper boun-dary z = 0
of the layer hosts a strip grating of period I which is
formed by infinitely thin, perfectly conductive strips
of width I-d (d is the per period width of the grating
slot; the strip edges are parallel to the axis 0x which
is perpendicular to the plane of the figure).

The lower boundary z = —h contains a graphene
monolayer of surface conductivity o,. The time de-
pendence assumed for the monochromatic electro-
magnetic waves is e~ hence the material equa-
tions for the ferromagnetic medium can be written
as D=¢epeyE and B = u, itH. The dielectric per-
mittivity £ is a complex quantity. The magnetic per-
meability tensor ji(z) for a medium placed in a mag-
netostatic field H, which is parallel to the axis x is
determined as follows [10]

1 0 0
M2)=0 i, |
0 —iu,
with
wM(z)(a)%{(z) +wk - iwwR)
My =1-

Wy (a)2 — w4 (z) - 0k +2iwa)R)
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0w (2)

and u, =1 Here

<w2 - 0} (2) — 0% + 2ivwy )
w = 27f; y is the gyromagnetic ratio; wy = wyyYHy;
Wy = UoYM, is the frequency characterizing mag-
netization of the medium, and wy = fwy, where §
is the damping ratio.

The surface conductivity o, of graphene is given by
Kubo’s formula Eq. (1) [17], being normalized against

the impedance of the vacuum, wy, = (i, / £)"?,

G
)z
where

2
552 D W
£, = X t2P

P,
o, = 8akBT1n(26h(2kB

+ a(5+ arctgé_ — —ln(

TTX, and X = wh.

Here ¢ = 310" ' mm/s is the speed of light in free
space; 7 =6.582119511 107V -s is Planck’s con-
stant; kg = 8.6173332623-107°eV/K the Boltzmann
constant; T=300K is Kelvins temperature; E =
=10"*+107 eV is the relaxation energy of charge
carriers (electrons); P, =0, £0.1, £0.2, ..., £1.0 eV is
the chemical potential: e = 1.602176634-107"° C the
electron charge, and

_ewy 1

T 4mh 137

is the fine-structure constant.

Consider the spectrum of natural oscillations in
the structure, assuming these to be independent
of the coordinate x (i.e., we will analyze the case of
two-dimensional oscillations). Then, the mathema-
tical problem concerning the spectrum of TE-oscil-
lations can be formulated as follows. It is necessary
to determine such values of the frequency parame-
ter k=w.\/eyuy (where w = kc is the eigenfrequen-
cy sought for and ¢ the speed of light in a vacuum),
which would correspond to a non-trivial solution
for a homogeneous set of Maxwell’s equations out-
side the metal strips of the grating and the graphene
monolayer.

Within this formulation of the spectral problem, it
follows from the Maxwell equations that the proper
TE-mode is characterized by three non-zero field
components, specifically E,, Hy, and H,. The mag-
netic field components H, and H, are expressible via
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Fig. 1. Geometry of the problem

the single non-zero electric component E, according
to the formulas

Y ikw,
azx’ z>0,
1 aE
X z -h<z<0,
w (z)( ﬂ||() )
0E,
W, Z<—h,
_ 1
2 ikw,
JE,
F z>0,
1 J0E
X —-—2 |, —h<z<0,
1y ()(””() ayj
a:zx, z<—h.

For the sake of brevity, we will introduce the func-
tion u(y,z) which coincides with the eigenfield’s
electric component E,. As follows from the Maxwell
equations, outside of the grating strips and the fer-
romagnetic layer-graphene boundary the function
u(y,z) must satisty

a) the Helmholtz equation,

Auly,2)+a(z2) 22202 (y’z) +b(z )a”(y’z)
+k*y(2)u(y,z) =0, (2)
with

0, z>0, z<—h,
a(z) =

in, (z )—( ,u!((z))} —-h<z<0,
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0, z>0, z<—h,
b =
® -y (z2)— ( ) —h<z<0,
u, (z)
1, z>0,
y(z) =1 ep(2)u, (2), —h<z<0,
1, —h<z

b) periodicity condition along the y-coordinate,
u(y+1Lz)=u(y,z); (3)

c) boundary conditions on the grating strips
”(y’z)|z:o+o =0, ”(y’z)|z:0—o =0 (4)

d) field matching conditions, specifically in the
grid slots, at z=0,

du(y,z) B
Gz z=0+0
1 ou(y,z) i )au(y,z) .
1) dz 2=0-0 A 2=0-0 ’
(5)
1(32)], gy =452y 6)

and at the lower boundary of the graphene layer, at
z=-h

du(yz) __1
dz z=—h+0 /tJ_(Z)
ou(y,z) du(y,2)
x| 22 iy (2) y "
oz | _ ., ., z=—h-0
+kou(y,2)| _, .0 7
”(J”Z)|z:0+0 - u(y,z)|Z:0_0; ®)

e) Meixner’s condition clayming that the inequal-
ity ”(| M|2 + |Vu|2 )dydx < oo holds for any boun-

Q
ded and closed set Q c R?;
f) the radiation condition in the half-spaces z >0
and z < -h, viz.

d iz—ﬂinz—ﬂn
2 Rne I lne l y

,220,
u(y,z) - nz‘;w 2 2 (9)
Z Tne—iTl‘ln(z+h)eiTny’ 2 < —h,
n=—00
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with Ty, =vV&*>—-n*> and k=kl/2m The root
branches I'}, are chosen as is shown in Fig. 2. Here
u(z)= (ﬂf(z) - ué(z)) / uy(z) is the effective per-
meability of the ferromagnetic medium magnetized

to saturation, and u(2) = u,(2) / u,(2).
Let us introduce normalized magnitudes y =
=2my/l, z=2mz/l, and h=2mh/l, and ap-

ply the separation of variables procedure to Eq. (2)
(with account of the radiation condition Eq. (9)). As
a result, the sought for function u(y,z) can be ex-

pressed as
u(y,z) =
21
Z R,e e V220,
n=—00
i 2Ty —
=1 Y (Chut (Z)+Cluy (Z))e 17, -h <Z <0,
n=—o0o
* 21 27
2 Tne—zTFm(z+h)elTny, r<—h.
n=—oo
(10)
Here (R, )7 .. {C} . {c} AT} .

are unknown amplitudes of the electromagnetic field
components which are to be determined, and the
functions u; (z) are linear-independent solutions of
the second-order ordinary differential equation

d2u+(z)
+b
= ()
+(IC y(Z) — n? +ma(z))u:f(2):0.

du* (z)

(11)

Using the methodology of papers [18, 19] we have
obtained a homogeneous set of linear algebraic equa-
tions for determining the unknown eigenfield ampli-

tudes,
2 (an —@T)yn =0, m=0,%1,%2,.... (12)
Here 07 is the Kronecker delta an
an = Amn(e,ﬁ)én, (13)
nd , 1 1+ 1y (0) + 14,(0)

with 6 l,ﬂ 2J_[lna,a

1+ uy (0) = p(0)°
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The functions A,,, (6, ) have been found in papers
(3, 4]. Next, while 0,, equals

0, = An|n| +
L OV k> —n? +nw (0) - u; (0)V,,(0)
1+ u; (0) — 1y (0)

1, n=20,

a, n<O0.

(14)

b

with A, ={

Similar as in paper [19], it would not be difficult to
demonstrate that C. = 0. The function V,(z), de-
fined as

u; @) =exp| [V, (&) |,
-h

is the solution of the Cauchy problem for the Riccati
equation

V, @)+ uy (Z)Vi +K%ep —

n ( 1y (z) )I _
- -n — =0,

1y () 1y (z)

Vn(—ﬁ)z—i{xos+rln+inM} (15)
ui(-h)

with V,(Z) denoting the derivative of V,(Z) with

respect to z.

An approximate solution to the Cauchy problem
Eq.(15) can be obtained through application of
the algorithm as follows. The interval —h <Z <0
will be specified approximately as a finite set of
points Z, =—h +d(p—1), with p=12,..N, 6=
=h/(N-1), with N—being a natural num-
ber. Recalling that ep, = ¢€p(2),), Uy, =u1(Z))
Hyp = /,LH(EP) and denoting Wp = Vs (Ep), we ar-
rive at the following recurrence relation for W,,,

-2E,,

1+ 1-20u, puFyp
n=0,%L,%2,.., p=12,.,N—1,

Wnp+1 =

W, =—{/c05 +T,, +inﬂ}, (16)
Ui
where
M1 p0 k%0
E,=-W,, +TPW,$p +T(€FP + Eppir ) -

2
AT R S S N iy T
2 HUip Hipn Hipri Hip
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Fig. 2. Selecting branches of the root function I';,,

The square root in Eq. (16) can be calculated as
follows

J1=20u) yiF,, = |Re(\J1-20u, 0 F,, )|+
+ iSign(—Im(,ulPHan ))|Im(ﬂ/1— 201 piiFyp )|

The eigenfield Eq. (10) can be represented as an
expansion in non-trivial solutions y,, of the equation
set Eq. (12), viz.:

SN
Z(yn—én)e’ e ! 7,220,
n=—00

E, (7.7)= i By T Fezco, (17

X )/: n:_ooyn Bn(E) > >
oo .217
n=—oo

where the functions Bnp(z) are to be calculated
through the use of the recurrence relation

—0.50( p 1 W+, W,
BnP+l = Bnpe ( e npﬂ)’ Bnl =1

n=0,tL%*2,.., p=1,.., N—-1.

When formulating the eigenvalue problem, we
proceeded from the conceptual assumption that the
solution should reflect those features of the diffrac-
tion field (Ea,H a) which arise during its analyti-
cal continuation into the complex frequency domain
[20, 21]. The grating involving a ferromagnetic layer
and a graphene insert can be represented as an open
resonant structure characterized by complex-valued
eigenfrequencies and their correspondent natural os-
cillations. The spectral parameter to be determined

). The
27c
radiation condition which is characteristic of diffrac-

tion problems is continued analytically from the real
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frequency region onto an infinite-sheeted Riemann
surface (see [20]). We will limit ourselves by making
account of the "physical" sheet of the Riemann sur-

face for '}, = v k? — n* (the choice of root branches
is defined in Fig. 2).

The solution to the spectral problem considered is
represented by the non-zero solution for a homoge-
neous set of linear algebraic equations (12). The ma-
trix elements in Eq. (12) are considered as functions
of the spectral parameter k which latter exists on
the "physical” sheet of the Riemann surface. As has
been proven, through the use of the results of paper
[21], the matrix operator M(k)={M,,, (k) }:’n:w is
a kernel-operator analytic function of the complex
variable k everywhere except the points k = 0, as well
as branch points k,, n=0,+1,%2, ... . Therefore, the
complex eigenfrequencies are represented by roots of
the equation

det(M(k)—1)=0, (18)

where the det(...) symbol means an infinite deter-
minant of the operator M(k)— I. The equation per-
mits of an effective numerical solution. Indeed, let
Mp (k) be a finite-dimensional operator function
obtainable through truncation of the matrix M/(k)
toward the size P X P. Because of the kernel proper-
ty of M(k), it proves possible to guarantee the exis-
tence of P, such that
| M) = Mp ()| < 0, (19)
for any arbitrarily small 0 >0 and any limited do-
main of variation for k. (Here |...|| stands for ope-
rator norm in the space l,). The eigenfrequen-
cies of the finite-dimensional operator function
I — Mp(k) can be found as roots of the determinant
det(Mp (k) —I). Provided that Eq. (19) is satisfied,
each solution «,, of the spectral problem Eq. (18)
can be approximated to, with any predetermined ac-
curacy, by a solution of the &%, finite-dimensional
spectral problem for the Mp(x)— I operator func-
tion with a sufficiently high P. Using the kernel
property of the operator-function M(x), one can
demonstrate that the procedure described is compu-
tationally stable for growing values of P [22].

In what follows below, we also need to consider
excitation of the structure by a plane, E-polarized
electromagnetic wave obliquely incident upon the
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structure. The electric field vector of the E-polarized
electromagnetic wave should be parallel to the axis
0x, and the wave vector k should lie within the plane
(y, z), making an angle a with the axis z. The non-
zero field components of the wave need to be of form

0 _ _ik(ysina—zcosa)—iwt
E, =™V

>

It can be shown that for the case of real frequen-
cies (k=w+/gyuy) the diffraction problem de-
scribed has a unique solution (see [21] for details).

Following the approach of papers [3, 18, 19] (and
leaving some minor details aside) we can obtain an
inhomogeneous set of linear algebraic equations for
determining the unknown amplitudes of the dif-
fracted electromagnetic field,

Z (Cmn _621)))71 =B,

n=—oo

(20)

where

2ip, (0)
C,. =0'A, (6.6,), B, =
mn n mn( ﬂ V) 1+ 10y (0) _ ,u||(0)

2
X A, OB VWK = (g +v), m=0,£1,42, ...,

A,,,(0,0,v) are defined in [3]; ksina =ny + v with
0<v<l and O] =A,|n+v|+

e O K = (n+v)> + (n+v)py(0) -y (0)V;) (0)
1+ (0) — u;(0)

(compare with the 0, of Eq.(14)). Similarly, the
solutions V,/(z) of the Cauchy problem coincide
with the functions Eq. (15) if # has been replaced by
n+ny,+v.

The diffracted field is given by Eq. (17), with the
reflection coeflicient R, the transmission ratio T and
the absorption coefficient W specified, respective-
ly, as

R=)’n0 -1 T=Bn0Nyn0’

21)
W=1-|R] -|T[.

The method proposed has been implemented in
the form of program complexes enabling calcula-
tions of spectral characteristics of the eigenfrequen-
cies and electromagnetic eigenfields over the entire
frequency range. The programs are efficient for a va-
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riety of geometric and electrodynamic parameters of
the structure. including the regions where the real
part of the ferromagnet’s effective permeability may
turn negative.

2. Numerical results

The method developed has been used for calculating
eigenfields and complex-valued eigenfrequencies in
dependence on the structural parameters. The ma-
terial parameters of the ferromagnetic layer (spe-
cifically, of its constituent yttrium iron garnet) are
4nM =1750G, Hy=7500e, ep=15.30, and { = 0.01,
while such of the graphene monolayer have been
evaluated as P, =0.3¢eV, E = 10*eV, and T =300 K.
(Note the magnitudes of the magnetization vector
M and the magnetic field H, to be expressed here
in the CGS rather than SI system of units). Hereinaf-
ter, all the results will be given in terms of the linear
frequencies f = /2x. The frequency range being
investigated is ~/ ff + fufu <Ref < fy +0.5fy,
wherein the real part Reu | of the effective perme-
ability assumes negative values. The choice of this
range owes partly to the fact that, according to papers
[8, 9], the ferromagnet-vacuum interface can sup-
port surface spin waves as directly propagating ex-
citations (their group and phase velocity vectors are
parallel to each other). A metal strip grating placed
at the interface can provide a "source"” for exciting the
surface spin waves. The results below seem to sup-
port these assumptions. First, we will determine reso-
nant responses of the structure under investiga-
tion for the cases where it either does or does not
involve the graphene layer — or the ferromagnetic
layer, with or without the graphene. This concerns
the strip lattice as well. The dependences of the power
reflection coefficient |R|2 of a plane wave incident
normally on some of the structures are shown in
Fig. 3. Here, the grating period is / = 1 mm, the slot
width d=0.5 mm, and the ferromagnetic layer’s thick-
ness is 1 =0.05 mm. Also, Fig. 3 demonstrates the fol-
lowing. In case the layer contains neither grating, nor
graphene, the power reflection coefficient |R |2 shows
a maximum at the ferromagnetic resonance frequ-

ency [10], namely f =+/f& + fyfu =3847.2 MHz

(curve 4). Outside the vicinity of this frequency,
|R|2 is almost zero, which suggests total transmis-
sion of the plane wave through the ferromagnetic
layer. With the graphene monolayer placed on the
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Fig. 3. Power reflection coefficient |R|? as a function of frequency:
curve I relates to the case of a layer containing grating and
graphene; curve 2, layer with grating, no graphene; curve 3, layer
with graphene, and curve 4, layer without graphene

lower boundary of the layer, the picture turns exactly
opposite. The reflection coefficient |R|2 gets almost
equal to one outside the vicinity of the ferromagnetic
resonance, meaning total reflection of the plane wave
there, whereas it is minimized at the resonance fre-
quency itself (see curve 3).

As can be seen, a graphene monolayer present
at the lower boundary of the ferromagnetic layer
does significantly change resonance properties of
the structures under study. In case both the grating
and graphene are present, the number of resonant
responses happens to be nearly twice lower than in
the absence of graphene, similarly as the intensity of
the response. The reason why is the presence of an
"impedance-type" boundary condition at the lower
border of the ferromagnetic layer, which owes to the
finite conductivity of graphene. That latter exscinds
the resonance frequencies at which the surface os-
cillations are excited, the field of which tends to be
concentrated at the lower boundary of the layer (see
Figs. 4, a and b). The spectrum contains only such
resonance frequencies which correspond to the sur-
face oscillations concentrated at the upper boundary
of the ferromagnet (between the grating edges, see
Fig. 4, c).

As was shown in paper [16], a planar grating with
a layer of metamaterial on it can be interpreted as
an open resonant structure characterized by com-
plex-valued eigenfrequencies and their respective
natural oscillations. Accordingly, the set of discrete
values of the frequency parameter « is close to the
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Fig. 4. Resonant fields |E,| = const demonstrated by a grating
which involves a ferromagnetic layer without grapheme. Pa-
nel (a): f= 4207.2 MHz; Panel (b): f = 4498.2 MHz; Panel (c):
fields of frequency f=4273.2 MHz in a layer containing a grating
and graphene

set of real parts of the eigenfrequencies — under the
conditions where the structure provides either for
resonant reflection or for resonant transmission of
the field’s energy.

In what follows, we will focus on analyzing the
structure’s eigenfrequencies (that is, solutions to the
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equation det(M(k)—1)=0) and the natural oscil-
lations

Y (M =0 )y, =0, m=0,%1,42,...,

n=—oo

which are solutions of the equation set Eq. (12).
We will also consider the eigenfield representations
Eq. (17).

In the case of a ferromagnetic layer with graphene
sitting at the lower boundary, the dispersion equa-
tion takes the form

e2iK«/8FuLh(l_ €_F+(1+OS)(1_ M_J—J]+
\ 4 ¢F
+1+ /8—F+(1+os)(1+ M—l)=0.
uy €F

Upon solving this equation for the above specified
parameters of the ferromagnetic layer, we obtain a
complex-valued eigenfrequency of the ferromagne-
tic resonance as fpyr = (3846.46 — i63.53) MHz. The
resonance frequency for the graphene layer presented
in Fig. 3 (curve 3) is f,,, = 3847.17 MHz. Thus, the
resonant excitation of the layer owes to excitation of
the eigenmode corresponding to ferromagnetic re-
sonance. The small shift of the resonance frequency

(22)

from the real part of the eigenfrequency is due to the
presence of an imaginary part in the eigenfrequency.
The effect is characteristic of all cases of resonant ex-
citation of natural oscillations.

With a strip grating placed at the upper boundary
of the ferromagnetic layer the structure turns into
kind of an open resonator for the surface oscilla-
tions. The grating edges are resonator mirrors which
reflect the surface natural oscillations, while the fer-
romagnetic medium supports these, thus leading to
appearance of resonances in the frequency depen-
dence of the reflection coeflicient |R|2 (see Fig. 3).
Some examples are shown below of the dependences
upon geometric and electrodynamic parameters of
the structure which are demonstrated by the com-
plex eigenfrequencies and the natural oscillations.

Having analyzed the results presented in Fig. 5,
we are in a position to draw conclusions as follows.
First, three complex-valued eigenfrequencies are
identifiable for the structure’s parameters selected.
They are significantly dependent on the geometric
characteristics (note that the number of eigenmodes
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Fig. 5. Real and imaginary parts of the eigenfrequencies as dependent on geometrical parameters. Panel (a): Re(f), and Panel (b):
Im(f) versus the slot width normalized per grating period, for / = 1 mm and h = 0.05 mm; Panels (¢) and (d) — same versus layer
thickness, for /=1 mm and d = 0.5 mm; Panels (e) and (f): Re(f) and Im(f), respectively, versus the grating period, for d = 0.5 mm

and h=0.05 mm

can be either higher or lower, depending on magni-
tudes of other geometrical parameters). Second, by
changing the geometric parameters we can obtain
any value of the eigenfrequency’s real part from the

range 3847.2 MHz =+/ fA + fy fu SRe(f) < fy +
+0.5f); = 4565.6 MHz, thus being able to control the

resonant modes. With d/1 —1, h— 0, and [ — »

ISSN 1027-9636. Padiogpisuxa i padioacmporomis. T. 29, Ne 2, 2024

the eigenfrequencies tend to the accumulation point
frmr = (3846.46 — i63.53) MHz i.e., the ferromagne-
tic resonance frequency. With d /1 — 0, h — 1, and

I — 0 the eigenfrequencies tend to the accumula-
tion point f= (4565.5 - i45.65) MHz associated with
the characteristic frequency f = fy +0.5f, of the
ferromagnetic layer.
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Fig. 6. Eigenfield distributions of TE,, ;-modes. Panel (a):
TE,p-mode at f = (4270.8 - i86.2) MHz; Panel (b): TE,,-mode
at f = (4481.3 - i62.1) MHz, and Panel (c): TE3y-mode at f =
= (4541.7 - i50.5) MHz. In all the cases, h = 0.05 mm, / = 1 mm
and d = 0.5 mm

Fig. 6 demonstrates the eigenfields |E, |= const
corresponding to these eigenfrequencies. As can be
seen from comparison of Figs. 6, a and 4, ¢, the field
excited at the real-valued resonance frequency is of
similar structure with the natural oscillation. In ad-
dition, the structure of the eigenfields of Fig. 6 clear-
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ly suggests that the strip grating is a provocateur for
excitation of the higher-order surface harmonics in
the proposed structure — in those cases where the
surface-mode electromagnetic field involves several
antinodes in between the grating edges.

Below, we will use the notation as follows. A natu-
ral oscillation will be termed the TE,,,,-mode, should
it demonstrate m crests of the |E,| per the struc-
tures period at the upper boundary (between the
grating edges) and n crests at the lower boundary.

Let us discuss the effect of graphene parameters
on the eigenfrequencies. Fig. 7 and 8 demonstrate
that changes in the graphene parameters do have
some influence on magnitudes of the eigenfrequen-
cies, although the resultant effect is not as significant
as the changes in the geometric parameters. At the
same time, by varying P, or E it is possible to control
the real part of the eigenfrequency (or, the resonance
frequency of the excitation) over the 50 MHz range.

The studies of ferrite film properties have shown
that the spatial inhomogeneity of their magnetic pa-
rameters can strongly influence the conditions for
the excitation and propagation of surface spin waves
in such systems. Inhomogeneities of either the mag-
netostatic field distributions [23] or saturation mag-
netization [24] can lead to a change in the absorption
spectrum of the surface spin excitations, as well as
to appearance of new absorption lines, and to chan-
ges in the attenuation of the surface spin waves. To
study these phenomena, some physical models have
been proposed that take into account the spatial in-
homogeneity of one or more magnetic parameters
[23, 24] — most often, in directions perpendicular
to the plane of the ferrite film. In the simplest case,
the inhomogeneity profile of any parameter was a
step function with one or more split points inside
the film [24].

Proceeding from the above considerations, we
have resorted to a rigorous methodology for analy-
zing the effect of non-uniformity of the magnetosta-
tic field, Hy and the saturation magnetization, M.
Let the non-uniformity exist along just one of the
coordinates, specifically, z, and let it be described in
terms of the dimensionless, frequency-dependent
parameters of the permeability tensor as

Ky (2) = g1 (2K, k1 (2) = gi(2)KYy,

ISSN 1027-9636. Radio Physics and Radio Astronomy. Vol. 29, No. 2, 2024



Natural electromagnetic modes of a composite open structure involving a perfectly conducting strip grating,...

B
-50
4500 | P, 60
o 4450 - -70
2 T
« 4400 | :i -80
S <
2 g0
4350 | 5
-100
4300 ;_____‘____5555_—///'\\\\__———____________ -110
4250 - L L -120 L ' '
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 P.(eV)
a b

Fig.7. The real, Panel (a), and imaginary, Panel (b), parts of the eigenfrequencies for modes TE,,, with m = 1, 2, and 3, as functions
of the chemical potential P, (solid line: m = 1; dashed line: m = 2, dotted line: m = 3), all with /=1 mm, d = 0.5 mm, h = 0.05 mm,
E=10"eV

4550 [ ————————
-50
4500 ' ccmeeeeeeememmmmmmeeoee
"""" -60
w 4450 |
o 2 =70
> =
< 4400 - :
> < -80
& E
4350 |- I
4300 ;\\\__’//////""’———-——___——___—______—___ -100
4250 L | | | -110 ! ! ! !
0.0000  0.0002  0.0004  0.0006  0.0008 0.0010 0.0000  0.0002  0.0004  0.0006  0.0008 E(cV)
a b

Fig. 8. The real, Panel (a), and imaginary, Panel (b), parts of the eigenfrequencies for modes TE,,, with m = 1, 2, and 3, as functions
of the charge carriers’ relaxation energy E (solid line: m = 1; dashed line: m = 2, and dotted line: m = 3), with /=1 mm, 4= 0.5 mm,
h=0.05mm, P,=0.3 eV

4500

4400

4300

4200

Re(f), MHz

4100

4000

3900

Fig. 9. The real, Panel (a), and imaginary, Panel (b), parts of the eigenfrequencies for modes TE,,, with m =1, 2, and 3, in dependence
on the degree s of the magnetostatic field’s inhomogeneity, with g,(z) = (1 —s)z + 1 (solid line: m = 1; dashed line: m = 2, and dot-
ted line: m = 3)
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inhomogeneity degree s (solid line: s = 1; dashed line: s = 0.7;
dotted line: s = 0.365, and dash-dotted line: s = 0.101), with
B {(2 —25)Z+(2—s)for -1<Z <-0.5,
8(2) = = =
(—2+2s)z+s for —0.5<z<0

with

o _ YMyl o _ YHy _ &yH, d
M =50 M T g MRT g

/c]\/l(z)(lc%q(z)+/cfz —ilc/cR)
ll’tl(Z)_ 2 2 2 . >
ch(/c — k5 (2)— KR +21/CKR)
KK (2)

(2) = M :

Ha (lc2 — k% (2) - K% +2iK‘ICR)

The functions g;(z) that have been selected for
specifying the type of the inhomogeneity type, are
expressed as g;(z)=(1—-s)z+1, with -1<zZ <0,
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and g,(z)=(s—1z +s, with <7 <0, and also
z<-0.5

-1<7
_ [@=-29)z+(2-5), -1<Z<-0.5,
8:(2) = — _
(—2+2s)z+s, —0.5<57z<0,
84(Z)=—4(1-5)z> —4(1—5)z+s, 1<z <0, and
s, —1<7<-0.7,

g5(z)=41, —0.7<z2<-0.3,
s, —0.3<7z<0.

Here 0<s<1 is the parameter to determine
the amount of heterogeneity degree, identified as
gi(z)=1,Vi at s = 1. Thus, the parameters «,;(2)
and kpy(z) vary within  sk%; <k (2) <k,
sk <k (2) < kY.

The calculations (the results of which are shown
in Fig. 9—11) were carried out for parameters as fol-
lows, [=1mm, d=0.5 mm, h=0.05mm, P, =0.3 eV,
E=10"*eV. Figs. 9 and 10 demonstrate that the in-
homogeneities of both the magnetostatic field and
H, the saturation magnetization M, give a signifi-
cant shift of the eigenfrequencies real and imaginary
parts. The functional type of the magnetic inhomo-
geneity is also matter (see Fig. 11).

Finally, it should be noted that the shift of the
magnetostatic field’s maximum to the middle of the
ferromagnetic layer leads to shifting the maximum
of the field from the layer’s geometric boundary to-
ward the line where kg (z) reaches its maximum
value (see Fig. 11). This shift of the field maximum
is the larger, the greater the degree of inhomogeneity
of the Kk (2).
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Conclusions

An analytical regularization procedure has been de-
veloped for the dual series equations which appear
in the problems of a vast class relating to diffrac-
tion of monochromatic plane waves by strip gratings
placed at the boundary of a gyromagnetic medium.
The problems concerning natural oscillations and
their respective eigenfrequencies have been investi-
gated for composite structures consisting of a lossy
ferromagnetic layer that is inhomogeneous along
one of the coordinates, and a perfectly conducting
strip grating at one boundary of the ferromagnet,
plus a graphene monolayer at the other, both placed
in a magnetostatic field. It is shown that the struc-
ture proposed is an open resonant system suppor-
ting a set of complex eigenfrequencies with accu-

mulation endpoints « fA + fy far and fy + 0.5,

Here fy and f); are the characteristic frequen-
cies of the ferromagnetic layer whose real parts lie

in the range ~/ fA + fufu <Re(f) < fy +0.5fy,

while the imaginary parts are negative, such that the
correspondent eigenoscillations demonstrate an ex-
ponential attenuation with time. Also, studied have
been the effects which are exerted upon the eigenfre-
quencies and the natural oscillations by variations in
geometric parameters of the structure and in charac-
teristics of the graphene (in particular, the chemical
potential and the relaxation energy of electrons), as
well as by nonuniformity of the magnetostatic field
and inhomogeneity of the saturated magnetization
level of the ferromagnet. The results obtained can be
useful for designing the microwave-range elements
and devices.
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Incturyr papiodisuxn ta enexrponiku iMm. O.4. Yenkoa HAH Ykpainu
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BJIACHI EJIEKTPOMATHITHI KOJIMBAHHS BIIKPUTOIL
KOMIIO3UTHOI CTPYKTYPH, 11O MICTUTD EJIEKTPOIIPOBIJHY
CTPIYKOBY I'PATKY, HEOJHOPIJITHI ®EPUTOBUMN LIIAP

I TPA®EHOBNI MOHOIIIAP

IIpepmert i MeTa po6oTH. Po3IIAHYyTO 3a7auy IIPO BJIACHI KONVMBAHHA Ta BiJNOBi/HI B/aCHi YaCTOTV KOMIO3UTHOI CTPYKTYPH, IO
€ HeOJJHOPIZTHOIO B3JIOBXX OJIHi€l 3 KOOPAMHAT i CK/IafjaeThbcA 3 GepOMarHiTHOTO IIapy 3 BTpaTaMM, KOTPUIT 3HAXOAUTHCA Y Mar-
HiTocTarnyHOMY 11o/1i. Ha 0ffHiit 3 rpaHNYHNUX ITOBEPXOHDb PO3MIlIleHO ifilea/IbHO IPOBIIHY CTPIYKOBY I'PATKY, @ Ha iHILill — rpadeHo-
BMJI MOHOLIAP.

MeTopu Ta MeTORONOTIA. [I)151 pO3B’A3aHHA 3a/1a4i po3pO6/IeHO METOJ aHAIITIYHOI pery/Apusallii IapHUX CyMaTOPHNUX PiBHAHD,
0 SAKVIX 3BOJUTLCA MIMPOKNUIT KIac 3afad qudpakiii. 30KpeMa, 1ie CTOCYEThCS 3a/jad PO [UGPaKIIiio MOHOXPOMATUYHMX IIOCKUX
XBUJIb Ha CTPIYKOBMX I'PATKaX, [0 PO3TAIIOBAHI Ha MeXXi ripoMarHiTHOro cepenoBuia. [l 064MCIeHHA aMIUTITY BIACHNX e/leK-
TPOMArHITHUX NO/IiB BUKOPUCTAHO OFHOPIHY CUCTeMY JHIHMX anreOpUYHNUX PiBHAHD, PO3B 30K SAKOI PO3LIYKYETHCS METOLOM
penyxkuii. Kopeni gerepminaHTa 1ji€l cucTeMy € KOMIIJIEKCHMMM BJIACHUMM YacTOTaMI JIOCTi/PKYBaHOI CTPYKTypu. MarepianbHi
apameTpy, KOTpi 6y/I0 IPUITHATO B pO3paxyHKax Ajst GepOMarHiTHOTO IIapy, BiNOBiJaAl0Th TaHNUM 3a/1i30-iTpi€BOro rpaHary.

PesynbraTin. Po3po61eHo makeTu mporpam, 3a JOIMOMOTOI0 AKVX YVCETbHO IIPOAHaTi30BaHO 3a/IKHOCTI BIACHUX IIONIB i KOM-
IUIEKCHUX BJIACHNUX YaCTOT Bijf TeOMETPUYHIX [TapaMeTpiB CTPYKTYpU (IIVIPVHY LIi/INH I'PaTKY, 1i [1epiofly Ta TOBIMHYU (epOMarHir-
HOTO IIIapy), @ TaKOX Bifi elIeKTPOAMHAMIUYHMX ITapaMeTpiB (epoMarHeTnka Ta mapameTpis rpadeHy (XiMi4HOTO IOTeHIiany Ta
eHepril pe/akcanii ef1eKTpoHiB). YcTaHOB/IEHO HM3KY 3aKOHOMIPHOCTEN y AMHAMIIl ITVX 3a/iekHOCTelT. Takoy OLliHeHO BIIMB HEOf-
HOPiffHOCTI mapamMeTpiB (epUTOBOrO LIAPY Ha B/IACHI YaCTOTI Ta B/IACHI MOTbOBI PYHKIIT CTPYKTYPH.

BucHoBku. ITokasaHo, [0 HOCTiIKyBaHa CTPYKTYpa € BiJKPUTOI0 KOMMBA/IBHOIO CYCTEMOIO 3 HAOOPOM KOMIIIEKCHO3HAUHMX
BJIACHMX YACTOT i3 KiHI[€BMMM TOYKaMM HaKomum4eHH:A. [IilicCHi YacTMHM IUX BIaCHUX YacTOT JIEXATh y IEBHOMY iHTepBasli, AKU
BU3HAYAETHCA XapaKTePHMMI YaCTOTaMy (PepUTOBOTO IIAPY; YABHI YaCTUHY € HeTaTUBHUMI, TOOTO BifINIOBiIHI I{IM YacTOTaM BIac-
Hi KO/IMBaHH 3racaloTh eKCIIOHEHIia/IbHO B Yaci. PeOpa IpaToK € «/j3epKaaMit», Bifl IKMX BiOMBAIOTHCS TOBEPXHEBI BIIACHI KON -
BaHHA, a pepoMarHiTHe cepeJoBuIIe I1i KOMMBaHHA HigTpuMye. OTpUMaHi pe3yIbTaTi MOXYThb Oy TV BUKOPUCTAHI IPY CTBOPEHHI
efleMeHTHOI 6a3n i mpuctpois HBY-piamasony.

Kntouogi cnosa: gepumosuii wiap, zpageH, cmpiukosa Ipamka, aHarimuvHuil Memoo pezynapusayii, 61acHi KOMUBAHHS, 6/ac-
Hi uacmomu.
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