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PHASE SYNCHRONIZATION OF PARTICLES
AT CYCLOTRON RESONANCES

Subject and Purpose. The effects considered concern phase synchronization of electrons in an ideal plasma subjected to the action of an
external uniform, d. c. magnetic field. Two modes of the synchronization are discussed, specifically one by an external electromagnetic
field and the other by the cyclotron radiation emitted by the electrons. The purpose is to compare these forms of synchronization and their
effects on plasma stability.

Methods and Methodology. The plasma is represented as a set of coupled oscillators whose dynamics is described via coupled differen-
tial equations. Assuming the coupling between the oscillators to be weak we find analytical solutions to the equation, further performing
a stability analysis which exploits standard approaches of the dynamical systems theory. The solutions found are validated through corre-
sponding numerical simulations.

Results. As has been found, an external electromagnetic wave may be capable of guiding the particles toward phase synchronization,
which can lead to formation of phased bunches. This mechanism of particle grouping may prove to be more efficient, in terms of scale
times of synchronization, if compared with known mechanisms exploiting relativistic effects. Additionally, we show that the cyclotron
radiation emitted by the charged particles (which is often disregarded because of its smallness) can lead to self-phase synchronization of
the electrons. Moreover, should the density of charged particles in the ensemble be sufficiently high, an instability can arise, potentially
disrupting the ensemble. Estimates have been provided of the level of random fluctuations capable of undermining the synchronization
process and plasma dynamics stabilization.

Conclusions. The most significant finding of this analysis is the emergence of low-frequency oscillations in the charged oscillators set,
followed by an onset of the plasma instability when the plasma density exceeds a certain critical value. Within that scenario, the ensemble
of oscillators sitting in the external magnetic field is no longer held together by the field. The effect should be taken into account in appli-
cations related to plasmas of a relatively high density.

Keywords: cyclotron radiation; cyclotron resonance; particle dynamics; plasma, synchronization.

Introduction vices as the cyclotron resonance maser (CRM) and

Cyclotron resonances are among the best known and ~ gyrotrons. Despite comprehensive investigations
most extensively studied resonant effects. They find ~ of particle-wave interactions under cyclotron reso-
widespread application, as exemplified by such de- nance conditions, many unexplored facets still re-
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main, concerning the dynamics of energy exchange
between particles and waves during cyclotron reso-
nances.

The results presented in papers [1, 2] show, among
other things, that a correct formulation of the cy-
clotron resonance conditions requires considering
the strength of the wave which the particles inter-
act with. Taking that into account may dramatically
change our picture of particle dynamics, in particu-
lar one can expect significant changes in the phase
dynamics of particles.

In this paper, we conduct a study on the phase
synchronization of electrons in an ideal plasma sub-
jected to a uniform, d. c. external magnetic field. Our
investigation is focused on two types of synchroniza-
tion, specifically the synchronization induced by an
external electromagnetic field, and such produced
by the cyclotron radiation emitted by the electrons.
Our findings reveal that an external electromagnetic
wave can steer particles towards phase synchroniza-
tion, thus leading to formation of phased bunches.
This method of particle grouping demonstrates po-
tential for a shorter synchronization time — as com-
pared with the known mechanisms exploiting rela-
tivistic effects [3, 4].

In contrast to the many prior studies that ignored
the low-level radiation emitted by charged parti-
cles in an external magnetic field, we have included
these effects in the analysis. As has been shown, the
cyclotron radiation leads to self-synchronization of
the electron phases. This radiation can significantly
influence the dynamics of the ensemble of charged
particles, with the appearance of low-frequency nat-
ural vibration modes. Furthermore, at a sufficiently
high density of charged particles in the ensemble, an
instability can develop. Such instability might be able
to disrupt the ensemble. Here, we suggest an esti-
mate of the additional fluctuations capable of under-
mining the synchronization process.

The paper is organized as follows. In Section 1, it is
shown that an external electromagnetic wave can di-
rect particles towards phase synchronization, which
results in formation of phase bunches. This mecha-
nism of particle grouping could potentially be more
significant, from the point of the synchronization
time, than other known mechanisms because of the
relativistic velocities, as seen by the examples of the
CRM and gyrotrons |3, 4].
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Section 2 demonstrates that the plasma particles
(electrons) moving through an external magnetic
field can emit waves of cyclotron frequency, which ef-
fect leads to phase self-synchronization. Under such
circumstances, collective oscillations of the parti-
cles can appear, in the form of low-frequency eigen-
modes. Furthermore, an instability can develop that
might be capable of disrupting the magnetic confine-
ment of the plasma.

In Section 3, we discuss how fluctuations can af-
fect the synchronization process and particle dynam-
ics. An estimate of the fluctuation level required for
inhibiting the synchronization process is provided.
In conclusion, we summarize our findings.

1. Phase grouping
of an ensemble of particles

Consider the dynamics of an arbitrary particle mov-
ing within a uniform, d.c. magnetic field H, =
={0,0,H, } in the presence of an electromagnetic
wave with transverse field components as follows

E, = Esiny, E, = Ecos.

Here ¥ = wyt + ¢, where wpy denotes the cyclo-
tron rotation frequency of a particle in the magnetic
field, and ¢ is the wave’s phase. The wavelength 4 is
assumed to be greatly in excess of the electron’s Lar-
mor radius r;. Consequently, the transverse-plane
nonrelativistic dynamics of the particles in such
fields can be described by the equations

Vg =Vpp +€-8INY, Uy =—Vy +&-CosY, (1)

with T =wyt and v=dv/dr, where v=v/c is
the particle speed normalized to the speed of light,
finally € = eE / mcwy is the wave's "strength param-
eter" (nonlinear parameter).

Note that the phase of the external wave does not
show an explicit dependence on the spatial coordi-
nate, because of 4> r;. If the external field were
neglected i.e.,(¢ =0), then the solutions of Eq. (1)
could be represented as

Vg = Apsin(t + @), Vgy = A cos(T+¢y), 2)
with
{Ai, @i} = const.

With an external field taken into account (i.e.,
(e #0)), the amplitude of the particle’s velocity and
its phase relative to that of the wave both become
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time-dependent, and {A;,¢;} is no more constant.
Then we find from Eq. (2)

U,k = Ap cos(T + @) + esin(z + ). (3)

Next, we will assume that the wave strength pa-
rameter ¢ is small. In this case, the derivatives of the
amplitude and the phase will also be small. Upon
equating quantities of the same order we arrive at

Aj cos(t +<Pk)[<,bk]+ Asin(r + Q)=
= ¢esin(7 + ). (4)

Upon multiplying both sides of Eq. (4) by
cos(7 + ¢, ) and averaging we obtainby using Eq. (3)
a set of coupled equations determining the dynamics
of the phase and the amplitude, specifically

P =(AikjSin(<P—<Pk), %)

Ay = ecos(p - pp).

Let us also pay attention to the fact that the am-
plitude is small, i.e. Ay = vy /c <1, and varies with
time at a much slower rate than the phase. This en-
ables us to consider the amplitude as a constant mag-
nitude in the equation for the phase. This equation
can be conveniently re-written as

Ak = —Fk . sinAk, (6)

where Ay =¢—¢, and I'y =&/ A;. The singular
points of Eq. (6) are Ay, = wn, wheren=0,1,2,....
The states corresponding to even values of » are sta-
ble, whereas odd n correspond to unstable states. The
trajectories either approach to or leave the areas of
stable (or unstable) states of Eq. (6) as

Ay = Ap(0)exp(£2T;7). (7)

The upper sign corresponds to unstable, while the
lower one to stable states. Thus, all the particles of
a group bear the same phase. An ensemble like this
demonstrates a particularly efficient interaction with
the electromagnetic wave.

Assuming that the phase has reached one of the
states like Ay, = 7n, we can find, from the equation
for A in the set Egs. (5), the behavior of the velo-
city amplitude

A =tet+C, (8)
238

where the plus and the minus signs correspond, re-
spectively, to stable and unstable states (C is a con-
stant magnitude). An unlimited increase or decrease
of Ay (velocity), if occurring according to Eq. (8),
arises from a lack of account for the energy losses
owing to radiation by the particles, else because of
nonlinear effects.

Let us compare the grouping mechanism of Eq. (7)
with the conventional mechanism of particle group-
ing in the CRM (see, for example, paper [4]). The
change in the particle phase can be expressed as

dp _ op
i 9)

where
,)/ — (1_ ,UZ)—I/Z‘

If the particles have different energies, then any
change in the phase separation between them shall
depend on the difference between these energies, viz.

Here A, =¢, —¢;, 7, is the synchronization
time; A, the maximum phase separation between
the particles, and A, stands for variation of the
parameter y resulting from a change in the parti-
cle’s energy. If the particles are synchronized, which
means (A,; =0), then from Egs. (9), (10) we can
get an expression for the synchronization time,
T, =0/ A,.

Let us compare this synchronization time with
such following from Eq. (7), namely

Ty =1/2)=v/(2¢).

To estimate T, it is necessary to determine the
magnitude of the particles’ energy change during
their interaction with the wave. Also, we believe the
grouping to occur when collective processes have
not yet manifested themselves. In this case A, =
=~W? —v})/2=(v-Av) <1, which suggests

Av=¢t, and 7, =+[A / ev.

Also, we select such a pair of particles where one
would be in a stationary (stable) phase. Its phase po-
sition is not changed and its energy remains con-
stant. The other particle is accelerated to a maximum
possible degree. By following this procedure, we ob-
tain an estimate, as given below, for the synchroniza-
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tion times ratio:

T v
e, ff
T, e

Hence, if the inequality & > v> holds, then the syn-
chronization mechanism of Eq. (7) that we have con-

sidered proves to be more efficient than the known
mechanism based on relativistic effects.

2. Effect of cyclotron radiation
on plasma dynamics

2.1. Self-synchronization
of rotating particles

As has been shown in the previous Section, an ex-
ternal electromagnetic radiation does synchronize
the phases of rotating charged particles. Here we
will demonstrate that similar synchronization owes
to the particle interaction effectuated solely through
cyclotron radiation, without any external forcing. A
well-known example of such synchronization is the
coupled clocks effect, first described by Huygens.

Once again, we will consider an ensemble of
non-relativistic charged particles (electrons) placed
in a d. c. magnetic field Hy ={0,0,H, }. The rota-
tion of and radiation from the electrons in such a
magnetic field both take place at the cyclotron fre-
quency wy =eH / mc independent of the electrons’
speed. The radiation produces an electric near-field
about each of the particles, which is of intensity [5]

E= - (11)
c“R
Here e is the charge of the particle, ¥ the particle’s
acceleration during its rotation, and R stands for sep-
aration between the particles.
Eq. (11) describes the electric field strength of
a rotating particle at a close distance R<A from
that. The particles can interact with each other via
this radiation. Note that the field strength at a dis-
tance, say, R ~ A ~ 10 cm from the radiating particle
is extremely small, namely E ~107"* V/cm. Usual-
ly, such fields are not taken into consideration when
discussing plasma dynamics. However, the following
analysis demonstrates that such fields can have a sig-
nificant impact on plasma dynamics, particularly, by
provoking phase synchronization between the elec-
trons rotating in the magnetic field.
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We start by considering the interaction of two
non-relativistic particles, focusing only on transverse
motion of the particles with respect to the magnetic
field. The dynamics of one of such particles can be
described by the equations as follows,

Uy = WUy — WXy

. : (12)
Vy1 =0HVyx — UXyos

where u=e* / Rmc?* is the coupling coefficient be-
tween the particles.

Since the coupling coefficient is small, the unper-
turbed values of the fields radiated by the particles
can be substituted into the last terms on the right-
hand side of Eq. (12). The transverse components of
the field emitted by the particles are E,; = E;siny;
and E,; = E;cost;, where y;=wyt+¢;. Here
the wavelengths A are much larger than the Larmor
radius of the electrons (A > r;). Therefore, we have
been able to neglect the spatial dependences exhibit-
ed by phases of the waves emitted. Thus, the equation
set Eq. (12) can be easily generalized for an arbitrary
number of particles N(N > 1):

N
Uk =V — 2 €j-COSYj,
j:l,jik (13)

Uyk

N
==V — 2 8j Slﬂl/)]

j=Lj#k

Here &; = u;A;; u; = e’ /Rkjmcz; Y=oyt +¢j;
T=wyt; V=dv/dt; A;j=eE;/moy.

The sums present in the right-hand sides of
Egs. (13) take into account the effect of other par-
ticles on the dynamics of an arbitrary particle sub-
scribed with k. Should that effect be neglected, for
example by setting &;= 0, the solutions of Eqs. (13)

would read

v, = Asin(t + ¢) and v, = Acos(t + ¢), (14)
with
{A,p} = const.

Making account of the radiated fields we arrive
at &; # 0, which leads to the appearance of a time
dependence of both the amplitude and phase, i.e.,
{A,} # const. In this case, Egs. (13) and (14) per-
mit obtaining relationships between the amplitudes,
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Fig. 1. Time-dependent phases of interacting oscillators, N = 10
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Fig. 2. Time-dependent phases of interacting oscillators, N = 60

phases and their derivatives, like

Dy = A cos(T + @)1+ @i+ Asin(t + ¢ ) =
N

= Ak COS(T + (pk) + 28] Sin(T + (p])'
j#k

(15)

Upon multiplying Eq. (15) (first, by cos(z + ¢y)
and then by sin (7 +¢;)), we can obtain, after pro-
per averaging, a set of equations to describe the dy-
namics of particles’ phases and amplitudes,

. 1 .
P =5 D Esin(p; = i),
. kj;tk (16)
A= cosli; —po)
j£k

Like in Eq. (5), the amplitudes A; show a much
slower rate of variations as compared with the
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phases ¢;. Once again, this allows us considering
Aj, with j=1,2 ... as constant magnitudes in the
first equation of the set Egs. (16).

Considering the A; and 4 as sets of N statisti-
cally independent random values, we may transform
the equation for the phases into

i, 1 i
o —ip, p _
<pk—eNIm{e k—ze f}—

j#k

- itpi—p) 1 N ito;—01)
—eNIm{e J NZe J }

j#k,l

17)

Here ¢y = N(u){A)/ Ay, where (u) and (A)
denote average values of u; and A;, respectively.

This relation makes it possible to obtain an equa-
tion as follows for finding the separation between the
phases of two arbitrary particles,

Ay = ey {cos(Ay)| (sin(A;)) - (sin(A;)) |-
= sin(Ag)[ (cos(A;))+(cos(A;)) ]} (18)

N
Here Ay = @1 — ¢, (exp(i<p)> = %Zkexp(hpj).
j#*

It is easy to see that the functions A;; tend to zero,
while they are the relations which the equation set
Egs. (17) holds for. In addition, with Ay — 0 the
first term in Eq. (18) is proportional to (A;)?, while
the second one is proportional to Ay;. Therefore, in
order to determine the time dependence of Ay, it is
sufficient to keep only the latter terms in the right-
hand part of Eq. (18), viz.

Akl =—2€N sinAkl. (19)

Equations (19) possess singular points at coordi-
nates Ay =nsm where n is an arbitrary integer. The
states corresponding to even values of n are stable,
their synchronization will always take place in cases
of an initially non-uniform phase distribution. The
states with odd values of n are unstable.

The behavior of the phases in the vicinity of the
singular points is

Akl = Ak,(O)exp(iZSNr). (20)

The upper and the lower signs correspond to un-
stable and stable states, respectively.

The process of the synchronization of the elec-
trons rotating in an external field, described in Sec-
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tion 2, resembles such for the case of self-synchroni-
zation. However, in the latter case, the characteristic
time required for the synchronization is, according
to Eq. (20), 1/ (2eywy), with €y ~ N. For a given
cyclotron frequency, this time decreases as the elec-
tron density # is increased.

The analytical results presented above are in a
good agreement with our numerical study of the ini-
tial relations Eqs. (16). The results of numerical sim-
ulations are shown in Figs. 1 and 2 for a total number
of interacting particles equal to 10 and 60, respec-
tively. These figures present time dependences of
phases of the six particles possessing initial phases
¢(0) equal to 0;7/2;7;37/2;7.52/2 and 27, In
these simulations, the relationship between their in-
trinsic time and the laboratory time is determined
by the formula t =T, / (wy €5). As can be observed
from Figs. 1 and 2, the phases tend to two stationary
values which differ by 27r. From the physical point
of view, the self-synchronization has occurred with
the phases of the steady state remaining unchanged.
In addition, comparison of the figures has revealed
that an increase in the number of interacting parti-
cles leads to a decrease in the synchronization time,
as indicated by Eq. (20).

2.2. Stability Analysis

The results obtained above show that an ensemble
of charged particles (electrons) placed in an exter-
nal magnetic field tends to phase-lock individual
particles of the ensemble. Practically, the ensemble
considered can be seen as a model of an ideal plas-
ma placed in a magnetic field. Therefore, it seems of
interest to investigate the consequences of the phase
synchronization of individual plasma particles. Be-
low, we will show that the phase synchronization of
particles can radically change the dynamics of the
particle ensemble considered.

To study the dynamics of an ensemble of phased
particles, we start from their equations of motion,
Eq. (12). By differentiating this equation set and per-
forming some standard transformations, we arrive at
the equations as follows to describe the dynamics of
just two interacting particles,

.. 2 _ 2
Uy + WHV, = 2UOH V),

. 2 _ 2
Vy1 + WHV = 2UQHV ).
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For an arbitrary number of particles, the set of
equations to describe the dynamics of the velocity
components can be represented as

N
U tvp=2 Y uv;. (1)

j=1,j#k

Here, the variables v, determine either the
x-component or the y-component of the k-th parti-
cle velocity. Also, the dimensionless time 7 = wyt is
used. The coupling coeflicients u; differ from one
another only by the amount of separation R; be-
tween the particles.

Note that for the case of many oscillators (N > 1)
(and small coupling coeflicients (4; <1), the right-
hand side of Eq. (21) remains the same for oscillators
of all kinds (having different values of the index k).
In this case, Eq. (21) can be significantly simplified,
viz.

N
U +| 1-2) u; v =0.
j=1

(22)

Thus, dynamics of the ensemble is completely de-
termined by the sum of the coupling coefficients. To
interpret this condition in terms of physical parame-
ters, let us calculate the sum in Eq. (22). The summa-
tion should be performed over coupling coeflicients
of the particles located in a volume of characteristic
dimension A /2. This limitation of the volume stems
from the initial assumption concerning the possibil-
ity of neglecting the spatial variation of the phase of
the particle-radiated wave. The summation can be
replaced by integration over a sphere of radius 4 /2.
With account of u; = e’/ (ijcz), the integration
yields
Al nile?
D

=1 2mc

Thus, in accordance with Egs. (22) and (23) the
natural frequency of the ensemble of electrons, spe-

(23)

cifically

) anile?
W, =4]1-——,
mc?

decreases as the electron density # is increased. This
results in low-frequency oscillations appea-ring in
the plasma. In case the density n exceeds the thresh-
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old value, such that

mC2

_ 24
A%e? (24)

n>
the plasma dynamics goes unstable. The critical den-
sity is determined solely by the cyclotron wavelength
A and, accordingly, the d. c. magnetic field’s strength.
For instance, the wavelength 4 = 3 cm corresponds
to a critical density about 10'! cm™. Should the con-
dition of Eq. (24) be satisfied, the particles would
stop their regular rotation in the magnetic field. The
speed of their motion becomes unstable and the par-
ticles start being accelerated. Of importance is the
fact that the particles are no longer retained by an
external magnetic field. This is the case of a radical
change in particle dynamics.

3. Suppression of phase
synchronization

Thus, within the framework of the model we have
just considered, an ensemble of charged particles be-
comes unstable when the density of oscillators ex-
ceeds some critical value. The question arises about a
possible mechanism to suppress the instability. From
a general standpoint, a sufficient level of fluctuations
may suppress the phase synchronization. In fact, this
might prove to be a rather difficult problem for be-
ing trea-ted analytically. However, estimates for the
required magnitude of fluctuations are easily obtain-
able. To do that, we add a term in the right-hand side
of Eq. (17) for the phase, representing additive ran-
dom forces, i.e.

i 1 i(pi—
Pk = €N Im{e’(‘/’k_‘pi) — 2 e!#i=e) } +&(1). (25)
N :
j£k,l

That addendum in the right-hand side of Eq. (25)
can be assumed, for the sake of simplicity, to be a del-
ta-correlated random function with the diffusion co-
efficient D, viz.

(E())=0; (E(1E()) = DO(t — ).

It is possible to obtain solutions to the equations
Eq. (25), however, their form may happen to be cum-
bersome. Meanwhile, it is easy to obtain an estimate
for the value of the diffusion coeflicient D that would
be sufficient for suppressing the phase synchroniza-
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tion. To do this, one needs to compare two proces-
ses, namely one without fluctuations (D = 0) and the
other with fluctuations, hence D # 0. The solution
of Eq. (25) for the latter case and with &5 =0 is well
known, namely the r.m.s. level of phase fluctuations
under the action of a random force reads as

o= <<p,2>=Dx/§.

The diffusion time T over which the phase is
changed by 27z (in fact 0 =2a) can be estimated as
T = 27% / D. During this time, the phases become
separated, because of the synchronization process, by

A= - exp(—(2en)T),
where
e N

mc*R

N
EIN = ALZNUAj ~Nu=
izl
If the inequality (2&, )T <1 holds, the synchro-
nization process is subject to suppression by dif-
fusion.
The synchronization process should prevail pro-
vided that the number of oscillators were greater
than the following critical value

1_.D

~DR-10',

where R is the average separation between the par-
ticles.

Conclusions

1. The most important result is the predicted appear-
ance of low-frequency oscillations in an ensemble of
charged oscillators, with a further onset of plasma
instability development in case the plasma density
exceeds a certain critical value. Under conditions of
the instability, the ensemble of oscillators moving in
an external magnetic field can no longer be confined
by that field.

This result is important for two reasons. First, the
electromagnetic field resulting from cyclotron radi-
ation of the oscillators, acts as a coupling agent be-
tween the oscillators. While the field produced by a
single electron is of low intensity, the great number of
phase-locked oscillators do generate a field that can
offer noticeable effects. Second, while the dynamics of
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an arbitrary number of oscillators has been well stu-
died in previous works (see, for instance, [6, 7]), the
oscillator frequencies and the coupling between them
were assumed to be determined by the same poten-
tial in which the charged particles moved. In our case,
the coupling coefficients are determined by another
physical mechanism, namely, the one associated with
the radiation from the oscillators themselves.

As has been expected, both the self-synchroniza-
tion effect and the instability that follows are sup-
pressible in the presence of an external fluctuating
field. We have suggested an estimate for the intensi-
ty of delta-correlated random fluctuations that might
be required for undermining the synchronization
process and that of plasma dynamics stabilization.

2. The phase synchronization of particles in the
CRM devices and gyrotrons is an essential physical
process. This synchronization is determined by rel-
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GA30BA CMHXPOHIZAIIIA YACTMHOK ITPU HMKJIOTPOHHNMX PESOHAHCAX

IIpenamer i Meta po6oru. JocmimkeHo GpasoBy CMHXPOHI3aIII0 €/IEKTPOHIB B iflea/1bHiil ITa3Mi B IOCTIIHOMY OJHOPiZHOMY 30B-
HIIIHPOMY MarHiTHOMY nosti. Mu po3rysifaemMo iBi popmu CHMHXpPOHI3allil: CMHXPOHI3alii0 3a OIIOMOTOI0 30BHILIIHBOTO €eKTPO-
MAarHIiTHOTO MOJIA Ta CMHXPOHI3allil0 3a JJOMMOMOTOK IMKIOTPOHHOTO BUIIPOMIHIOBaHHS, III0 BUITYCKA€ThCA eNeKTpoHamu. Harra
MeTa — nopiBHATH Iii GopMHU CHHXpOHI3amil Ta iXHiil BIUIMB Ha CTabiNbHICTD IIa3Mu.

Meropu Ta MeTomonoria. [I1asMy IOKa3aHO AK CYKYIHICTb MOB SA3aHMX OCUMIATOPIB, AMHAMIKA AKMX OMMCYETbCA HAOOPOM
110B’s13aHUX i epeHIiaTbHIX PIBHAHD. BpaxoByroun HeBeIUKuMit 3B’ 130K MDXK OCLM/LITOPAMI, MU 3HAXOMMO aHaTliTUIHUI O3B’ -
30K PIiBHSHHS Ta BUKOHYEMO aHali3 CTIIKOCTI, BUKOPMCTOBYIOUM CTaHJAPTHI Higxoxu Teopii auHamivHux cucrem. L1i poss’sskn
MiITBEP/PKEHO BilMOBiIHMM YMCETbHUM MOJIE/TIOBAHHAM.
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Pesynbratn. Mu [eMOHCTPY€EMO, 1[0 30BHIIIH: eIeKTPOMArHiTHA XBU/IA MOYKe HAIIPAB/ATH YaCTUHKYU J10 $Ha30BOi CMHXPOHi-
3allii, 1[0 IPU3BOJUTH [0 YTBOPEHH: $a3oBuX 3rycTKiB. el MexaHi3M IpyIyBaHHA 4aCTMHOK MOXKe OyTu Oinbil edeKTUBHUM 3
TOYKM 30PY Yacy CMHXPOHi3allil HOpiBHAHO 3 BiloMMMM MeXaHi3sMaMM, 3aCHOBaHMMM Ha Teopil BifHocHocTi. Kpim Toro, Mu rnoxasy-
€MO, 110 IUMKIOTPOHHE BUIIPOMiHIOBaHHSA, BUNTYILleHE 3aPA/PKEHMMY YaCTUHKAMI, IKe 4aCTO He BPAXOBYEThCs Yepes JIoro MaicTb,
IPU3BOAUTD /10 caMo(a30BOi CUMHXPOHi3allii e/leKTPOoHiB. JIo TOro X, AKIIO IiI/IbHICTD 3apsAKEeHNX YaCTIHOK B aHCaMO/Ii JOCUTD
BICOKA, MO>Ke BUHMKHYTY HeCTabi/IbHICTb, 1[0 HOTEHIIITHO MO>Ke IIOPYLINTH aHCaMO/Ib. M1t HaZlaeMO OLIiHKY BUITafKOBUX BIyKTY-
alliif, HeOOXITHNUX Ji/Is1 3pUBY NPOLleCy CUHXPOHIi3allii Ta crabimisarii AMHAMIKY I7Ta3MI.

BucHoBku. Haif6iIbI 3HaUYIIMM pe3y/IbTaTOM € BUHMKHEHHS HU3bKOYAaCTOTHMX KOJIMBAHD Y CYKYITHOCTI 3apsAIKeHIX OCLINIIA-
TOPIB, 110 CYIIPOBOIKYETCSA IOABOI0 HECTAOLIPHOCTI I/Ia3MH, KOJIM TYCTHHA IUIA3MY IIePeBUIIYe KPUTUUHE 3HAUCHHA. Y TaKOMy
cLieHapiil aHCaMO6/Ib OCHMIATOPIB Y 30BHIIIHPOMY MarHiTHOMY IO Oi/iblite He YTpUMY€EThCs pasoM noneM. Leit edexT i Bpaxo-
BYBaTU B PO3pOOKax, OB I3aHNX 3 BUKOPUCTAHHAM IIa3MM BiJHOCHO BUCOKOI IIi/TbHOCTA.

Kniouosi cnosa: yuxnomponte 6UnpomMiH08aHHs, UUKIOMPOHHI Pe3OHAHCU, OUHAMIKA YACMUHOK, NAIA3MA, CUHXPOHI3AUiA.



