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PHASE SYNCHRONIZATION OF PARTICLES 
AT CYCLOTRON RESONANCES

Subject and Purpose. Th e eff ects considered concern phase synchronization of electrons in an ideal plasma subjected to the action of an 
external uniform, d. c. magnetic fi eld. Two modes of the synchronization are discussed, specifi cally one by an external electromagnetic 
fi eld and the other by the cyclotron radiation emitted by the electrons. Th e purpose is to compare these forms of synchronization and their 
eff ects on plasma stability.

Methods and Methodology. Th e plasma is represented as a set of coupled oscillators whose dynamics is described via coupled diff eren-
tial equations. Assuming the coupling between the oscillators to be weak we fi nd analytical solutions to the equation, further performing 
a stability analysis which exploits standard approaches of the dynamical systems theory. Th e solutions found are validated through corre-
sponding numerical simulations.

Results. As has been found, an external electromagnetic wave may be capable of guiding the particles toward phase synchronization, 
which can lead to formation of phased bunches. Th is mechanism of particle grouping may prove to be more effi  cient, in terms of scale 
times of synchronization, if compared with known mechanisms exploiting relativistic eff ects. Additionally, we show that the cyclotron 
radiation emitted by the charged particles (which is oft en disregarded because of its smallness) can lead to self-phase synchronization of 
the electrons. Moreover, should the density of charged particles in the ensemble be suffi  ciently high, an instability can arise, potentially 
disrupting the ensemble. Estimates have been provided of the level of random fl uctuations capable of  undermining the synchronization 
process and plasma dynamics stabilization.

Conclusions. Th e most signifi cant fi nding of this analysis is the emergence of low-frequency oscillations in the charged oscillators set, 
followed by an onset of the plasma instability when the plasma density exceeds a certain critical value. Within that scenario, the ensemble 
of oscillators sitting in the external magnetic fi eld is no longer held together by the fi eld. Th e eff ect should be taken into account in appli-
cations related to plasmas of a relatively high density.

Keywords: cyclotron radiation; cyclotron resonance; particle dynamics; plasma, synchronization.

Introduction
Cyclotron resonances are among the best known and 
most extensively studied resonant eff ects. Th ey fi nd 
widespread application, as exemplifi ed by such de-

vices as the cyclotron resonance maser (CRM) and 
gyrotrons. Despite comprehensive investigations 
of particle-wave interactions under cyclotron reso-
nance conditions, many unexplored facets still re-
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main, concerning the dynamics of energy exchange 
between particles and waves during cyclotron reso-
nances.

Th e results presented in papers [1, 2] show, among 
other things, that a correct formulation of the cy-
clotron resonance conditions requires considering 
the strength of the wave which the particles inter-
act with. Taking that into account may dramatically 
change our picture of particle dynamics, in particu-
lar one can expect signifi cant changes in the phase 
dynamics of particles. 

In this paper, we conduct a study on the phase 
synchronization of electrons in an ideal plasma sub-
jected to a uniform, d. c. external magnetic fi eld. Our 
investigation is focused on two types of synchroniza-
tion, specifi cally the synchronization induced by an 
external electromagnetic fi eld, and such produced 
by the cyclotron radiation emitted by the electrons. 
Our fi ndings reveal that an external electromagnetic 
wave can steer particles towards phase synchroniza-
tion, thus leading to formation of phased bunches. 
Th is method of particle grouping demonstrates po-
tential for a shorter synchronization time — as com-
pared with the known mechanisms exploiting rela-
tivistic eff ects [3, 4].

In contrast to the many prior studies that ignored 
the low-level radiation emitted by charged parti-
cles in an external magnetic fi eld, we have included 
these eff ects in the analysis. As has been shown, the 
cyclotron radiation leads to self-synchronization of 
the electron phases. Th is radiation can signifi cantly 
infl uence the dynamics of the ensemble of charged 
particles, with the appearance of low-frequency nat-
ural vibration modes. Furthermore, at a suffi  ciently 
high density of charged particles in the ensemble, an 
instability can develop. Such instability might be able 
to disrupt the ensemble. Here, we suggest an esti-
mate of the additional fl uctuations capable of under-
mining the synchronization process. 

Th e paper is organized as follows. In Section 1, it is 
shown that an external electromagnetic wave can di-
rect particles towards phase synchronization, which 
results in formation of phase bunches. Th is mecha-
nism of particle grouping could potentially be more 
signifi cant, from the point of the synchronization 
time, than other known mechanisms because of the 
relativistic velocities, as seen by the examples of the 
CRM and gyrotrons [3, 4]. 

Section 2 demonstrates that the plasma particles 
(electrons) moving through an external magnetic 
fi eld can emit waves of cyclotron frequency, which ef-
fect leads to phase self-synchronization. Under such 
circumstances, collective oscillations of the parti-
cles can appear, in the form of low-frequency eigen-
modes. Furthermore, an instability can develop that 
might be capable of disrupting the magnetic confi ne-
ment of the plasma.

In Section 3, we discuss how fl uctuations can af-
fect the synchronization process and particle dynam-
ics. An estimate of the fl uctuation level required for 
inhibiting the synchronization process is provided. 
In conclusion, we summarize our fi ndings. 

1. Phase grouping 
of an ensemble of particles
Consider the dynamics of an arbitrary particle mov-
ing within a uniform, d. c. magnetic fi eld 0H 


  

 00,0, H  in the presence of an electromagnetic 
wave with transverse fi eld components as follows

sin ,xE E ψ cos .yE E ψ

Here ,Htψ ω ϕ   where Hω  denotes the cyclo-
tron rotation frequency of a particle in the magnetic 
fi eld, and ϕ is the wave’s phase. Th e wavelength λ is 
assumed to be greatly in excess of the electron’s Lar-
mor radius .Lr  Consequently, the transverse-plane 
nonrelativistic dynamics of the particles in such 
fi elds can be described by the equations

sin ,xk ykυ υ ε ψ    cos ,yk xkυ υ ε ψ   
  (1)

with H tτ ω  and / ,d dυ υ τ  where / cυ υ  is 
the particle speed normalized to the speed of light, 
fi nally / HeE mcε ω  is the wave’s "strength param-
eter" (nonlinear parameter).  

Note that the phase of the external wave does not 
show an explicit dependence on the spatial coordi-
nate, because of .Lrλ  If the external fi eld were 
neglected i.e., ( 0),ε   then the solutions of Eq.  (1) 
could be represented as

sin( ),kx k kAυ τ ϕ   cos( ),ky k kAυ τ ϕ    (2)

with
{ , } .k kA constϕ 

With an external fi eld taken into account (i.e., 
( 0)),ε   the amplitude of the particle’s velocity and 
its phase relative to that of the wave both become 
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time-dependent, and { , }k kA ϕ  is no more constant. 
Th en we fi nd from Eq. (2) 

, cos( ) sin( ).x k k kAυ τ ϕ ε τ ϕ      (3)

Next, we will assume that the wave strength pa-
rameter ε is small. In this case, the derivatives of the 
amplitude and the phase will also be small. Upon 
equating quantities of the same order we arrive at 

 cos( ) sin( )
sin( ).

k k k kA Aτ ϕ ϕ τ ϕ

ε τ ϕ

   
 



  (4)

Upon multiplying both sides of Eq.  (4) by 
cos( )kτ ϕ  and averaging we obtainby using Eq. (3) 
a set of coupled equations determining the dynamics 
of the phase and the amplitude, specifi cally

sin( ),

cos( ).

k k
k

k k

A
A

ε
ϕ ϕ ϕ

ε ϕ ϕ

    
 




  (5)

Let us also pay attention to the fact that the am-
plitude is small, i.e. / 1,k kA cυ   and varies with 
time at a much slower rate than the phase. Th is en-
ables us to consider the amplitude as a constant mag-
nitude in the equation for the phase. Th is equation 
can be conveniently re-written as 

sin ,k k kΔ Γ Δ     (6)

where k kΔ ϕ ϕ   and / .k kAΓ ε  Th e singular 
points of Eq. (6) are 0 ,k nΔ π  where n  0, 1, 2, … . 
Th e states corresponding to even values of n are sta-
ble, whereas odd n correspond to unstable states. Th e 
trajectories either approach to or leave the areas of 
stable (or unstable) states of Eq. (6) as

 (0)exp 2 .k k kΔ Δ Γ τ    (7)

Th e upper sign corresponds to unstable, while the 
lower one to stable states. Th us, all the particles of 
a group bear the same phase. An ensemble like this 
demonstrates a particularly effi  cient interaction with 
the electromagnetic wave. 

Assuming that the phase has reached one of the 
states like 0 ,k nΔ π  we can fi nd, from the equation 
for kA  in the set Eqs. (5), the b ehavior of the velo-
city amplitude 

,kA Cετ     (8)

where the plus and the minus signs correspond, re-
spectively, to stable and unstable states (C is a con-
stant magnitude). An unlimited increase or decrease 
of kA  (velocity), if occurring according to Eq.  (8), 
arises from a lack of account for the energy losses 
owing to radiation by the particles, else because of 
nonlinear eff ects. 

Let us compare the grouping mechanism of Eq. (7) 
with the conventional mechanism of particle group-
ing in the CRM (see, for example, paper [4]). Th e 
change in the particle phase can be expressed as

,Hd
dt
ϕ ω

γ
   (9)

where
1/22(1 ) .γ υ  

If the particles have diff erent energies, then any 
change in the phase separation between them shall 
depend on the diff erence between these energies, viz.

21 0 .γ γΔ Δ Δ τ     (10)

Here 21 2 1,Δ ϕ ϕ   γτ  is the synchronization 
time; 0Δ  the maximum phase separation between 
the particles, and γΔ  stands for variation of the 
parameter γ resulting from a change in the parti-
cle’s energy. If the particles are synchronized, which 
means  21 0 ,Δ   then from Eqs.  (9), (10) we can 
get an expression for the synchronization time, 

 0 / .γ γτ Δ Δ
Let us compare this synchronization time with 

such following from Eq. (7), namely 

1 / (2 ) / (2 ).Eτ Γ υ ε   

To estimate γτ , it is necessary to determine the 
magnitude of the particles’ energy change during 
their interaction with the wave. Also, we believe the 
grouping to occur when collective processes have 
not yet manifested themselves. In this case γΔ   

2 2
0( ) / 2 ( ) 1,υ υ υ Δυ      which suggests 

γΔυ ετ  and 0 / .γτ Δ ευ  

Also, we select such a pair of particles where one 
would be in a stationary (stable) phase. Its phase po-
sition is not changed and its energy remains con-
stant. Th e other particle is accelerated to a maximum 
possible degree. By following this procedure, we ob-
tain an estimate, as given below, for the synchroniza-
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tion times ratio:

.E

γ

τ υ
υ

τ ε
  

Hence, if the inequality 3ε υ  holds, then the syn-
chronization mechanism of Eq. (7) that we have con-
sidered proves to be more effi  cient than the known 
mechanism based on relativistic eff ects. 

2. Eff ect of cyclotron radiation 
on plasma dynamics
2.1. Self-synchronization 
of rotating particles

As has been shown in the previous Section, an ex-
ternal electromagnetic radiation does synchronize 
the phases of rotating charged particles. Here we 
will demonstrate that similar synchronization owes 
to the particle interaction eff ectuated solely through 
cyclotron radiation, without any external forcing. A 
well-known example of such synchronization is the 
coupled clocks eff ect, fi rst described by Huygens.

Once again, we will consider an ensemble of 
non-relativistic charged particles (electrons) placed 
in a d.  c. magnetic fi eld  0 00,0, .H H


 Th e rota-

tion of and radiation from the electrons in such a 
magnetic fi eld both take place at the cyclotron fre-
quency /H eH mcω   independent of the electrons’ 
speed. Th e radiation produces an electric near-fi eld 
about each of the particles, which is of intensity [5]

2 .
e

E
c R
υ

 


  (11)

Here e is the charge of the particle, υ  the particle’s 
acceleration during its rotation, and R stands for sep-
aration between the particles.

Eq.  (11) describes the electric fi eld strength of 
a rotating particle at a close distance R λ  from 
that. Th e particles can interact with each other via 
this radiation. Note that the fi eld strength at a dis-
tance, say, 10 cmR λ   from the radiating particle 
is extremely small, namely 1310 V/cm.E   Usual-
ly, such fi elds are not taken into consideration when 
discussing plasma dynamics. However, the following 
analysis demonstrates that such fi elds can have a sig-
nifi cant impact on plasma dynamics, particularly, by 
provoking phase synchronization between the elec-
trons rotating in the magnetic fi eld.

We start by considering the interaction of two 
non-relativistic particles, focusing only on transverse 
motion of the particles with respect to the magnetic 
fi eld. Th e dynamics of one of such particles can be 
described by the equations as follows,

1 1 2

1 1 2

,
,

x H y x

y H x y

x
x

υ ω υ μ

υ ω υ μ

 
 

 
 

  (12)

where 2 2/e Rmcμ   is the coupling coeffi  cient be-
tween the  particles.

Since the coupling coeffi  cient is small, the unper-
turbed values of the fi elds radiated by the particles 
can be substituted into the last terms on the right-
hand side of Eq. (12). Th e transverse components of 
the fi eld emitted by the particles are sinxj j jE E ψ  
and cos ,yj j jE E ψ  where .j H jtψ ω ϕ   Here 
the wavelengths λ are much larger than the Larmor 
radius of the electrons ( ).Lrλ  Th erefore, we have 
been able to neglect the spatial dependences exhibit-
ed by phases of the waves emitted. Th us, the equation 
set Eq. (12) can be easily generalized for an arbitrary 
number of particles N ( 1):N 

1,

1,

cos ,

sin .

N

xk yk j j
j j k

N

yk xk j j
j j k

υ υ ε ψ

υ υ ε ψ

 

 

  

   









 (13)

Here ;j j jAε μ  2 2/ ;j kje R mcμ   ;j H jtψ ω ϕ   
;H tτ ω  / ;d dυ υ τ  / .j j HA eE mω

Th e sums present in the right-hand sides of 
Eqs.  (13) take into account the eff ect of other par-
ticles on the dynamics of an arbitrary particle sub-
scribed with k. Should that eff ect be neglected, for 
example by setting jε  0, the solutions of Eqs. (13) 
would read

sin( )x Aυ τ ϕ   and cos( ),y Aυ τ ϕ    (14)

with

{ , } .A constϕ 

Making account of the radiated fi elds we arrive 
at 0,jε   which leads to th e appearance of a time 
dependence of both the amplitude and phase, i.e., 
{ , } .A constϕ   In this case, Eqs. (13) and (14) per-
mit obtaining relationships between the amplitudes, 
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phases and their derivatives, like 

, cos( )[1 ] sin( )

cos( ) sin( ).

x k k k k k
N

k k j j
j k

A A

A

υ τ ϕ ϕ τ ϕ

τ ϕ ε τ ϕ


     

   

 

Upon multiplying Eq. (15) (fi rst, by cos( )kτ ϕ  
and then by sin ( )),k   we can obtain, aft er pro-
per averaging, a set of equations to describe the dy-
namics of particles’ phases and amplitudes, 

1 sin( ),

cos( ).

k j j k
k j k

k j j k
j k

A

A

ϕ ε ϕ ϕ

ε ϕ ϕ





 

 







  (16)

Like in Eq. (5), the amplitudes jA  show a much 
slower rate of variations as compared with the 

phases .jϕ  Once agai n, this allows us considering 
,jA  with j   1, 2 … as constant magnitudes in the 

fi rst equation of the set Eqs. (16). 
Considering the jA  and jμ  as sets of N statisti-

cally independent random values, we may transform 
the equation for the phases into 

( ) ( )

,

1Im

1Im .

jk

k j j l

ii
k N

j k

i i
N

j k l

e eN

e eN

ϕϕ

ϕ ϕ ϕ ϕ

ϕ ε

ε





 



    
  

    
  







 
(17)

Here / ,N kN A Aε μ  where μ  and A  
denote average values of jμ  and ,jA  respectively.

Th is relation makes it possible to obtain an equa-
tion as follows for fi nding the separation between the 
phases of two arbitrary particles, 




cos( ) sin( ) sin( )

sin( ) cos( ) cos( ) .
kl N kl jl jk

kl jl jk

Δ ε Δ Δ Δ

Δ Δ Δ

    
   



Here ,kl k lΔ ϕ ϕ   1exp( ) exp( ).
N

j
j k

i iNϕ ϕ


 
It is easy to see that the functions klΔ  tend to zero, 

while they are the relations which the equation set 
Eqs.  (17) holds for. In ad dition, with 0klΔ   the 
fi rst term in Eq. (18) is proportional to 3( ) ,klΔ  while 
the second one is proportional to klΔ . Th erefore, in 
order to determine the time dependence of klΔ , it is 
suffi  cient to keep only the latter terms in the right-
hand part of Eq. (18), viz. 

2 sin .kl N klΔ ε Δ    (19)

Equations (19) possess singular points at coordi-
nates kl nΔ π  where n is an arbitrary integer. Th e 
states corresponding to even values of n are stable, 
their synchronizat ion will always take place in cases 
of an initially non-uniform phase distribution. Th e 
states with odd values of n are unstable.

Th e behavior of the phases in the vicinity of the 
singular points is

(0)exp( 2 ).kl kl NΔ Δ ε τ    (20)

Th e upper and the lower signs correspond to un-
stable and stable states, respectively. 

Th e process of the synchronization of the elec-
trons rotating in an external fi eld, described in Sec-

Fig. 1. Time-dependent phases of interacting oscillators, N  10

Fig. 2. Time-dependent phases of interacting oscillators, N  60

(18)

(15)
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tion 2, resembles such for the case of self-synchroni-
zation. However, in the latter case, the characteristic 
time required for the synchronization is, according 
to Eq. (20), 1 / (2 ),N Nε ω  with .N Nε   For a given 
cyclotron frequency, this time decreases as the elec-
tron density n is increased. 

Th e analytical results presented above are in a 
good agreement with our numerical study of the ini-
tial relations Eqs. (16). Th e results of numerical sim-
ulations are shown in Figs. 1 and 2 for a total number 
of interacting particles equal to 10 and 60, respec-
tively. Th ese fi gures present time dependences of 
phases of the six particles possessing initial phases 

(0)ϕ  equal to 0; 2; ; 3 2; 7.5 2π π π π  and 2 .π  In 
these simulations, the relationship between their in-
trinsic time and the laboratory time is determined 
by the formula / ( ).n H Nt T ω ε  As can be observed 
from Figs. 1 and 2, the phases tend to two stationary 
values which diff er by 2 .π  From the physical point 
of view, the self-synchronization has occurred with 
the phases of the steady state remaining unchanged. 
In addition, comparison of the fi gures has revealed 
that an increase in the number of interacting parti-
cles leads to a decrease in the synchronization time, 
as indicated by Eq. (20).   

2.2. Stability Analysis
Th e results obtained above show that an ensemble 
of charged particles (electrons) placed in an exter-
nal magnetic fi eld tends to phase-lock individual 
particles of the ensemble. Practically, the ensemble 
considered can be seen as a model of an ideal plas-
ma placed in a magnetic fi eld. Th erefore, it seems of 
interest to investigate the consequences of the phase 
synchronization of individual plasma particles. Be-
low, we will show that the phase synchronization of 
particles can radically change the dynamics of the 
particle ensemble considered. 

To study the dynamics of an ensemble of phased 
particles, we start from their equations of motion, 
Eq. (12). By diff erentiating this equation set and per-
forming some standard transformations, we arrive at 
the equations as follows to describe the dynamics of 
just two interacting particles, 

2 2
1 1 2

2 2
1 1 2

2 ,
2 .

x H x H x

y H y H y

υ ω υ μω υ

υ ω υ μω υ

 

 




 

For an arbitrary number of particles, the set of 
equations to describe the dynamics of the velocity 
components can be represented as

1,
2 .

N

k k j j
j j k

υ υ μ υ
 

     (21)

Here, the variables kυ  determine either the 
x-component or the y-component of the k-th parti-
cle velocity. Also, the dimensionless time H tτ ω  is 
used. Th e coupling coeffi  cients jμ  diff er from one 
another only by the amount of separation jR  be-
tween the particles.

Note that for the case of many oscillators ( 1)N   
(and small coupling coeffi  cients ( 1),jμ   the right-
hand side of Eq. (21) remains the same for oscillators 
of all kinds (having diff erent values of the index k). 
In this case, Eq. (21) can be signifi cantly simplifi ed, 
viz.

1
1 2 0.

N

k j k
j

υ μ υ


 
   
 

   (22)

Th us, dynamics of the ensemble is completely de-
termined by the sum of the coupling coeffi  cients. To 
interpret this condition in terms of physical parame-
ters, let us calculate the sum in Eq. (22). Th e summa-
tion should be performed over coupling coeffi  cients 
of the particles located in a volume of characteristic 
dimension / 2.λ  Th is limitation of the volume stems 
from the initial assumption concerning the possibil-
ity of neglecting the spatial variation of the phase of 
the particle-radiated wave. Th e summation can be 
replaced by integration over a sphere of radius / 2.λ  
With account of 2 2/ ( ),j je R mcμ   the integration 
yields 

2 2

2
1

.
2

N

j
j

n e
mc
π λ

μ


   (23)

Th us, in accordance with Eqs.  (22) and (23) the 
natural frequency of the ensemble of electrons, spe-
cifi cally 

2 2

21 ,n
n e
mc
π λ

ω  

decreases as the electron density n is increased. Th is 
results in low-frequency oscillations appea-ring in 
the plasma. In case the density n exceeds the thresh-
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old value, such that 
2

2 2 ,mcn
eπλ


 

 (24)

the plasma dynamics goes unstable. Th e critical den-
sity is determined solely by the cyclotron wavelength 
λ and, accordingly, the d. c. magnetic fi eld’s strength. 
For instance, the wavelength λ  3 cm corresponds 
to a critical density about 1011 cm–3. Should the con-
dition of Eq.  (24) be satisfi ed, the particles would 
stop their regular rotation in the magnetic fi eld. Th e 
speed of their motion becomes unstable and the par-
ticles start being accelerated. Of importance is the 
fact that the particles are no longer retained by an 
external magnetic fi eld. Th is is the case of a radical 
change in particle dynamics. 

3. Suppression of phase 
synchronization
Th us, within the framework of the model we have 
just considered, an ensemble of charged particles be-
comes unstable when the density of oscillators ex-
ceeds some critical value. Th e question arises about a 
possible mechanism to suppress the instability. From 
a general standpoint, a suffi  cient level of fl uctuations 
may suppress the phase synchronization. In fact, this 
might prove to be a rather diffi  cult problem for be-
ing trea-ted analytically. However, estimates for the 
required magnitude of fl uctuations are easily obtain-
able. To do that, we add a term in the right-hand side 
of Eq. (17) for the phase, representing additive ran-
dom forces, i.e.

( )( )

,

1Im ( ).j lk i ii
k N

j k l
e eN

ϕ ϕϕ ϕϕ ε ξ τ



    
  

   (25)

Th at addendum in the right-hand side of Eq. (25) 
can be assumed, for the sake of simplicity, to be a del-
ta-correlated random function with the diff usion co-
effi  cient D, viz.

1( ) 0; ( ) ( ) ( ).t t t D t tξ ξ ξ δ    

It is pos sible to obtain solutions to the equations 
Eq. (25), however, their form may happen to be cum-
bersome . Meanwhile, it is easy to obtain an estimate 
for the value of the diff usion coeffi  cient D that would 
be suffi  cient for suppressing the phase synchroniza-

tion. To do this, one needs to compare two proces-
ses, namely one without fl uctuations (D  0) and the 
other with fl uctuations, hence 0.D   Th e solution 
of Eq. (25) for the latter case and with 0Nε   is well 
known, namely the r.m.s. level of phase fl uctuations 
under the action of a random force reads as 

2 2 .i Dσ ϕ τ 

Th e diff usion time T over which the phase is 
changed by 2π  (in fact 2 )σ π  can be estimated as 

22 / .T Dπ  During this time, the phases become 
separated, because of the synchronization process, by 

exp( (2 ) ),lN TΔ π ε    

where 
2

2
1 .

N

lN lj j
l j l

e NA NA mc R
ε μ μ



  

If the inequality (2 ) 1N T  holds, the synchro-
nization process is subject to suppression by dif-
fusion. 

Th e synchronization process should prevail pro-
vided that the number of oscillators were greater 
than the following critical value

11
2

1 10 .2 4
DN DRTμ π μ

  

 ,

where R is the average separation between the par-
ticles.

Conclusions
1. Th e most important result is the predicted appear-
ance of low -frequency oscillations in an ensemble of 
charged oscillators, with a further onset of plasma 
instability development in case the plasma density 
exceeds a certain critical value. Under conditions of 
the instability, the ensemble of oscillators moving in 
an external magnetic fi eld can no longer be confi ned 
by that fi eld. 

Th is result is important for two reasons. First, the 
electromagnetic fi eld resulting from cyclotron radi-
ation of the oscillators, acts as a coupling agent be-
tween the oscillators. While the fi eld produced by a 
single electron is of low intensity, the great number of 
phase-locked oscillators do generate a fi eld that can 
off er noticeable eff ects. Second, while the dynamics of 
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an arbitrary number of oscillators has been well stu-
died in previous works (see, for instance, [6, 7]), the 
oscillator frequencies and the coupling between them 
were assumed to be determined by the same poten-
tial in which the charged particles moved. In our case, 
the coupling coeffi  cients are determined by another 
physical mechanism, namely, the one associated with 
the radiation from the oscillators themselves.

As has been expected, both the self-synchroniza-
tion eff ect and the instability that follows are sup-
pressible in the presence of an external fl uctuating 
fi eld. We have suggested an estimate for the intensi-
ty of delta-correlated random fl uctuations that might 
be required for undermining the synchronization 
process and that of plasma dynamics stabilization.

2. Th e phase synchronization of particles in the 
CRM devices and gyrotrons is an essential physical 
process. Th is synchronization is determined by rel-

ativity eff ects [3, 4]. Th e paper considers the phase 
synchronization, the result of which is that the par-
ticles get grouped with such phases where the wave 
delivers energy to these particles. Consequently, this 
mechanism can restrict the level of the excited fi eld 
in CRM devices and gyrotrons.

3. It should be noted that the model considered in 
this work is not fully self-consistent. First, this is due 
to the fact that the fi elds considered in the second 
section are determined by the radiation of individu-
al unphased oscillators. Th e radiation in the form of 
transverse electromagnetic waves leaves the region 
occupied by the oscillators. Th ese losses are not taken 
into account in the model. Additionally, an increase 
in the strength of the fi eld excited by the particles at 
cyclotron resonances may lead to regimes with dy-
namic chaos (see, for example, [1, 2, 8]). Th ese issues 
are supposed to be considered in a future work.
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ФАЗОВА СИНХРОНІЗАЦІЯ ЧАСТИНОК ПРИ ЦИКЛОТРОННИХ РЕЗОНАНСАХ

Предмет і мета роботи. Досліджено фазову синхронізацію електронів в ідеальній плазмі в постійному однорідному зов-
нішньому магнітному полі. Ми розглядаємо дві форми синхронізації: синхронізацію за допомогою зовнішнього електро-
магнітного поля та синхронізацію за допомогою циклотронного випромінювання, що випускається електронами. Наша 
мета — порівняти ці форми синхронізації та їхній вплив на стабільність плазми.

Методи та методологія. Плазму показано як сукупність пов’язаних осциляторів, динаміка яких описується набором 
пов’язаних диференціальних рівнянь. Враховуючи невеликий зв’язок між осциляторами, ми знаходимо аналітичний розв’я-
зок рівняння та виконуємо аналіз стійкості, використовуючи стандартні підходи теорії динамічних систем. Ці розв’язки 
підтверджено відповідним чисельним моделюванням.
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Результати. Mи демонструємо, що зовнішня електромагнітна хвиля може направляти частинки до фазової синхроні-
зації, що призводить до утворення фазових згустків. Цей механізм групування частинок може бути більш ефективним з 
точки зору часу синхронізації порівняно з відомими механізмами, заснованими на теорії відносності. Крім того, ми показу-
ємо, що циклотронне випромінювання, випущене зарядженими частинками, яке часто не враховується через його малість,  
призводить до самофазової синхронізації електронів. До того ж, якщо щільність заряджених частинок в ансамблі досить 
висока, може виникнути нестабільність, що потенційно може порушити ансамбль. Ми надаємо оцінку випадкових флукту-
ацій, необхідних для зриву процесу синхронізації та стабілізації динаміки плазми.

Висновки. Hайбільш значущим результатом є виникнення низькочастотних коливань у сукупності заряджених осциля-
торів, що супроводжується появою нестабільності плазми, коли густина плазми перевищує критичне значення. У такому 
сценарії ансамбль осциляторів у зовнішньому магнітному полі більше не утримується разом полем. Цей ефект слід врахо-
вувати в розробках, пов’язаних з використанням плазми відносно високої щільності.

Ключові слова: циклотронне випромінювання, циклотронні резонанси, динаміка частинок, плазма, синхронізація.


