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SPAСETIME ANALYSIS OF AN ELECTROMAGNETIC 
AIRY PULSE AFTER ITS INTERACTION WITH A PLANAR 
BOUNDARY IN UNIFORMLY ACCELERATED 
RELATIVISTIC MOTION

Subject and Purpose. Th e transformation peculiarities that the electromagnetic pulses get when heading towards a boundary that per-
forms uniformly accelerated relativistic motion are the present paper concern. A smooth non-stationarity case when the boundary velocity 
gradually changes from zero to the pulse velocity value is considered, with a focus on the spacetime distribution and evolution of the 
electromagnetic Airy pulse fi eld.

Methods and methodology. Th e study and analysis are carried out by the method of Volterra integral equations which can describe 
electromagnetic wave propagation in a heterogeneous time-varying medium. In terms of this method, the basic initial boundary value 
electrodynamical problem on the electromagnetic source radiation in a heterogeneous time-varying medium is formulated, taking into ac-
count the boundary and initial conditions. Th e resolvent method for solving the Volterra integral equation of the second kind is described. 
Its advantage is analytical solution capabilities and a versatility as to the primary fi eld choice.

Results. Analytical solutions to the original integral equation have been obtained. By analysis, it has been found that the secondary 
fi eld expressions have singularities that can be controlled well enough by a proper choice of numerical modeling parameters. Th e revealed 
singularities have been analytically studied. Th eir action on the Airy pulse was examined and illustrated through simulation modeling 
using the starting parameter that locates the Airy pulse at any moment in time.

Conclusions. In this work, the electromagnetic Airy pulse interaction with a boundary perfoming uniformly accelerated relativistic 
motion was examined using the Volterra integral equations method. Th e obtained analytical solutions revealed signifi cant spacetime 
changes in the Airy pulses. Our analysis indicated possibilities for controlling the secondary fi eld characteristics by a proper choice of 
modeling parameters. Th e results have been confi rmed by numerical simulations. Th ey provide a basis for further research in this area. 
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Introduction
Signifi cant attention has been recently given to the 
electromagnetic wave interaction with boundaries 
performing uniformly accelerated relativistic motion. 
Th is topic is crucial for understanding processes going 

in various physical systems, such as accelerators, plas-
ma colliders, etc. Models of the systems of the kind 
are considered in works [1—4], demonstrating that a 
moving boundary can signifi cantly infl uence the scat-
tering characteristics of electromagnetic waves.

ЕЛЕКТРОМАГНІТНА ТЕОРІЯ
ELECTROMAGNETIC THEORY



272 ISSN 1027-9636. Radio Physics and Radio Astronomy. Vol. 29, No. 4, 2024

O.V. Zhyla, N.P. Stognii

Set apart are the studies of the Airy pulse propaga-
tion in nonstationary media. It is well known that the 
Airy pulses possess unique properties, such as self-
focusing and self-healing, making them promising 
for quantum optics and photonics [5—7]. However, 
the Airy pulse interaction with relativistically accele-
rated boundaries is not understood well enough yet. 
Th is sends us to solve the problem of Airy pulse scat-
tering on such boundaries to refi ne the theoretical 
basics and expand potential applications in quantum 
optics, etc. 

Considerable recent attention has been increa-
singly focused on the Airy pulse interaction with 
boundaries performing uniformly accelerated rela-
tivistic motion as well as on the electromagnetic wave 
propagation in non-stationary media. Th e studies 
address challenging problems having potential use 
in modern technologies. In particular, a numerical 
investigation has been reported [8] about two Airy 
pulses travelling at diff erent wavelengths and inter-
acting with a controllable periodic temporal boun-
dary. Th e intensities of the solitons that emerge from 
this interaction can form an optical event horizon, 
whence the weaker Airy pulse is completely refl ected. 
Th e fi ndings can be welcome to optical manipulation 
and temporal waveguiding. 

Another remarkable work [9] examines asymmet-
ric Airy pulses and their interaction with non-sta-
tionary media. Th is research demonstrates eff ective 
control over the intrapulse Raman scattering due to 
the usage of asymmetric Airy pulses. Th e methods of 
the sort can be employed to enhance the pulse propa-
gation control in complex optical media. 

Current studies not only highlight the impor-
tance of further research into the Airy pulse interac-
tion with relativistic boundaries. Th ey also underline 
the need for new theoretical and experimental ap-
proaches to gain more from the analysis of electro-
magnetic processes in non-stationary media.

Th e originality of studies concerning the Airy 
pulse scattering by a boundary moving with a rela-
tivistic uniform acceleration lies in several key as-
pects. Th e fi rst is non-standard conditions of the in-
teraction. Th e relativistic motion creates challenging 
conditions of the electromagnetic wave interaction 
with a boundary. Th ey do not comply with conven-
tional scattering scenarios and require novel theore-
tical approaches and numerical methods for the in-

teraction analysis. Th e second is that the Airy pulse 
itself is a unique subject of study. Unusual properties, 
such as self-amplifi cation and self-acceleration, make 
Airy pulses particularly intriguing in the context of 
relativistic dynamics. Studying them under condi-
tions that have been little examined before adds ori-
ginality to the research. 

Th e third is the interaction with non-stationary me-
dia. Analysis of the Airy pulse propagation in non-sta-
tionary media, in particular those carrying moving 
boundaries, can cast new insights into fundamental 
physical processes and thus extend the range of Airy 
pulses applications in scientifi c fi elds such as optics 
and photonics. 

Lastly, the fi ndings of this research could be valu-
able for advancing new technologies related to quan-
tum information processing, light control in optical 
devices, development of devices for electromagne-
tic propagation control. Th us, the originality of these 
studies lies in their integrated approach to analy-
zing the interaction of specifi c pulses with a dynamic 
boundary in motion. Th is makes it possible to dis-
cover new physical eff ects and arrive at innovative 
technological solutions.

Generally, over the last decades, signifi cant prog-
ress has been made in the study, analysis, and sha-
ping of laser beams. Many results mount on a nu-
merical basis, which does not always mean reliabi-
lity and completeness. Th erefore, for synthesis and 
analysis of new pulse propagation eff ects, numerical 
modeling should be combined with mathematical 
methods  which make it possible to obtain electro-
magnetic-wave analytical expressions with their sub-
sequent analysis.

Th e electromagnetic fi eld interaction with a hetero-
geneous non-stationary medium is of fundamen-
tal importance for a variety of applied technological 
processes. Th e basic process of electromagnetic wave 
propagation evolves over time in limited spatial areas. 
Th e research into such phenomena requires a rigo-
rous mathematical apparatus to build mathematical 
models of applied problems in electrodynamics. An 
exact analytical solution is available for many idealized 
problems describing fairly simple electrodynamical 
processes. On this basis, more complicated structures 
and processes can be solved. 

Singularities in the electromagnetic pulse conver-
sion occur not only in the case of sharply non-sta-
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tionary boundary motion but for smooth non-sta-
tionarity, too, when the boundary velocity tends to the 
phase velocity of the pulse. Th is is well illustrated by 
the uniformly accelerated relativistic motion of the 
boundary whose velocity continuously varies from 
zero to the relativistic values so that it goes through 
all possible critical points. 

Th e visual sign of the critical point presence is that 
the scattered wave amplitudes tend to infi nity and there 
is ambiguity in determining the number of scattered 
waves. Th e remedy can be by searching for appropriate 
analytical solutions within qualitative considerations, 
as was done in [10] for the case of a plane mono-
chromatic wave. However, based on experience, we 
acknowledge that there is a high likelihood of losing 
some solutions. 

In this paper, we will explore a qualitatively new 
approach to solving the problem of electromagne-
tic pulse interaction with a boundary that is moving 
at relativistic speeds. Th e problem will be addressed 
using the exact method of integral equations to fi nd 
appropriate analytical solutions.

1. Methods and methodology
When the electromagnetic wave and medium para-
meters depend only on time and one spatial coordi-
nate, the problem is one-dimensional and described 
by the Volterra integral equation of the second kind 
in one space dimension [11]:  
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where E0 is the wave fi eld coming from the half-space 
0,x   the values /v c   and 1 1/v c   are the 

phase velocities on both sides of the boundary, and 
( , )t x  is the characteristic  function that equals zero 

in the region with the medium (1) and equals unity 
outside it. A light cone whose vertex is at the obser-
vation point ( , )t x  is given by the Heaviside function 

( )   and determines the kernel of integral Eq. (1) so 
that the kernel is not equal to zero only inside the 
cone. Equation (1) considers the initial and boun-
dary conditions and describes the electromagnetic 
signal evolution over time [0; ).t 

Th e given type of equations is advisable to use for 
describing processes going on in media whose pro-
perties vary over time, making the ongoing proces-
ses non-stationary. It renders a possibility to take into 
account how variations in medium parameters aff ect 
electromagnetic wave propagation. An important 
condition for employing the Volterra integral equa-
tions is the causality of the system. Th is means that 
at any time, the system response only depends on the 
system previous rather than future states. In physical 
problems such as pulse scattering in non-stationary 
media, the use of the Volterra equation is justifi ed. 
It allows taking into account the historical develop-
ment of the process and the eff ects accumulated over 
time. Th is is important for conducting a detailed 
analysis of temporary processes and assessing how 
the initial conditions infl uence the future evolution 
of the system.

Let at time zero, the boundary "switch on" its 
uniformly accelerated motion. Consider the case 
when at time zero the boundary starts moving, 

( , ) ( ( )),st x x x t      while the media on 
both sides of the boundary remain stationary. If 
so, a part of the integration domain in Eq.  (1) will 
change to become part of the region { ( , ) :O x t x    
: 0 , .t x        Th us, in this half-space, 
Eq. (1) for the secondary fi eld becomes
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describes the historical development of the fi eld be-
fore the boundary starts moving. It is evaluated by 
substituting into Eq. (2) the primary fi eld in the Airy 
pulse appearance
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where  Ai ,t x  is the Airy function, T is the time 
scale, and  is the parameter describing the dissipa-
tive properties of the medium. 

Th e solution of integral equation (2) is construct-
ed via the resolvent R̂  and will be shown in further 
calculations. 

Let us consider relativistic uniformly accelerated 
motion, the simplest and most natural form of non-
inertial motion. Th e choice of this motion law in ana-
lyzing the interaction of an Airy pulse with a moving 
boundary is justifi ed for several reasons, both physi-
cal and mathematical. For the interaction between 
an electromagnetic pulse and a moving boundary 
under relativistic conditions, it is crucial to account 
for eff ects that occur at velocities approaching the 
speed of light. In such cases, classical kinematics is 
insuffi  cient, as it fails to incorporate relativistic ef-
fects like length contraction and time dilation. Th e 
relativistic uniformly accelerated motion provides 
an accurate description of boundary kinematics, en-
abling precise modeling of interactions with the elec-
tromagnetic fi eld. Th is law is particularly advanta-
geous for analytical studies, as it facilitates stable and 
physically accurate solutions for the electromagnetic 
fi eld, which is vital in problems involving Volterra 
integral equations. Th e possibility of constructing 
precise solutions hinges on the analytical properties 
of the input parameters. From a physical perspective, 

relativistic uniformly accelerated motion can serve 
as a model for describing the motion of particles or 
boundaries in a plasma accelerated by electromag-
netic fi elds. Th is adds practical relevance to the use 
of this motion law, allowing for the extrapolation of 
study results to real-world physical systems. Let us 
consider uniformly accelerated relativistic motion as 
the simplest and the most natural form of non-iner-
tial motion. Behind the choice, there are several rea-
sons connected with physical and mathematical as-
pects of the problem of Airy pulse interaction with 
a moving boundary. Th e question of the electromag-
netic pulse interaction with a moving boundary in 
relativistic terms requires considering eff ects that oc-
cur at great velocities approaching the speed of light. 
In the relativistic case, the boundary movement can-
not be described within the limits of classical kine-
matics whose laws fail to deal with relativistic ef-
fects like length contraction and time dilation. Th e 
concept of uniformly accelerated relativistic motion 
provides a correct description of the boundary kine-
matics and make it possible to model the boundary 
interaction with electromagnetic fi eld. Th is law of 
uniformly accelerated motion is particularly advan-
tageous for analytical studies, as it facilitates stable 
and physically true solutions for the electromagnetic 
fi eld. Th is is especially important in problems invol-
ving Volterra integral equations, where the availability 
of an exact solution hinges on the analytical proper-
ties of the input parameters. Physically, the relativistic 
uniformly accelerated motion can be thought of as 
a model describing the motion of particles or boun-
daries in an electromagnetically accelerated plasma. 
Th is interpretation stuff s the motion law employed 
in the given problem with a physical sense and ex-
trapolates the study results to physical systems of the 
real world. 

In the present scenario, the boundary velocity con-
tinuously changes, gradually increasing from zero 
to relativistic values and running through all critical 
points. Th e critical points are characterized by abrupt 
perturbations in wave scattering processes with the 
result that the scattered fi eld amplitudes sharply in-
crease, the number of scattered waves is determined 
with ambiguities. A mention should be made that the 
discussed type of motion makes the problem funda-
mentally non-stationary, which signifi cantly compli-
cates its analysis and solution. 

Fig.  1.  Electromagnetic fi eld determination in the uniformly 
accelerated motion case: 1 — x  v1t , 2 — H  t – x / v1, 3 — k 
 –t  x / v1, 4 — x  –v1(t – t) – x, 5 — x  v1(t – t) – x, S1…Sk 
are the points with the abscissas t1…tk, and 2 2 2, ,O O O    are 
subregions of the region O2
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Th e counter-motion between the boundary and 
the electromagnetic wave obeys the expression [12]

2 2( ) ( ),sx t v t    

where /c w  , with w being the acceleration in its 
own frame of reference. As t  , the boundary ve-
locity varies by the law 2 2( ) /u t vt t    until 
approaches the wave phase velocity, ( )u t v  . 

Th e properties of the medium do not change aft er 
the boundary starts moving at time zero. So, in the 
uniform motion case, the secondary fi eld in the region 

1 1:O x v t  (see Fig. 1) will remain the same whether 
before or aft er time zero. In the region 12 :O x v t , 
the resolvent looks diff erent for diff erent values of 
the refractive index 1/v v . 

In the case 1 / 1v v  , the resolvent characteristic 
refl ected from the light line of the boundary always 
resides in the region ( ) ( ( )) 1sx x t     :
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where 1( ) 2t    , with t1 being the point where 
the lower characteristic of the resolvent R̂  meets the 
light line of the boundary, 2 2
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the observation point function (the boundary velocity 
is chosen at the moment it approaches the resolvent 
characteristic, 1 1( ) ( )).u u t 

In the opposite case 1 / 1v v  , the refl ected 
characteristic belongs to the region 1   only 
until the moment of contact 2 2

1 1/ ,kt v v v    
when the boundary velocity approaches the pulse 
velocity 1v .
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rates the subregion 2 ,O  in which the refl ec-
ted characteristic no longer contributes to the re-
solvent, from the region 2 .O  Th e tangent ray  
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nt v v v v        separates the sub-
region 2O  in which both lines of the resolvent cha-

racteristic meet the light line of the boundary. In this 
connection, in formula (3) describing the resolvent, 
the factor Ru should be set equal to zero in the subre-
gions 2O  and 2O . 

2. Results and discussion
Where the ratio 1 / 1v v   is fulfi lled in the subregion 

2 ,O  the secondary fi eld only consists of the single 
Airy pulse 
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Where the same ratio 1 / 1v v   is true in the 2O  
subregion, the secondary fi eld consists of two pulses 
as follows 
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In this case, the primary waves determined by the 
free term E1 are split at the boundary, and the back-
ward waves appear in the 2O  subregion as shown 
below
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Th e radicands in the fraction denominators in the 
  and  – expressions show where in corresponding 

formulas (4)—(6) the critical points are possible to re-
side. At the two points 
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the  denominator in  the   expression turns to zero. 
Th e denominator in the  – expression turns to 

zero at the two points
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Th e ratio 1 / 1v v   determines which of the two ex-
pressions to use. A careful examination of the exact 

Fig. 2. Evolution of the secondary Airy pulses at diff erent values of the starting parameter p0 for x / vT  1,   0.1, and v1 / v  0.5
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expressions picks up all critical points related to the 
problem. 

Th e simulation modeling of the obtained re-
sults involves the so-called starting parameter p0 
 (x0 / v – t0) / T which chases the spacetime position 
of the Airy pulse [13]. Th e starting parameter p0 is 
characterized by the location x0 of the Airy pulse 
generation source at a given time t0 . With the p0 pa-
rameter negative, the pulse leading edge does not 
reach the boundary until time zero. We should only 
focus on positive p0 values, as the main part of the 
Airy pulse is already deep within a medium whose 
dielectric constant changes at time zero. Of most in-
terest is analysis of the Airy pulse fi eld aft er the in-
teraction with the boundary in the subregion 2O , 
where backward pulses appear. Th e evolution of 
the Airy pulse propagation in the subregion 2O  is 

shown in Fig. 2 for diff erent values of the starting pa-
rameter p0 . One can see the deformation of the Airy 
pulse leading edge at the moment it interacts with a 
moving boundary. Whatever the starting parameter 
value, the main lobe gets bifurcation. Besides, the os-
cillation character of the pulse tail changes. 

Figure 3 shows the Airy pulse evolution depending 
on the boundary velocity and for diff erent values of 
the starting parameter p0 .

Th e simulation of the pulse fi eld using formula (6) 
shows that in addition to the main lobe bifurcation 
and modifi ed oscillatory behavior of the tail, the Airy 
pulse also experiences a phase shift . In Fig. 3, the 
black diagram illustrates the Airy pulse fi eld aft er in-
teracting with a moving boundary that is traveling at a 
velocity close to the pulse velocity. Th e black diagram 
shows a more pronounced phase shift  compared to 

Fig. 3. Comparison of the secondary Airy pulses at diff erent boundary accelerations and starting parameter p0 values: x / vT  1, 
1  0.01 (grey line),   0.5 (black line), and v1 / v  0.5

p0  20

p0  50

p0  30

p0  70
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the grey diagram, where the boundary moves much 
slower than the pulse. Th e diff erence in phase shift s 
is explained by the diff erent (in these two, grey and 
black, cases) conditions of the interaction between 
the pulse and the moving boundary. Th e boundary 
movement, especially if at relativistic velocities, al-
ters the nature of the wave as a source of excitation 
by changing the phase of the wave within the space-
time. Th ese changes can be caused by the Doppler 
eff ect which alters the frequency, wavelength, and 
wave phase when the pulse interacts with a mo-
ving boundary. When the boundary moves at a rela-
tivistic velocity, additional relativistic eff ects occur, 
leading to spatial and temporal changes in the refe-
rence frame of the pulse, which further shift s the 

phase. Moreover, the unique dispersive properties of 
the Airy pulse cause diff erent frequency components 
to travel at diff erent speeds. Th e result is that vari-
ous parts of the pulse interact with the boundary at 
diff erent times, making the phase shift  pattern more 
complex. Beyond that, when the boundary moves at 
a relativistic velocity, the angle at which the pulse in-
teracts with the boundary varies and additionaly af-
fects the phase. 

Th us, the interaction of an Airy pulse with a mo-
ving boundary involves relativistic and dispersive 
processes that are considered crucial in causing the 
wave phase shift . Studying these processes will pro-
vide a deeper insight into the mechanisms of wave 
propagation and transformation under challenging 
conditions.

Figure 4 compares the initial Airy pulse and the 
pulse fi eld due to the interaction with a uniformly 
accelerated boundary according to formula (6). Th e 
black line represents the post-interaction fi eld of the 
pulse, while the grey line illustrates the initial fi eld of 
the Airy pulse in the absence of the boundary.

Figure 4 shows the change of the oscillation ampli-
tude of the pulse lobe in comparison with the prima-
ry Airy pulse. Despite the bifurcation, the size of the 
main lobe of the pulse remains almost unchanged.

Let us dwell on the moment the boundary velocity 
approaches the pulse velocity. At that instant, the 
fi eld of the pulse gets a discontinuity attributed, as 
shown before, to the existence of the critical points. 
Th e number of the critical points within the pulse 
domain is connected with the numerical simulation 
parameters. Th us, for the simulation parameters in 
Figs 2—4, the observation domain (aft er time zero) 
contains a single critical point 1 0.   Th e other 
three are negative-valued and, therefore, are not in-
cluded in the secondary pulse domain.

Figure 5 illustrates a discontinuity of the pulse 
fi eld with the critical point presence. Th e result is a 
spacetime band where the pulse does not exist at all, 
the main lobe is on one side of the band, the oscilla-
ting tail is on the other. Th is eff ect can be employed 
to truncate the pulse tail and put to use the principal 
amount of the power the main lobe carries. Th e pro-
cess is easily controlled by picking an optimal value 
of the starting parameter.

Th us, at the moment the boundary velocity ap-
proaches the pulse velocity, 1,u v   the amplitudes 
of the backward waves make a jump for infi nity 

Fig.  4.  Comparison of the secondary and primary fi elds of the 
Airy pulse: p0  30,   0.4, x / vT  1, and v1 / v  0.5

Fig.  5.  Spacetime propagation of the secondary Airy pulse at 
the moment its velocity equals the boundary velocity, p0  30, 
x / vT  1,   0.5, and v1 / v  0.5
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along the line .H    Th is is a consequence of the 
idealizing assumption of an infi nite-power source of 
the boundary movement. It indicates that the actual 
motion cannot be at the velocity mentioned above. 
Th erefore, the infi nite power source approximation 
during unsteady motion of the boundary causes in-
fi nite discontinuities of the electromagnetic fi eld. 
Work [14] studies peculiarities of the plane mono-
chromatic wave conversion by a moving boundary in 
a non-stationary medium and also confi rms that it is 
a non-stationarity of the boundary that causes fi eld 
discontinuities and leads to the formation of new 
waves. When the primary fi eld is represented by the 
Airy pulse, the problem is challenged by the asym-
metric shape of the pulse.

Conclusions
In this study, the unique transformation features of 
the electromagnetic Airy pulse were examined during 
the pulse interaction with a relativistically moving 
and uniformly accelerated boundary. Th is study has 
provided us with deeper insights into the electro-
magnetic fi eld behavior in non-stationary conditions 
which were simulated through a smooth change of 
the boundary velocity over time. Th e method of Volt-
erra integral equations was implemented to model 
the interaction between Airy pulses and a relativis-
tically moving with uniform acceleration boundary. 

Th e method admits an analytical solution to the fun-
damental equation. Th is solution is essential to fur-
ther analyze and penetrate the problem. Th e choice 
of uniformly accelerated relativistic motion aims to 
accurately model the electromagnetic pulse interac-
tion with a moving boundary. Th is approach ensures 
accuracy, physical sense, and practical value of the re-
search results. Our analysis shows that when a pulse 
interacts with a moving boundary, substantial chan-
ges occur in spacetime and can be infl uenced by the 
parameters governing the boun-dary motion. 

Th e obtained results provide a detailed under-
standing of how an electromagnetic pulse propagates 
and evolves under complex conditions. Furthermore, 
the analysis of the secondary fi eld suggests that the 
fi eld characteristics can be controlled by adjusting 
numerical modeling parameters, such as initial pulse 
position, boundary velocity, etc. Th is control opens 
new opportunities for controlling electromagnetic 
wave propagation across diff erent media. Th e analyti-
cal solution results have been validated by numerical 
modeling, which confi rms their validity and high-
lights potential applications in future research and 
practical scenarios. A deeper level of understanding 
of the Airy pulse interaction with a relativistically 
moving boundary has been gained, laying the 
groundwork for further research and practical appli-
cations in optics, photonics, and theoretical physics. 
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ПРОСТОРОВО-ЧАСОВИЙ АНАЛІЗ ЕЛЕКТРОМАГНІТНОГО 
ІМПУЛЬСУ ЕЙРІ ПІСЛЯ ЙОГО ВЗАЄМОДІЇ З ПЛОСКОЮ МЕЖЕЮ, 
ЩО ЗДІЙСНЮЄ РЕЛЯТИВІСТСЬКИЙ РІВНОПРИСКОРЕНИЙ РУХ

Предмет і мета роботи. Метою роботи є дослідження особливостей перетворення електромагнітного імпульсу в результаті 
зустрічного руху з межею, яка здійснює релятивістський рівноприскорений рух. Це випадок плавної нестаціонарності, коли 
швидкість межі поступово змінюється від нульового значення до значення швидкості імпульсу. Предметом дослідження є 
просторово-часовий розподіл і еволюція поля електромагнітного імпульсу Ейрі. 

Методи та методологія. Дослідження та аналіз вищеописаного явища проводиться методом інтегральних рівнянь 
Вольтерра, який дозволяє описувати поширення електромагнітних хвиль у неоднорідному нестаціонарному середовищі. У 
рамках цього методу сформульовано базову початково-граничну електродинамічну задачу про випромінювання джерела 
електромагнітних хвиль у неоднорідному нестаціонарному середовищі з урахуванням відповідних початкових і граничних 
умов. Описано метод резольвенти для розв’язання інтегрального рівняння Вольтерра другого роду, перевага використання 
якого полягає в отриманні аналітичного розв’язку рівняння та в універсальності відносно вибору первинного поля.  

Результати. У результаті проведених досліджень отримано аналітичні розв’язки вихідного інтегрального рівняння, ана-
ліз яких показує наявність особливостей у виразах для вторинного поля та можливість їхнього контролю шляхом підбору 
параметрів чисельного моделювання. Також проведено аналітичний аналіз отриманих особливостей і проілюстровано їхню 
наявність і вплив на імпульс за допомогою імітаційного моделювання з використання стартового параметру, який характе-
ризує розташування імпульсу Ейрі в певний момент часу. 

Висновки. У цій роботі досліджено взаємодію електромагнітного імпульсу Ейрі з межею, що рухається з релятивіст-
ським рівноприскоренням. Використано метод інтегральних рівнянь Вольтерра, що дозволяє отримати аналітичні розв’яз-
ки. Аналіз показав суттєві зміни в просторі й часі з можливістю контролю характеристик вторинного поля через налашту-
вання параметрів моделювання. Результати підтверджено чисельним моделюванням, що закладає основу для подальших 
досліджень у цій галузі.

Ключові слова: імпульс Ейрі, електромагнітні хвилі, інтегральні рівняння Вольтерра, резольвента, рівноприскорений рух, 
релятивістський рух. 


