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Subject and Purpose. The transformation peculiarities that the electromagnetic pulses get when heading towards a boundary that per-
forms uniformly accelerated relativistic motion are the present paper concern. A smooth non-stationarity case when the boundary velocity
gradually changes from zero to the pulse velocity value is considered, with a focus on the spacetime distribution and evolution of the
electromagnetic Airy pulse field.

Methods and methodology. The study and analysis are carried out by the method of Volterra integral equations which can describe
electromagnetic wave propagation in a heterogeneous time-varying medium. In terms of this method, the basic initial boundary value
electrodynamical problem on the electromagnetic source radiation in a heterogeneous time-varying medium is formulated, taking into ac-
count the boundary and initial conditions. The resolvent method for solving the Volterra integral equation of the second kind is described.
Its advantage is analytical solution capabilities and a versatility as to the primary field choice.

Results. Analytical solutions to the original integral equation have been obtained. By analysis, it has been found that the secondary
field expressions have singularities that can be controlled well enough by a proper choice of numerical modeling parameters. The revealed
singularities have been analytically studied. Their action on the Airy pulse was examined and illustrated through simulation modeling
using the starting parameter that locates the Airy pulse at any moment in time.

Conclusions. In this work, the electromagnetic Airy pulse interaction with a boundary perfoming uniformly accelerated relativistic
motion was examined using the Volterra integral equations method. The obtained analytical solutions revealed significant spacetime
changes in the Airy pulses. Our analysis indicated possibilities for controlling the secondary field characteristics by a proper choice of
modeling parameters. The results have been confirmed by numerical simulations. They provide a basis for further research in this area.

Keywords: Airy pulse, electromagnetic waves, Volterra integral equations, resolvent, relativistic motion, uniformly accelerated motion.

Introduction in various physical systems, such as accelerators, plas-

Significant attention has been recently given to the ~ma colliders, etc. Models of the systems of the kind
electromagnetic wave interaction with boundaries ~are considered in works [1—4], demonstrating that a
performing uniformly accelerated relativistic motion. ~ moving boundary can significantly influence the scat-
This topic is crucial for understanding processes going  tering characteristics of electromagnetic waves.

Citation: Zhyla, O.V,, Stognii, N.P, 2024. Spacetime analysis of an electromagnetic Airy pulse after its interaction with a planar
boundary in uniformly accelerated relativistic motion. Radio Phys. Radio Astron., 29(4), pp. 271—280. https://doi.org/10.15407/
rpra29.04.271

© Publisher PH "Akademperiodyka" of the NAS of Ukraine, 2024

© This is an Open Access article under the CC BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/
legalcode.en)

ISSN 1027-9636. Padiogpisuxa i padioacmponomis. T. 29, Ne 4, 2024 271



O.V. Zhyla, N.P. Stognii

Set apart are the studies of the Airy pulse propaga-
tion in nonstationary media. It is well known that the
Airy pulses possess unique properties, such as self-
focusing and self-healing, making them promising
for quantum optics and photonics [5—7]. However,
the Airy pulse interaction with relativistically accele-
rated boundaries is not understood well enough vyet.
This sends us to solve the problem of Airy pulse scat-
tering on such boundaries to refine the theoretical
basics and expand potential applications in quantum
optics, etc.

Considerable recent attention has been increa-
singly focused on the Airy pulse interaction with
boundaries performing uniformly accelerated rela-
tivistic motion as well as on the electromagnetic wave
propagation in non-stationary media. The studies
address challenging problems having potential use
in modern technologies. In particular, a numerical
investigation has been reported [8] about two Airy
pulses travelling at different wavelengths and inter-
acting with a controllable periodic temporal boun-
dary. The intensities of the solitons that emerge from
this interaction can form an optical event horizon,
whence the weaker Airy pulse is completely reflected.
The findings can be welcome to optical manipulation
and temporal waveguiding.

Another remarkable work [9] examines asymmet-
ric Airy pulses and their interaction with non-sta-
tionary media. This research demonstrates effective
control over the intrapulse Raman scattering due to
the usage of asymmetric Airy pulses. The methods of
the sort can be employed to enhance the pulse propa-
gation control in complex optical media.

Current studies not only highlight the impor-
tance of further research into the Airy pulse interac-
tion with relativistic boundaries. They also underline
the need for new theoretical and experimental ap-
proaches to gain more from the analysis of electro-
magnetic processes in non-stationary media.

The originality of studies concerning the Airy
pulse scattering by a boundary moving with a rela-
tivistic uniform acceleration lies in several key as-
pects. The first is non-standard conditions of the in-
teraction. The relativistic motion creates challenging
conditions of the electromagnetic wave interaction
with a boundary. They do not comply with conven-
tional scattering scenarios and require novel theore-
tical approaches and numerical methods for the in-
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teraction analysis. The second is that the Airy pulse
itself is a unique subject of study. Unusual properties,
such as self-amplification and self-acceleration, make
Airy pulses particularly intriguing in the context of
relativistic dynamics. Studying them under condi-
tions that have been little examined before adds ori-
ginality to the research.

The third is the interaction with non-stationary me-
dia. Analysis of the Airy pulse propagation in non-sta-
tionary media, in particular those carrying moving
boundaries, can cast new insights into fundamental
physical processes and thus extend the range of Airy
pulses applications in scientific fields such as optics
and photonics.

Lastly, the findings of this research could be valu-
able for advancing new technologies related to quan-
tum information processing, light control in optical
devices, development of devices for electromagne-
tic propagation control. Thus, the originality of these
studies lies in their integrated approach to analy-
zing the interaction of specific pulses with a dynamic
boundary in motion. This makes it possible to dis-
cover new physical effects and arrive at innovative
technological solutions.

Generally, over the last decades, significant prog-
ress has been made in the study, analysis, and sha-
ping of laser beams. Many results mount on a nu-
merical basis, which does not always mean reliabi-
lity and completeness. Therefore, for synthesis and
analysis of new pulse propagation effects, numerical
modeling should be combined with mathematical
methods which make it possible to obtain electro-
magnetic-wave analytical expressions with their sub-
sequent analysis.

The electromagnetic field interaction with a hetero-
geneous non-stationary medium is of fundamen-
tal importance for a variety of applied technological
processes. The basic process of electromagnetic wave
propagation evolves over time in limited spatial areas.
The research into such phenomena requires a rigo-
rous mathematical apparatus to build mathematical
models of applied problems in electrodynamics. An
exact analytical solution is available for many idealized
problems describing fairly simple electrodynamical
processes. On this basis, more complicated structures
and processes can be solved.

Singularities in the electromagnetic pulse conver-
sion occur not only in the case of sharply non-sta-
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tionary boundary motion but for smooth non-sta-
tionarity, too, when the boundary velocity tends to the
phase velocity of the pulse. This is well illustrated by
the uniformly accelerated relativistic motion of the
boundary whose velocity continuously varies from
zero to the relativistic values so that it goes through
all possible critical points.

The visual sign of the critical point presence is that
the scattered wave amplitudes tend to infinity and there
is ambiguity in determining the number of scattered
waves. The remedy can be by searching for appropriate
analytical solutions within qualitative considerations,
as was done in [10] for the case of a plane mono-
chromatic wave. However, based on experience, we
acknowledge that there is a high likelihood of losing
some solutions.

In this paper, we will explore a qualitatively new
approach to solving the problem of electromagne-
tic pulse interaction with a boundary that is moving
at relativistic speeds. The problem will be addressed
using the exact method of integral equations to find
appropriate analytical solutions.

1. Methods and methodology

When the electromagnetic wave and medium para-
meters depend only on time and one spatial coordi-
nate, the problem is one-dimensional and described
by the Volterra integral equation of the second kind
in one space dimension [11]:

E_E v—vi 0%

- Z
2vvi Ot?

’ ’ ’ | x—x | ’or ’
X J;odt de O(t —t —zj(t x)E(W,x"),
1)
where E; is the wave field coming from the half-space
x <0, the values v = ¢/ /¢ and v = c/\/ST are the
phase velocities on both sides of the boundary, and
x(t,x) is the characteristic function that equals zero
in the region with the medium ¢(¢;) and equals unity
outside it. A light cone whose vertex is at the obser-
vation point (t,x) is given by the Heaviside function
0(tr) and determines the kernel of integral Eq. (1) so
that the kernel is not equal to zero only inside the
cone. Equation (1) considers the initial and boun-
dary conditions and describes the electromagnetic
signal evolution over time ¢ € [0;%0).
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The given type of equations is advisable to use for
describing processes going on in media whose pro-
perties vary over time, making the ongoing proces-
ses non-stationary. It renders a possibility to take into
account how variations in medium parameters affect
electromagnetic wave propagation. An important
condition for employing the Volterra integral equa-
tions is the causality of the system. This means that
at any time, the system response only depends on the
system previous rather than future states. In physical
problems such as pulse scattering in non-stationary
media, the use of the Volterra equation is justified.
It allows taking into account the historical develop-
ment of the process and the effects accumulated over
time. This is important for conducting a detailed
analysis of temporary processes and assessing how
the initial conditions influence the future evolution
of the system.

Let at time zero, the boundary "switch on" its
uniformly accelerated motion. Consider the case
when at time zero the boundary starts moving,
X (t,x7) = 0(x — x,(1)),
both sides of the boundary remain stationary. If
so, a part of the integration domain in Eq. (1) will
change to become part of the region O = {x = (t,x):
:0<t<ow—ow<x<owo} Thus, in this half-space,
Eq. (1) for the secondary field becomes

while the media on

vi—v? 0?
E=E, - 2 9.2
2vv° Ot
x—x'
x[ar | dx'G(t - g) 1t x)EW, %),
0 —0 v
)
where
v2—y? 9
Ey =k -———>
2vv” Ot

0 o ,
dt’ | dx’6 t—t’—M (', x)E (' x
<J Lx( ) @R x)
describes the historical development of the field be-
fore the boundary starts moving. It is evaluated by
substituting into Eq. (2) the primary field in the Airy
pulse appearance

t X
E (t,x)= Ai| ——+— a(—t/T+x/vT)’
O( ) 1( T vl)e
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Fig. 1. Electromagnetic field determination in the uniformly
accelerated motion case: I — x"=vt", 2 —ty=t"-x"/v;, 3 — 1, =
=—t'+x /v, 4—x"=-v(t'-t)-x5— X" =v({t'-t)-x, S;...5
are the points with the abscissas t;...t;, and 0;,0;,0;" are
subregions of the region O,

where Ai(#,x) is the Airy function, T is the time
scale, and « is the parameter describing the dissipa-
tive properties of the medium.

The solution of integral equation (2) is construct-
ed via the resolvent R and will be shown in further
calculations.

Let us consider relativistic uniformly accelerated
motion, the simplest and most natural form of non-
inertial motion. The choice of this motion law in ana-
lyzing the interaction of an Airy pulse with a moving
boundary is justified for several reasons, both physi-
cal and mathematical. For the interaction between
an electromagnetic pulse and a moving boundary
under relativistic conditions, it is crucial to account
for effects that occur at velocities approaching the
speed of light. In such cases, classical kinematics is
insufficient, as it fails to incorporate relativistic ef-
fects like length contraction and time dilation. The
relativistic uniformly accelerated motion provides
an accurate description of boundary kinematics, en-
abling precise modeling of interactions with the elec-
tromagnetic field. This law is particularly advanta-
geous for analytical studies, as it facilitates stable and
physically accurate solutions for the electromagnetic
field, which is vital in problems involving Volterra
integral equations. The possibility of constructing
precise solutions hinges on the analytical properties
of the input parameters. From a physical perspective,
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relativistic uniformly accelerated motion can serve
as a model for describing the motion of particles or
boundaries in a plasma accelerated by electromag-
netic fields. This adds practical relevance to the use
of this motion law, allowing for the extrapolation of
study results to real-world physical systems. Let us
consider uniformly accelerated relativistic motion as
the simplest and the most natural form of non-iner-
tial motion. Behind the choice, there are several rea-
sons connected with physical and mathematical as-
pects of the problem of Airy pulse interaction with
a moving boundary. The question of the electromag-
netic pulse interaction with a moving boundary in
relativistic terms requires considering effects that oc-
cur at great velocities approaching the speed of light.
In the relativistic case, the boundary movement can-
not be described within the limits of classical kine-
matics whose laws fail to deal with relativistic ef-
fects like length contraction and time dilation. The
concept of uniformly accelerated relativistic motion
provides a correct description of the boundary kine-
matics and make it possible to model the boundary
interaction with electromagnetic field. This law of
uniformly accelerated motion is particularly advan-
tageous for analytical studies, as it facilitates stable
and physically true solutions for the electromagnetic
field. This is especially important in problems invol-
ving Volterra integral equations, where the availability
of an exact solution hinges on the analytical proper-
ties of the input parameters. Physically, the relativistic
uniformly accelerated motion can be thought of as
a model describing the motion of particles or boun-
daries in an electromagnetically accelerated plasma.
This interpretation stuffs the motion law employed
in the given problem with a physical sense and ex-
trapolates the study results to physical systems of the
real world.

In the present scenario, the boundary velocity con-
tinuously changes, gradually increasing from zero
to relativistic values and running through all critical
points. The critical points are characterized by abrupt
perturbations in wave scattering processes with the
result that the scattered field amplitudes sharply in-
crease, the number of scattered waves is determined
with ambiguities. A mention should be made that the
discussed type of motion makes the problem funda-
mentally non-stationary, which significantly compli-
cates its analysis and solution.
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The counter-motion between the boundary and
the electromagnetic wave obeys the expression [12]

xs(t) = _V(V 52 + tz - E)’

where & = c/w, with w being the acceleration in its
own frame of reference. As ¢ — o, the boundary ve-

locity varies by the law u(t) = —vt / E2 + % until
approaches the wave phase velocity, u(t) — —v.

The properties of the medium do not change after
the boundary starts moving at time zero. So, in the
uniform motion case, the secondary field in the region
O, : x > vt (seeFig. 1) will remain the same whether
before or after time zero. In the region O, : x <vt,
the resolvent looks different for different values of
the refractive index v /v, .

In the case v; /v >1, the resolvent characteristic
reflected from the light line of the boundary always
resides in the region x(+) =0(x—x,(t)=1:

(x|R|x")==0(x - x,(1)) x
dvi-vi[o , |x—x|

G ()

+R (r-)ie (r‘)—t’—x—, 0(x" — x.(t)
" ot 4 v sV

(3)
where ¢(7) =2t; — 7, with t; being the point where
the lower characteristic of the resolvent R meets the
light line of the boundary, t;,(t) =vv/ (v —vi) x

v %
x(i& -+ \/52 +2-1Er + 72 |. The coefficient
v %

R, (m)=(w=v)/(v+v)(v —1y(7))/ (v, +14(7)) is
the observation point function (the boundary velocity
is chosen at the moment it approaches the resolvent
characteristic, u;(7) = u(t;)).

In the opposite case v;/v<1, the reflected
characteristic belongs to the region y* =1 only

until the moment of contact t, =v&/~v? —vi,
when the boundary velocity approaches the pulse
velocity v; .

e v

The ray 77 =71p 25(—1——] sepa-
vV —v? N

rates the subregion O3, in which the reflec-

ted characteristic no longer contributes to the re-

solvent, from the region O,. The tangent ray

=1, = 5((1} — i =i )/vl) separates the sub-

region O;” in which both lines of the resolvent cha-
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racteristic meet the light line of the boundary. In this
connection, in formula (3) describing the resolvent,
the factor R, should be set equal to zero in the subre-

”’

gions O7 and O;”.

2. Results and discussion

Where the ratio v; / v <1 is fulfilled in the subregion
03, the secondary field only consists of the single
Airy pulse

20}

EO& (t,x) = m(l +Q7) X

xAi[— 4 (t—£—§+
v+

V1 N1

+\/52+zsv—”1(t—%>+<t—%)2ﬂ, (4)

o)
V1 V1

\/Ez ) S N (o
v

V1

where

o

Where the same ratio v, /v <1 is true in the O
subregion, the secondary field consists of two pulses

as follows
Vi X
v+ (t g *

Eog () = 21 (1 + Q—)Ai[—

" V1
+\/§2+z§l(t—i)+(t—ﬁ)2ﬂ—
2 2 2
—ﬁu—sz-)Ai[— M (t—i+§+
2v - "
+\/§2+251(t—1>+(t—i>2ﬂ. (5)
41 1 V1

In this case, the primary waves determined by the
free term E; are split at the boundary, and the back-
ward waves appear in the O;” subregion as shown
below

2 s 2 x
Eor(t,x)=—(1+Q7)Ai| — t———-&+
OZ( *) 21/( ) ll: v+v1( v s

+\/§2 2=+ (= H—

—V—I(I—Q‘)Ai[— " (t—ﬁ+§+
2V - 1 Vl

+\/§2 G R ol H—
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Fig. 2. Evolution of the secondary Airy pulses at different values of the starting parameter p, for x/vI'=1,§=0.1,and v;/v=0.5
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The radicands in the fraction denominators in the
Q" and Q" expressions show where in corresponding
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formulas (4)—(6) the critical points are possible to re-
side. At the two points

x

2 :t+—=£(v+\/v2—v12)
i M

and
x

73 :t+—:£(v—\/v2—vlz),
Vi WM

the denominator in the Q* expression turns to zero.
The denominator in the €~ expression turns to
zero at the two points

Tl_:t_x/vlz_g/VI(V'i'M)
and

1’5:t—x/vl:—E/vl(v—\lvz—vlz).

The ratio v; / v <1 determines which of the two ex-
pressions to use. A careful examination of the exact

ISSN 1027-9636. Radio Physics and Radio Astronomy. Vol. 29, No. 4, 2024



Spacetime analysis of an electromagnetic Airy pulse after its interaction with a planar boundary...

0.3 #)00526) ”

0.2 m

0.1+ | I

-0.14

-0.31

-0.4+

0.3+

0.2+

0.1 H

o1 '“

-0.2

-0.3+

0.4

0.2+

=

-0.21

-0.4

-0.6

0.3
Po=70py=70

0.2

0.1

]
100 120
-0.

— OO,
— O

—
0
—
—
—_—
_—
—
—=

-0.2

-0.3

-0.4

-0.5

Fig. 3. Comparison of the secondary Airy pulses at different boundary accelerations and starting parameter p, values: x/vT =1,

£,=0.01 (grey line), §=0.5 (black line), and v, /v=0.5

expressions picks up all critical points related to the
problem.

The simulation modeling of the obtained re-
sults involves the so-called starting parameter p,=
=(xo/ v — ty)/ T which chases the spacetime position
of the Airy pulse [13]. The starting parameter p; is
characterized by the location x, of the Airy pulse
generation source at a given time t,. With the p, pa-
rameter negative, the pulse leading edge does not
reach the boundary until time zero. We should only
focus on positive p, values, as the main part of the
Airy pulse is already deep within a medium whose
dielectric constant changes at time zero. Of most in-
terest is analysis of the Airy pulse field after the in-
teraction with the boundary in the subregion O;”,
where backward pulses appear. The evolution of

”

the Airy pulse propagation in the subregion O;" is
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shown in Fig. 2 for different values of the starting pa-
rameter p,. One can see the deformation of the Airy
pulse leading edge at the moment it interacts with a
moving boundary. Whatever the starting parameter
value, the main lobe gets bifurcation. Besides, the os-
cillation character of the pulse tail changes.

Figure 3 shows the Airy pulse evolution depending
on the boundary velocity and for different values of
the starting parameter pj.

The simulation of the pulse field using formula (6)
shows that in addition to the main lobe bifurcation
and modified oscillatory behavior of the tail, the Airy
pulse also experiences a phase shift. In Fig. 3, the
black diagram illustrates the Airy pulse field after in-
teracting with a moving boundary that is traveling at a
velocity close to the pulse velocity. The black diagram
shows a more pronounced phase shift compared to
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Fig. 4. Comparison of the secondary and primary fields of the
Airy pulse: py=30,5=0.4, x/vT=1,and v;/v=0.5
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Fig. 5. Spacetime propagation of the secondary Airy pulse at
the moment its velocity equals the boundary velocity, p, = 30,
x/vT=1,E=0.5,and v;/v=0.5

the grey diagram, where the boundary moves much
slower than the pulse. The difference in phase shifts
is explained by the different (in these two, grey and
black, cases) conditions of the interaction between
the pulse and the moving boundary. The boundary
movement, especially if at relativistic velocities, al-
ters the nature of the wave as a source of excitation
by changing the phase of the wave within the space-
time. These changes can be caused by the Doppler
effect which alters the frequency, wavelength, and
wave phase when the pulse interacts with a mo-
ving boundary. When the boundary moves at a rela-
tivistic velocity, additional relativistic effects occur,
leading to spatial and temporal changes in the refe-
rence frame of the pulse, which further shifts the
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phase. Moreover, the unique dispersive properties of
the Airy pulse cause different frequency components
to travel at different speeds. The result is that vari-
ous parts of the pulse interact with the boundary at
different times, making the phase shift pattern more
complex. Beyond that, when the boundary moves at
a relativistic velocity, the angle at which the pulse in-
teracts with the boundary varies and additionaly af-
fects the phase.

Thus, the interaction of an Airy pulse with a mo-
ving boundary involves relativistic and dispersive
processes that are considered crucial in causing the
wave phase shift. Studying these processes will pro-
vide a deeper insight into the mechanisms of wave
propagation and transformation under challenging
conditions.

Figure 4 compares the initial Airy pulse and the
pulse field due to the interaction with a uniformly
accelerated boundary according to formula (6). The
black line represents the post-interaction field of the
pulse, while the grey line illustrates the initial field of
the Airy pulse in the absence of the boundary.

Figure 4 shows the change of the oscillation ampli-
tude of the pulse lobe in comparison with the prima-
ry Airy pulse. Despite the bifurcation, the size of the
main lobe of the pulse remains almost unchanged.

Let us dwell on the moment the boundary velocity
approaches the pulse velocity. At that instant, the
field of the pulse gets a discontinuity attributed, as
shown before, to the existence of the critical points.
The number of the critical points within the pulse
domain is connected with the numerical simulation
parameters. Thus, for the simulation parameters in
Figs 2—4, the observation domain (after time zero)
contains a single critical point 7{ >0. The other
three are negative-valued and, therefore, are not in-
cluded in the secondary pulse domain.

Figure 5 illustrates a discontinuity of the pulse
field with the critical point presence. The result is a
spacetime band where the pulse does not exist at all,
the main lobe is on one side of the band, the oscilla-
ting tail is on the other. This effect can be employed
to truncate the pulse tail and put to use the principal
amount of the power the main lobe carries. The pro-
cess is easily controlled by picking an optimal value
of the starting parameter.

Thus, at the moment the boundary velocity ap-
proaches the pulse velocity, —u = v;, the amplitudes
of the backward waves make a jump for infinity
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along the line 7" = 7. This is a consequence of the
idealizing assumption of an infinite-power source of
the boundary movement. It indicates that the actual
motion cannot be at the velocity mentioned above.
Therefore, the infinite power source approximation
during unsteady motion of the boundary causes in-
finite discontinuities of the electromagnetic field.
Work [14] studies peculiarities of the plane mono-
chromatic wave conversion by a moving boundary in
a non-stationary medium and also confirms that it is
a non-stationarity of the boundary that causes field
discontinuities and leads to the formation of new
waves. When the primary field is represented by the
Airy pulse, the problem is challenged by the asym-
metric shape of the pulse.

Conclusions

In this study, the unique transformation features of
the electromagnetic Airy pulse were examined during
the pulse interaction with a relativistically moving
and uniformly accelerated boundary. This study has
provided us with deeper insights into the electro-
magnetic field behavior in non-stationary conditions
which were simulated through a smooth change of
the boundary velocity over time. The method of Volt-
erra integral equations was implemented to model
the interaction between Airy pulses and a relativis-
tically moving with uniform acceleration boundary.
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position, boundary velocity, etc. This control opens
new opportunities for controlling electromagnetic
wave propagation across different media. The analyti-
cal solution results have been validated by numerical
modeling, which confirms their validity and high-
lights potential applications in future research and
practical scenarios. A deeper level of understanding
of the Airy pulse interaction with a relativistically
moving boundary has been gained, laying the
groundwork for further research and practical appli-
cations in optics, photonics, and theoretical physics.
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XapKiBcbK1il HalliOHa/IbHMIT YHiIBEpCUTET pajlioeeKTPOHIKI
npocn. Hayxu, 14, Xapkis, 61166, Ykpaina

ITPOCTOPOBO-YACOBII AHAJII3 EJIEKTPOMATHITHOI'O
IMIIYJIBCY EVPI IIICJISI OO B3AEMO/IL 3 INTIOCKOIO MEXXEIO,
1110 3AIMCHIOE PEJISITUBICTCHKNMI PIBHOIIPYMICKOPEHU PYX

IIpepmert i MeTa po60TI. MeTOI0 POOOTH € JOCTI/PKEHHA 0COOMMBOCTEI! IIepeTBOPEHHS e/IeKTPOMArHiTHOTO iMITy/IbCY B pe3y/bTaTi
3YCTPiUHOIO PyXYy 3 MeXeI0, KA 3/Ii/ICHIOE Pe/IATUBICTCbKIIT piBHOIIpUCKOpeHuii pyX. Lle Bumagox niaaBHOI HeCTallioOHAPHOCTI, KON
HIBAZIKICTh MeXi IOCTYIIOBO 3MiHIOETHCA Bifl HY/TbOBOTO 3HAYEHHS [I0 3HAYEHH:A IBUIKOCTI iMIynbCy. [IpegmeToM focmipkeHns €
IIPOCTOPOBO-YACOBUIT PO3IIOZI/I i €BOJIIOLiA MO €/1eKTPOMArHiTHOrO iMIynbey Efipi.

Meropu Ta mertopmonoria. JlOCTiI>KeHHs Ta aHa/li3 BUILEONMCAHOTO SABUINA IMPOBOAUTHCA METOJOM iHTErpanbHMX DPiBHAHD
Bonbreppa, sKnit JO3BOMAE OMUCYBATH MOIIMPEHHA eIEKTPOMATHITHUX XBU/Ib Y HEOTHOPITHOMY HECTAlliOHAPHOMY CepefloBUIIi. Y
PaMKax I[bOro MeTofy cOpMyIbOBaHO 6a30BY NMOYATKOBO-TPAHMYHY €leKTPOAMHAMIUHY 3aady IIPO BUIIPOMIHIOBaHHA JKepena
€/IeKTPOMATHITHMX XBU/Ib Y HEOJHOPIIHOMY HECTALliOHAPHOMY CEPEe/IOBHUIIi 3 YPaXyBaHHAM Bi/IOBi[HIX OYAaTKOBMX i TPAaHMYHIX
yMoB. ONICaHO MeTOJ, Pe30/IbBEHTH [/ O3B’ A3aHHA IHTerpabHOro piBHAHHA BonbTeppa Apyroro poxy, nepesara BUKOPUCTAHHA
AKOTO IIOJ/IATa€ B OTPYMAHHI aHAIITUYHOTO PO3B’A3KY PiBHAHHA Ta B YHiBepCaTbHOCTI BiTHOCHO BIOOPY IIePBYHHOTO MOJIA.

PesynbraTi. Y pesynbTaTi IpOBeieHMX JOCTI/PKEHb OTPUMAHO aHATITUYHI PO3B’A3KY BUXIJTHOTO iHTETrPa/IbHOTO PiBHAHHA, aHA-
i3 AKMX [T0Ka3ye HasABHICTb 0COOMMBOCTE y BUpasax JIA BTOPUHHOTO HOJIA Ta MOXK/IMBICTD IXHBOTO KOHTPOJIIO IIVIAXOM Hif6opy
I1apaMeTpiB YMCEeNTbHOTO MOJETIOBaHH:A. TaKOXX IIPOBEIeHO aHAIITMYHMI aHaJTi3 OTPUMAHIX 0COOIMBOCTEN i IPOITIOCTPOBAHO IXHIO
HasABHICTD i BIUIMB Ha IMITy/IbC 3a JOIIOMOIOI0 iMiTaliflHOTO MOJIE/IIOBAHHA 3 BUKOPUCTAaHHA CTAPTOBOTO IIapAMeTPY, AKMII XapaKTe-
pusye posrauryBaHHA immynbcy Eifpi B meBHMIT MOMEHT 4Yacy.

BucHoBKu. YV 11ii1 po60Ti JOCTIPKEHO B3a€MOJiI0 eeKTPOMATHITHOTO iMITybey Eiipi 3 Mexero, 1[0 PYXa€eThCA 3 PeNATUBICT-
CBKMM PiBHOIIPYICKOPEHHAM. BIKOPICTaHO MeTOJI iHTerpanbHuX piBHAHD BobTeppa, 110 J03BOJIAE OTPUMATI AHAITUYHI PO3B’A3-
KI. AHaJIi3 II0Ka3aB CYTTEBI 3MiHM B ITPOCTOPI i Yaci 3 MOXK/IMBICTIO KOHTPOJIIO XapaKTePUCTUK BTOPMHHOTO I10/1s Yepe3 HajlallTy-
BaHHSA ITApaMeTPiB MOJIEMIOBaHHA. PesynbraTti miTBEPIPKEHO YMCETbHNM MOJIEMIOBAaHHAM, 1[0 3aK/Ia/Ja€ OCHOBY JJIS MOZIa/IbIIIX
JOCTiJIKEHD Y 11l ramysi.

Knwouosi cnoea: imnynvc Elipi, enexmpomaznimui xeuni, inmezpanvti pieHauHs Bonvmeppa, pesonveenma, pieHonpuckopeHuii pyx,
penamusicmcokuil pyx.
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