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The instability of electrostatic disturbances in flows of dusty plasma is analyzed for the different types of size

(mass) spectrum of dust components. It is shown that any kind of the spectrum leads to- the growth of the
longitudinal waves. Only quadratic spectrum is an exception. In this case the eigenwaves of dusty plasma are

stable.
Introduction

Charged dust grains are often encountered in
space (e.g. in planetary rings, comet tails, interstellar
dust clouds, etc.). If the dust-particle density is
sufficiently high, these grains, along with electrons
and ions, are involved in collective processes and
form a mixture that is referred to as a dusty plasma
[1]. At first sight it would seem that there is no
principal distinction between a dusty and a
conventional multicomponent plasma with different
sorts of ions. Really, the dispersion equation written
in hydrodynamical approach for the electrostatic
waves in electron-ion plasma
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is also valid for a dusty plasma if the summation over
o is extended to all species of microparticles

(electrons o0 =e, ions o =i) and dusty grains
(@=12,..,N, where N is the number of grains
sorts). ~ We  use the standard symbols;

: 12
0 = (47“15 Ny / ma) is plasma frequency,

Vrq - the thermal velocity, g, ,m,, Ny, sVo, arethe
charge, mass, “background” density and drift
velocity of the particles of species o respectively, @
is the frequency and kis the wavenumber (all the
quantities vary as exp(— iot+ ikr) ). The
coefficient y in (1) is determined by the isentropic

exponent in the state equation of plasma.
Nevertheless, the waves in dusty plasma possess
many special features. We indicate some of them. At
first, there are great variations in the numerical values
of the ratio g,/m, for the dusty grains in

comparison with ions and electrons. Because of this,
if the wave frequency ® is sufficiently high, the
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grains may be considered as fixed ones in the media of
oscillating microparticles. However, even in this case
the presence of dust grains in plasma can affect the
properties of eigenwaves. The matter is that the
charged grains create an inhomogeneous electric field,
which may be represented as a wave with a “zero”
frequency. When the necessary resonance condition
resulting from interaction of the propagating wave
and the above-mentioned standing wave is fulfilled,
nonlinear Landau damping can occur [2).

The distinctive features of dusty plasma manifest
themselves more markedly in the low-frequency range
when dust grains are involved in wave motion. In this
case, we must take into account the fact that the
charge on the grains, unlike that of the electrons and
ions, can change. During the propagation of
longitudinal waves, the variation of the grain charge
appears with a delay due to the finite electric
capacitance of the grain. As a result, an additional
attenuation mechanism that is absent in ordinary
plasma arises [3). ‘

Another feature of dusty plasma is connected with
continuous distribution of the dusty grains over sizes
(masses). So far, only one or several sorts of particles
were considered. But the assumption of a rarefied
spectrum of grain sizes is unlikely to be true under
real conditions. Moreover, the results of space-plasma
observations indicate that, in some range of sizes

R, SR<R,, the distribution over the grain

sizes W(R) is continuous [4]. It was shown that in
this case a slow electrostatic wave, named dust
acoustic, acquires collisionless attenuation (analog of
Landau damping) even in hydrodynamic approach
[51. The situation may be changed if the relative
motions of the grains and microparticles will be taken
into account. As will be shown below, such difference
of the drift velocities usually exists in plasma in the
vicinity of magnetized planet. It leads to arising
analogs of kinetic instabilities in flows of dusty
plasmas independently of the W(R) shape. Only
quadratic distribution function will be stationary.



Victoria V. Yaroshenko

2.Instability of the Wave Disturbances in Flows of
Dusty Plasma

We turn to equation (1) to consider the
electrostatic waves, assuming all equilibrium

velocities of the particles v,, # 0, while the thermal

velocities V7, =0  (another limiting  case
Vi, 20,V,, =0 is analyzed in detail, in [5]). If

the spectrum of grain sizes is continuous, then
summation over all sorts of grains in (1) should be
replaced by integration with substitution instead of the

0] :u the dimensional value

;! =4n g (RW(R)/ m(R) =
=3p"W(R)p"R”

( where @ = q(R)/ R is the grain potential, it is

often determined by the plasma temperature alone,
being independent of grain size

R[I]; m(R)E ;—npRJ are the masses , and p is

_the mass density of the grain material). The dispersion
relation (1) becomes

fO(VO)"'

(:);,Z(R(vo))dR/dv0 , V= vo(Rm) <V <Vo(Ruux) =v,,
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(note, that the dimensionality of value m:,z(R) i
[co ;z(R)] =(c"cm" )). Due to
dependencies of particle parameters q(R_), m(R)

@

continuous

and VO(R) there appears a term characteristic for the
classical- kinetic theory equations with the velocity

distribution function fo(vo)- Actually, the integral
in (2) can be represented in the form

by fo(vo)dvo
J= _{m,

where

3

@

0, Vo<V, Vo>V,

is equivalent distribution function. Further
investigation of modal equation (2) can be performed
.just as it is done in kinetic theory. However, the final
results depend oni the specific functions of W(R)

and v, (R). According to literature data, W(R) is

often a power-law function ~ R™" with the p lying

between 0.9 and 4.5 [4]. We will evaluate the integral
)] for the distribution function

W(R)=N,R!"[R* . 1t remains only to obtain

the dependence V, ( R)

Space plasmas often involve particle streams with
ordered velocities. Consider, for example, the dusty
plasma in the vicinity of a magnetized planet. The
neutral particles move through the gravitational field
of the central body in accordance with Kepler's laws.
Contrary to this, the motion of microparticles (i.c.
electrons and ions) is governed by electromagnetic
forces and they corotate with the planet. As for the
electrically charged dust grains, they “feel” both
gravitational and electromagnetic forces. As a result,
~ such particles do not move around the iplanet at
Kepler velocity Vv but rather at somewhat different

velocity v, which is determined by the charge/mass

ratio. In particular, the linear velocity of grain
moving ‘along an equatorial-plane circular orbit of
radius 7 is [6]

v, = v[l +2£:~:E(Qk -Qp)]. )

Here Q, is the Kepler frequency, Q, = __31(1?1)(%

is the gyrofrequency, B, and Q p are the planetary

magnetic field and rotation frequency, respectively; ¢
is the velocity of light. Taking into account -the

dependence 2, (R) we can write

vo(R) = v(1£1*/R?) , ©)
_ 3B o
with I’ = Zt_p—::%z(nk —QP)‘. The sign in

equatiort (6) depends 6n the radial distance from the
planet and the sign of the particle's electric charge [6].
For the sake of definiteness, the minus will be

adopted. Upon this the boundary velocities V, and
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Vv, are in the same relation as grains sizes R, and
R, (ie. R; <R; and v, <V,).

Hence, at the orbit of radius r a multistream
system exists, which is characterized by the functional
dependence (6). Because of this we will investigate the
wave disturbances in the thin filament dusty plasma
stream with diameter d << r . It is an ideal model of
the narrow planetary ring. For example, for Saturn's
rings the elementary ringlets have
d~10* —=10°m <<r~10°m. It appears that the

dispersion relation for the wave disturbances of a
relatively short wavelengthes A <<r (this is the
condition under which the beam curvature can be
neglected) tak§ the same form of equation (2). But in
the case of the'thin filament beam its parameters are
controlled by the linear density of particles

~nd’n,, /4. It leads to the appearance of the

factor k’d?/32 before the sum in (2) (this problem
considered in detail in the paper [6]). Moreover, since
Voe = Vo; = 2,7, it is convenient to use the frame

of reference in which electrons and ions are at rest
(Vo = 0) , while the grains drift at the velocity (6)
3B
4npcQ,
For the selected dependencies W(R) and v, (R)
the equivalent dis:ribution function (4) becomes
S (p-Z)/ 2 .
ﬁ;(Vo)= (v—vo) sy VISV SV,
0, Vg > V,y3Ve €V,;
: 2 p-ty-p,-n/2 -
with S =30 N R}"I™"v (2p) . The final

dispersion relation can be written in the form

only now v = (Qk —Qp)r and [ =

Q)
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Fig. 1.
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The dielectric constant of the dusty plasma
becomes complex (in the range of phase velocities

Vi<V, <V),). Consequently, the wave frequency
will be complex also, i.e. @ =®, +# . It may lead
to both the attenuation (y < 0) and the instability
(‘y >0) .of eigenwaves in dusty plasma. We will

verify that it leads to the wave instability ('y > 0)
independently of the particular form of equivalent
distribution function j;,(vo).The exception is j;,(vo)
for p = 2 . It is a peculiar case since the distribution
function fo(Vo) is const to, €, =0 and y =0. The
valuesp > 2 and p <2 are corresponding to the
various slopes of fo(Vo) and hence different signs of
e,(co,k). The real frequency ®, is the solution of
equations,((o,,k) =0, while- y is given by the
expression

y »—¢,(0,.k)/(%, (@,.k)/00,). ©

We will analyze these equations along with (8) in
three specific cases. The first one is p = 2. Another
two casespp =4 and p =1 are chosen for the

simplicity of the calculations.
p = 2. The integral term of (8) vanishes and

dispersion relation is
2 2 2 2
g=1-| Op, T 9Oy, _ Dpo d_ —
- v2 sV —Av? )32
(10)

where V, = -2—(vI + vz) is the mean velocity and the

’

1
spread of velocities is AV = E(Vz —V,) .

To analyze (10) let us bring it to the form

f(vp,,)=1 with f(vp,,)=l—e (vp,,). The graph

is presented in Fig. 1. It is shown three possibilities
for f (V p,,) under various relations between the

parameters of the microparticles and dusty grains (see
cases @, b, ¢). Investigating the eigenwave spectrum of
dusty plasma, we have restricted ourselves to the
peculiar features, connected with dusty component. If
the mean drift velocity exceeds the value

. d 2
v>-2——J=2—(m§, rol), an

there are two dust-acoustic waves (the roots 3 and 4
in Fig. 1a, respectively)

vf,,’,;‘) sv:tAv(l+d2x,',’,;), a2 .

where A, ., =Av/o,, plays the role of the
effective Debye length.

If an inequality opposite the (11) is used and the Av
obeys the condition

. (O] 0
Av > 2

2 2

((D” +°)p.i

then (8) has two roots (Fig.1b), which are not far
from the boundary velocities v, and v, ,i.c.

2
(23) @ ,0V12
vl =y L1t . (149)
oh '-’{ 2(m;,+m;,)Av)

Note once more, that the waves (14) are stable.
" Finally, the condition of usual beam instability
(Fig. 1c) involves an inequality (11) and inequality

)I/I V, . (13)

opposite to (13).

B =4 and p = 1. The equations (8) have got an

unwieldy form. Let us turn once again to graphical
analysis of these dispersion relations. Only now

f(vp,,) is represented as f(vp,,) = l—a,(vp,,). It
appears that  graphical representations of
dependencies. f| (V p,,) under p=4 and p=1 are

similar to f(v p,,) under B =2 except the little

differences in the region of high phase velocities
(Vi >V,). Therefore, the results, obtained for the
quadratic spectruin are corresponding to the cases
p#2 qualitatively. Really, the solutions of
dispersion equations under i =4 and p =1 differ
from roots of (12) arid (14) only by numerical factors.

The eigenwaves with  phase  velocities
Vv, <V,, <V, are of the most interest for us (see
Fig. 1b). Since the dispersion relations include

imaginary term, it leads to the damping or excitation

of the wave disturbances with 'vf,,,z) and V(p,,” .

In the case | =4 the imaginary parts of the
(2.3)

frequencies Y are
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s 4
(2 _ T ,0 kvl
Y= 3 (15)
. 4(‘”:: ""”;J) Av
and
o! kvi(v, —v
7(3)=_ 0,0 Vz( k z) (16)

32(0);, +0)§,.) Av*
Thus, the wave with phase velocity vg,,,z) is growing in

time, while the wave V(p,,s) is damping.
For the case p = ] the situation is opposite. The
matter is that under p =1, the imaginary part of

dielectric constant €; has another sign, i.e. €, <0.

It leads to the growing of the wave with V(:,,) and

damping effect for Vg,,z). Notice, that the increment
1(3) is negligible small (by analogy with (16)

7(3) ~ k(v P Vz) —> 0 as the difference of velocities

between the neutral and the heaviest grains). It means
that for the size spectrum with p#2 we are

concerned only with growing solutions of dispersion
equation (2) in the range of phase velocity

(Vl SV S vz) . The magnitude P affects the value
of increment ¥ . In particular, the growith of waves
under u > 2 takes place in a substantially shorter

time interval than under p < 2.

The obtained results are in accordance with the
kinetic theory of usual electron-ion plasma [7]. Really,

the condition 8 f,/d v, <0 (1 >2) means that
resonance particles take the energy from the wave.
But the energy of the oscillations ® = kvf:,,) is
negative itself (it is easy to show that
(a €, (m,,k)/a m’)kv‘;) < 0. As a result, the increase

of the absolute value of the energy and electric field
arises. On the contrary, the wave with positive energy

attenuated (v(p,,’)) The case 8 £, /0 v, >0 (1 <2)

corresponds to situation, when grains in resonance
give the energy to the wave. It leads to the growth of

the wave with a positive energy (vfh)) and

attenuation of wave with negative energy (Vﬁ,,,z)) .

The author would like to express sincere thanks to
Prof. P.V. Bliokh for useful discussion and support.
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Ilpeﬁ:bosau HEYCTOHYHBOCTDL B NOTOKAX MNbL1EBOH
MAA3MBbI C HENPEPLIBHLIM pacnpesesieHHeM YacTHIL 510
pa3mepam

" B.B. SApouienxo

Hccnenyercs HeycTOMYMBOCTB UEKTPOCTATHYEC-
KHMX BO3MYIUEHHH B NMOTOKaxX MbUIEBOH nnasMbl NpH
PalIMYHBIX BHAAX CAEKTpa pa3MeposB  (Macc)
nbuieBbIXx yacTHl. Ha npuMepe TOHKOTO MIAHETHOrO
KOJIblia MOKA3aHO, YTO HE3aBHCHMO OT KOHKPETHOrO
BHIa pacnpefielieHHs MbUIMHOK MO pa3Mepam, Gyaer
HabmoaaTbCs HEYCTOWYMBOCTL NPONOJIBHLIX BOIH.
HcimoyeHde CcOCTaBiIfeT JIHIUL  KBaAPATHYHKI
CHEKTp - B 3TOM CHyyae COGCTBEHHbIE BOJHBI
0Ka3bIBAIOTCH CTALIHOHAPHBLIMM. -

Hpeiidopa HectilikicTb B MOTOKAX NWIOBOT NIa3MH 3
HenepepBHUM PO3NOALICHHAM YaCTHHOK 32 po3Mipamu

B.B. AApowenxo

JocmimKyeTbcs  HECTIHKICTL  eIeKTPOCTATHYHHX
XBUJIb B-TIOTOKAX IMHJIOBOI NIa3MH NpPH Pi3HAX BHAAX
CrnexTpy po3MipiB (Mac) NHIOBHX 4YacTHHOK. Ha
NPHKIaJAi TOHKOTO MIAHETHOTO KiNlbLA MOKa3aHo, 0
HE3aJIeXHO Bill KOHKPETHOTO BHIY CNEKTPY PO3MipiB
nuay Gyae CrnocTepiraTHCs HeCTiHKiCTh MOB3MOBXKHIX
XBUNb. BHUHATOK cKNagae nule KBaAPaTHIHHHA
CIIEKTP - B L{bOMY BHNAJKY BJIACHI XBHJIi BUSBIAIOTHCA
CTalliOHAPHHUMH.
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