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Action of Random Force on Gunn Domain®
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The propagation of Gunn layers (GL), i.e. nonlinear waves of electron density distribution in a semiconductot
specimen, under the influence of current fluctuations, which may be chatacterized as a white Gaussian noise, is
considered. An iterative scheme of perturbation expansion is developed to deduce the statistical properties of
GL's analyzed in the hydrodynamical approach. The average characteristics of GL's are examined for two
statistical ensembles that describe essentially different physical situations. It is shown .that the current
fluctuations significantly influence the shape of the averaged GL field, the averaged velocity of GL and the
voltage drop over the specimen are not influenced by the current fluctuations i in the both cases considered. The
diffusion equation which describes the spreading of the averaged profile of GL's is derived for the particular
ensemble of GL's with randomly distributed phases. Some numerical estimations are presented.

- 1, Introduction. Influence of small perturbations on
nonlinear wave

The propagation of nonlinear excitations under
the influence of regular as ‘well as’ random
perturbations has been intensively investigated
theoretically in the last few years, mainly in' the case
of conservative systems [t-3]. ‘The nonlinear
excitations in essentially. dissipative systems, which
could be described by nonlinear diffusion equations,
are widely known in various fields of physics, e.g.
superconductivity, solid state physics, plasma physics,
biophysics, etc.[4]. The analytical description of such
excitations, spatially localized waves, under influence
of temporal as well as spatial perturbations is rather
complicated even in the presence of small
perturbations. In the most simple situations the
evolution of such excitations under influence of small
perturbations may be described by diffusion equation
of the following type:

gr"-+f\u= Bf (y,7), @

where A is the nonlinear operator,

2

=—da—+ p(u)——+r(u) 1.2

and the torque f(y,T )' describes a small (Pp<<I)
perturbation. Here, 7T is time, } denotes the moving
coordinate, y=x-Cgt, both measured in the

dimensionless units, and ¢, is the velocity of free
(unperturbed) wave. Thus, Egs. (1.1) and (1.2) are
written in the moving coordinates. Taking the explicit

()= A3 U»)=p'(y)

expressions of p(u), r(u) and allowing B=0 in Eq.
(1.1) one may ' obtain the unperturbed solutions
#y(y) that describe free waves. To obtain the
solution #,(y,t) of Eq. (1.1) in the presence of small
disturbing torque / we apply a perturbation scheme
that is based on the properties of the linear operator

L, intimately related to the translational mode

Y (y) ot duy(y)/dy,

LY=0, L= —dd

2

% +Q(y)—+U(y),
duo(y)

+r(p),
(1.3)

where the prime denotes the derivative with respect to

Ug, ie. p'(y)=dplu,(y))/du,, etc. Here and in

following, the overline denotes the quantities closely
related to the translational mode. The existence of
translational mode evndently follows from

translational invariance of the operator A. we
assume that

Q(y)—0if y—>zo, ' (1.4)
Thus, the eigenfunctions Yy of operator f, make up

a complete set and the corresponding eigenvalues Ay
are real.

LYy=2Ys. | (1.5

Owing to the fact that operator L is nonhermitian it
is possible to express the functions Y through the

* The short communication about this problem was communicated in [11]
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Bgnfunctions X, of the hermitian operator
K=5"'(»)LS(y) [56),

(1) =S(»)X,(»),

()= exp{(zd)" Ide(x)}
, In the presence of the small disturbing torque the
olution of Eq. (1.1) #(y,T) may be presented in the

following way:

)= wlybo ()l uy,5), Bu<<sy (1

(1.6)

 where the parameter (T )denotes the phase shift and
f Au(y,7) describes the distortion of the wave due to

 presence of the perturbation /. Substituting (1.7) into
-‘ (I.l) one rewrites Eq. (1.1) as follows:

d‘u(é)dv Lt
& &1 o + LAt x) = R f),

 RE)=B(E0) - g A ot )

' (1.8)
where & = y+s(7) is the comoving coordinate, i..
the coordinate moving with the perturbed wave. The

F additional "torque” g includes the nonlinear term
’ with respect to the small quantities ds/d and Au,

| g=[p(uy + Au)~ p(uo)(duo aAu)

‘ ds 0 Au
+r(u, +Au)—r(uo)+-d:—a§——- (1.9)

-[p'(uo)%w'(uo)]m,

In deriving (1.8) from (1.1) the relationship
Auy(€) = 0 has been taken into account. In the case

of small perturbation we expand the quantities 5, Au
and Fin a power series of the small parameter B,

WET) =T PP E ), b=s Au F. (L10)

n=1

By substitution of Eq. (1.10) into (1.8) the following

evolution equation may be obtained in the B " order
approximation:

duy(8) ds™ 0 MU(ET) |
@ d ot (RT))
+ IAU™ (1) = F™E,1).

Expanding the functions Au™ and F™ througﬁ the
complete set of the eigenfunctions ¥,

LR =TTOCN @),
FO(E)= ):F‘"’(r Y, (),

one rewrites the Eq.(1.11) mto "L - representation”

(1.12)

daTr®™ du,, ds"’)
a ot T = ™ ,
EP()=(Y(x)|F®(x;0)).
(1.13)
Here, the followmg notatlon has been introduced
(¥, lv)= Ide*(x)«u(x,t ), (1.14)

where the dagger indicates the eigenfunction of -the
adjoint operator- I =$'R&s,

Y (x)=8"(x)X. (x). .15
Now, the evolution equations that describe the
needed functions, S™(t) and 7™, may be simply
obtained from Eq. (1.13), if one takes into ac':cbu’r;lt
that the contribution of translational mode Y ()

may be fully included into phase shift S (t ). Thus,

substituting dT ™ /dt =0 into (1.13), one gets

immediately

~1
s‘"’(r)='<? "—f,’-;'*> JaiF ™),
. o (1.16)
T"(z)= [dF™ (v )exp[A, (¢ -1))
B

In deriving (1.16) from (1.13) we have supposed that
the perturbing torque f{3,7) has been "turned on" at

the initial moment t=0.

The Egs. (1.16) used in conjunction with 1.7,
(1.10) and (1.12) allow to describe the evolution of
nonlinear wave under small perturbations with the
needed accuracy. Additionally, with the help of (1.16)
the stochastic characteristics of the wave may be also

deduced in the case of random torque f(,1).
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The described perturbation scheme has been
applied to a particular case of Gunn wave (GW)
influenced by random, .spatially homogeneous
perturbations, which, as assumed, originate from the
current fluctuations in external circuit of the

specimen.

2. Description of free wave. Characteristics of random
perturpations

In the case of semiconductor sample with N-type
current-voltage characteristics Eq. (1.1) describes the

evolution of the electric field 6(){,1} distribution
along the specimen [5-7], i.e. #(y,T)= E(y,t) in this
case. The disturbing torque f may be induced by
inhomogeneities of the doping profile in a sample or

originates due to the current or voltage deviations in
the external circuit, in the case of GW's. It is well

known [5-7] that the functions p(&) and 7(§) in

(1.2) are simply related to the current-voltage

characteristic w(§) of the specimen,

PE) =KW )-c), 1E)=wE)-7,

@n
where J, denotes the total current in the specimen in
the case of free GW, and the parameter A introduced
for convenience is defined below. -

The unperturbed solution &,(y) of Eq. (1.1)
describes -the free Gunn waves, ie. nonlinear
excitation of two types, Gunn layers (accumulation
and depletion waves) and Gunn domains [7]. For
description of GW's by Eqs. (1.1), (1.2) and (2.1) we
use the dimensionless units: time T =t/ IV
measured in the units of dielectric relaxation time T,,
and the moving coordinate y = x/I; — ;T is scaled
in the units of characteristic length [; that
characterizes the. electric' field distribution over
specimen in the free GW case. The: quantity [

indicates the size of GW nucleus, i.e. it shows the
characteristic distance of charge density localization,

p(x)~dE (x,t)/dx, in the free GW. The
following  dimensionless - quantities ‘are” also
introduced into Eqs. (1.1); (1.2) and (2.1):

6=6/8,, w=vA, d=(1,/I;),

Iy =(Dv )" Mg =I5/l b, =7,,v, where §
describes the electric field in GW, the parameters &,

V, correspond to the electric field 'and the electron
drift velocity at the peak of current-voltage
characteristics, and D is the diffusion coefficient.

To evaluate the average characteristics of GW

-under random perturbation (T, ) one has to define

both the dependence w=w(§) and the stochastic
properties of perturbation f{(7,y) explicitly. In

-addition, the explicit expressions of eigenfunctions
- Yo (&) and corresponding eigenvalues A, are needed,

and the solution of unperturbed GW &,(y) is also
required, as is seen from Egs. (1.7), (1.16) and (1.12).

Here; we consider the average characteristics of
Gunn layers (GL) influenced by the current
fluctuations which originate, as assumed, in the

external circuit of the sample. The disturbing torque f

_is closely related to the density of total current

deviations 8J () in this case [5),
[=8J(t)=J(t)-J, 2

A simple theoretical model allowing the analytical
description of free GL's may be obtained with the

current-voltage characteristics W=w(§) taken in the
following form [5]:

w(E )=a+bsinly (6 - F)), @.3)

where a, b, v, F are free parameters. The relation
(2.3) describes the needed dependence w(§) in the

electric field region defined by 0<y(6 — F) <2n.
Thé shape of the .w-§ characteristic outside this
region is nonessential for our purposes if one takes
Jo=a. The "equal areas rule" is satisfied in this case,
and the parameters of free GL are fully determined by
the w(6) dependence in the "inside region" [5]. Now,
the solution that 'describes the free GL may be
obtained from (1.1) by substitution of Egs. (2.1) and
(2.3) into (1.1). Obviously, the right side of (1.1) has
to be neglected (B=0). In the strong diffusion case
(Up>>1)) one gets [5]

&4(»)~F +2y ' arctansinh(z y), 24

where F = F+A/2 and A=2n/fy = (6,” —6,”)
denotes ‘the increment of electric field in GL wave.
The quantities & u» and &, indicate the extreme
values of electric field in GL. The sign + or -
corresponds to the accumulation and depletion wave,
respectively. The function y(y)=arctansinh(+y)

in (2.4) is defined as, —% <y(y)< % Note, the
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characteristic distance describing the charge density
distribution in GL wave, p(x)~d§,(x)/dx, i.e.
the extent of GL nucleus in the X-coordinates is of an
order of lg=I,A; where A, = (w ')—”2 I/, >>1
Now, substituting (2.1), (2.3) and (2.4) into (1.3) one
may obtain thc;. required functions Y, and the
corresponding eigenvalue‘s‘ A explicitly [5]

X(&)=2"secht, A =0,
X,(6)=[2r(k* + D] (tanh - ik)exp(ike ),
Ak) =2, (K +1)

S(8) = exp[# (vh; ) 'secht] ~ 1,
2.5

where parameter A, =by =W’ indicates the
bottom of continuous spectrum. Note, that the

eigenvalue A which corresponds to the translational
mode is a single discrete eigenlevel in the considered

case. Hence, the additional field AS(E,1) is fully

determined by contribution of eigenfunctions that
correspond to the continuous spectrum, as one can
see from Eqs. (1.12) and (1.16).

To evaluate the average characteristics of GL let
us define the statistical properties of the disturbing

torque 8J(T) more exactly. It is supposed in the

following that the .current oscillations &J (t)
correspond to the white Gaussian noise and are

"turned pn" at T = 0, as assumed in the derivation of
Egs. (1.16). Thus, the statistical properties of 8J (t)
are characterized as follows

(dJ()=0,
(8J(x,8J(z,)..80(x,))=5,, Y B,..B,,

B, =(8J(x, ) (x, ))=26%8(x,~1,),

(2.6)
where 7 is. an_integer, X indicates the sum of
correlators B,-j covering all pair combinations of
indices. The parameter ¢ in (2.6) characterizes the
external noise intensity, and the bracket ( )denotes
the ensemble average, i.e. the average over all the

possible realizations of J (7).

Finally, let us specify the statistical ensembles of
GL's more exactly, i.e. let us describe the averaging
procedure more accurately. It is well known [1,2] that
in the considerations of stochastic properties of
solitary waves in the conservative systems two

Pagnoduauka u pammoactponomus, 1996, T.1 ,Ne2

different, procedures of the averaging are common.
They correspond to the averages over two ‘separate
statistical ensembles, both describing a “random
walk" of solitary waves.

The first one, introduced by Kaup (see[l]),
incorporates the averaging “relative to the moving
wave" and seeks to describe the statistical
characteristics of the waves that have "arrived” to a
certain point of the specimen. The corresponding
ensemble of GL's includes the waves of a randomly
distorted shapes only. The averaging over irregular

shifts of the phases 5(t) is ignored in this case. This
ensemble will be called the "small ensemble". Thus,
the averages over the small ensemble describe the
mean characteristics of the waves that arrived to some
point of the specimen, where by "coordinate of the
wave" we mean the position of nucleus center of the
wave.

The second averaging proposed by Wadati [7]
involves_all irregular parameters of the randomly
disturbed wave. It corresponds to the averages over
"complete ensemble” of the "random waves" and
includes the random distribution of separate waves -
not only over the distorted shapes but also over the
available phase displacements. Each member of the
ensemble, a single solitary wave, is characterized not
only by its individual shape but also by the unique
location, both being randomly distributed in space.
Thus, the complete ensemble takes into account all
irregular parameters of the wave. Obviously, average
over the complete ensemble describes the essentially
different physical situation. The complete ensemble
corresponds to the infinite collection of the
macroscopically identical specimens characterized by
unique realizations of the random torque. Hence, the
averages over complete ensemble may be attributed to
the mean characteristics of GL's distributed over the
macroscopically identical specimens. S

To describe the statistical properties more
extensively we analyze the average characteristics of
GL's in the both ensembles. By the method of
perturbation expansion described above we examine

the evolution of averaged GL field (6( x,t )> in the

presence of random current oscillations J(t) that, as
assumed, are of Gaussian type.

3. Averages over small ensemble

By averaging over the small ensemble we intend fo
evaluate the average characteristics of GL in the

"comoving coordinates" &, i.e. in the coordinates
moving with the nucleus center of the perturbed wave.
Thus, from (1.7) one has '

E=E(x.t)+DE (x,1), G.1)
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where overline denotes the averaged field,

DE (x,t)=(DE(x,t)). From (1.16), in the
conjunction with Egs. (2.2), (1.13), (1.14) and (2.6),

one gets that ( i )> =0. Hence, from
——=-(1)

DE (x,1)=0, and the shape of the averaged field
distribution along the specimen

é.x) =<€ o(x)+DE V(x,t )> strictly follows that
of the free wave, if the lowest approximation of
perturbation expansion (1.10) is used. Now it may be
concluded that the realizations of the disturbed GL
field are symmetrically distributed around the field

6,(E) that describes the free GL. Indeed, after
evaluation of the probability distribution

Af(T)= (8(7}‘ ~-TP ))> of the parameter T,
with the help of (1,16), (2.2) and (2.6), one gets

FAT) =m0 )| exgf-T2 /425, 62
where

02(t) =AY, |1)’0’[I-exp(-21,(x)].

Thus, the obtained distribution F. r( T,) is Gaussian
and its dispersion & ;(1:) approaches the fixed value
57 =2;(Y, |I>20'2 in the long time limit T >> T

Here t,=A=1/w' indicates the dielectric
relaxation time: Moreover, from (1.16) used in
conjunction with (2.2) and (2.6) follows that

<s(')(‘t ))=0. Hence, the average comoving
coordinate (§ ,) = y obeys the nucleus center of the
free GL. Taking into account that the first order field
A a8 ’(g ,T) vamshw, let us evaluate the second-
order average Aé; (E, ,t). It is seen from Egs.
(1.12) and (1.16) that one needs to evaluate the
averaged torque f?) = < SO )>, to obtain the

—~ )
mean field A6 (£,1). In the case of symmetric

GL, A;>>1, from Eq. (1.9) used in conjunction with
(2.1), follows

7 {(“;‘, 28 wee s ) )}

(3.3)
A small term, proportional to NG[ , has been neglected
in the derivation of (3.3). In seeking the field

AS m(ﬁ,t) we are interested in the "steady state"
which develops at sufficiently long times after the
random torque 8J(t) has-been turned on. Thus, we
do not analyze the relaxation process to the "steady
state” that takes place at the initial moment,

Performing the averaging in (3.3) one gets with the
help of (1.12) and (1.16) (Appendix A)

A8 V()= [ (Y, |B)Y,(5) =

3} (.4
= [dzB(2)G,(z),
wh—ere
G(z8)= [dkA'Y; (2)Y, (&),
B(z)=2"c% 2<17 l d—6°> x 35

dY (z
{Y| +[1 tahge )]} ()
It is seen from (3.4) and (3.5) that the addmonal fields

- (2) .
AE () does not depend on time, i.e. it describes
the "steady state” which becomes settled at the times

exceeding the dielectric relaxation time (T>>1p) (see
Appendix A). Owing to the fact that the signature of

dé ()
dy

wave case, one may conclude from (3.4) that the

is opposite for accumulation or depletion

additional field, AS (&) are also strictly opposite

for these two cases. Performing the needed
integrations in (3.4) by use of the closure condition
(A.7), one gets (Appendix B)

26 V)= {BE)-(T|BTE) G

Evidently, the expression (3.6) is in a good agreement
with previous our assumption: the additional field

-2
A6 () does not include the contribution of the
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translational mode. Taking the explicit expressions
(2.5) and (3.5), we finally obtain from 3.6)

A8 V() ~ F(8,) Myo? x |
' tanh& (X))

x{2n%+(2-n cosh™'£)?} cosht”

The results (3.6) and (3.7) are approximate ones.
Starting from (3.4) one can obtain the needed

Q)
dependence AS (&) more accurately. Indeed, the
exact evaluation of the "response function® G,(z,£)

is possible by use of the method of contour
integration in the complex k-plane (Appendix C)

G(z,x) = (87La cosh z cosh x)'l x

x {exp(—Zz> )+exp(-2z ) -2z - xj} 9

where z,=max{z,x} and z.=min{z,x}. Now the

@ .
required field A6 (&) may be evaluated by

substitution of Egs. (3.5) and (3.8) into (3.4).
However. the needed integration in (3.4) cant not be
carried out rigorously by analytical methods. Thus,
the obtained expression (3.8) is useful for the

Ll
numerical evaluation of the field A6  (£). The
performed numerical simulations show that the

@
additional field A& (&) given by (3.6) is in a good

agreement with the strict result, obtained with the
help of (3.8), within accuracy of few percents.
Finally, we present the explicit result which describes
the averaged GL field in the second order
approximation. From Eq. (3.1) used in conjunction
with (2.4) and (3.7), it follows

5

~ (2
62(&)-60(&)+A5 (§)~€o(m),

L&) =1+ (oy /4)’[2n? +(2-mcosh™'E )]

x&~ tanh€.
(3.9
It is seen from (3.9) that the averaged field & &) is

similar to that which describes the free GL with a
slightly distorted nucleus. One can see that
"deformation" of the free wave induced by random
perturbations 8J(T) are inhomogeneous and more
strongly pronounced in the region of nucleus center of

the free GL. The distortion of the nucleus AL (&)=

=L (€)~1 is proportional to the noise intensity o>
and becomes negligible in the region outside the GL

nucleus, ie. ALG(€)—>0 when E—>to0. Thus, the

averaged field distribution along the specimen g &)

in the outside region & >>1 practically coincides with
that describing the free GL. ~

It is interesting to note that the average comoving
coordinate <§ 2) = y+<s(2)(t )>, which has been
evaluated with the help of (1.16), strictly follows the

nucleus center of free GL, i.e. <§ 2) =y.

4. Complete ensemble averages. General relations

In evaluating the averages over the "complete
ensemble” one has in mind that the position of GL are
also randomly distributed along a specimen. By
"position of GL", as in above, we mean the nucleus
center of GL. Accordingly to (1.7) the average GL
field is defined now as follows

& =6,(y1)+A6 (y1), @.1)

where overline indicates the GL field averaged over

the complete ensemble, éTo( 1) =<<E,(E)>>,

etc., where sign <<>> denotes averaging over the
complete ensemble. In evaluating of the "complete
averages" we will restrict ourselves by the first order
approximation. To simplify denotations, the indexes

will be omitted. The quantities s and AE now
correspond to those obtained in the first order
approximation, i.e. s=s” and AS = AE P,

Let us evaluate the mean field g (7). By use of

translational operator 7'( §)= exp(s o/ ay) one gets

from (1.7) with the help of Egs. (1.16), (2.2) and (2.6)
(Appendix D)

<<Bo(E,1)>> = << T(5)8,(¥) >> = d(5)E,(»),

“4.2)
where d(ss) denotes the "diffusion operator”
" 0?2
d(s)= exp[Z'l < .sjz(‘t )> 5;2-:’ 4.3)

Frgr_n 4.2 imrEdiately follows
%8, '8,
ot '’ ,

2
= ld<<s*(t)> /o] dB,\”
D-ZT——{0<YII)<Y' 5 [

(4.4)
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where the average <<s?(t)>> is evaluated with the
help of Egs. (1.16) and (2.6). The obtained relation

shows the mean field €, obeys the diffusion equation
characterized by diffusion coefficient D which is
expressed in terms of the average magnitude of the
phase displacements s(7). Note, that characteristic

time of diffusive spreading of GL 1, = L, / D is of

the order of I/ D if one takes into account that the

size of nucleus of the free GL Ly is of the order of
unity. One can se¢ that simple relationship (4.4) that
describes the diffusive spreading induced by the

“random walk” of GL phase 5(T) is a characteristic
feature of Gaussian process. There are the conditions
(2.6) which ensure the simple relation (4.3) between
averaged translations of GL and "diffusion operator”

d (see Appendix D). .
The additional field A& (»,t), which results from

the contribution of delocalized eigenfunctions Y, (€ ),
may be evaluated from (1.12), (1.16) and (2.2) by the
averaging procedure being performed in accordance
with the relations (2.6),

2B (y)= I‘”‘(}Zl')"

] - “4.5)
x fatexp| (t=1)] <<8J(OT{s0)] > ¥, (»)

0

where the eigenfunction Y, (&), which appeared in
-(1.12), is introduced into (4.5) with the help of the

translational operator, X (&)= 7'(.5') Y(y). The
presence of the factor << 8J7(s) >> in integrand of

(4.5) evidently shows that the additional field AS
comes from correlation between the phase shifts of

GL and the distortions of the shape of GL, both
originating from random deviations of the current
&J(t). Performing the averaging in (4.5) with (2.6)
one gets (Appendix E)

AE (y)= d(s,y) IdkK,,(rm R(¥), 46)

where
'k(Y)=<Ykll)Yk(J’),
K, (t)= 25(Y|)< d€°(y)> [1-exp(~Az))

It is seen that increase of the additional field A€ at
the initial moments after the current oscillations have

been "turned on" is determined by the factor K, (t).
The rise of AE is characterized by the dielectric

relaxation time T R= 7\.;', as follows from (4.6). At'a
sufficiently large time, exceeding ‘the dielectric
relaxation time, the magnitude of K, (T) approaches

the fixed value, and the additional field Zé_‘( »T)
obeys the diffusion equation (4.4), as one can see

from (4.6). Thus, the total GL field & (3,1) at a

sufficiently large - times T>>1, also obeys the
diffusioni equation

. oE
ob &’
where b=1/1, is the time duration measured in the

@7

units of characteristic "diffusion time" T,=1/D.
Consequently, the shape of the averaged GL field
& (y,v) is fully determined by diffusive spreading. It
is interesting to note that similar diffusion equation
which describes the averaged field of K-dV soliton
under random perturbations has been deduced in [7].

Now one can see that the solution of Eq. (4.7) may
be presented as a convolution of Gaussian function

and averaged field distribution 6 (».b,) given at any

initial time b=b,

€ (v.b)=2{n Ab)™
x [dxexp]~(y—x)*/48b]E (x.4,),

where Ab=b— b, Integrating the both sides of (4.8)
over ¥ one concludes that the voltage drop over the

(4.8)

“specimen does not depend on b, i.e. it is not changed

due to the presence of current oscillations 8J(1).
Thus, one may expect that the mean "deformations"
of GL, which have been induced by fluctuations of

dJ (), are distributed antisymmetrically with respect
to the nucleus center of free GL. For our purposes it
is useful to rewrite the Eq. (4.8) in the following
manner:;

E(nb)= [dgexp(- abg" +igy)E (g:), (49)

where

6 (g:b)=(2n)" [dyexp(~igy)f (7.8,)
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A more detailed analysis of the field g (),

given below, is based on the relations (4.8) and (4.9)
used in conjunction with the explicit expressions (2.4),

(2.5) and the initial condition g (yr=0)=6,(»).

5. Complete ensemble averages. Evolution of the
mean field

The explicit . expressions of the averaged field

E (y,v) may be simply deduced from (4.8) and (4.9)
in the limiting cases of short and long times, i.e. when

b<<lorb>>1.
We suppose in the following that the diffusive

spreading of é (y,r) is sufficiently slow as
compared to the rate of dielectric relaxation process,
i.e. we assume that T,>> T,. The characteristic time

Tp may be evaluated from Eq. (4.4) if the explicit
expressions (2.4) and (2.5) have been taken into

Tp = (A/O‘) diffusive

spreading of the field é_‘ (y,t) is slow if

account: Hence, the

6’ <<W'A’. Now it is seen that the initial field
A_éz( y)= E( VT =T,)may be evaluated from
(4.6) if one assumes that T, <<T,<< T,. Neglecting
the diffusive spread of the field Kg( YT =T,) one
can substitute d =1 into (4.6), to obtain

8.0k, Jaag B2 Toe )
where
do,
k=207 (7|2
p’ 202?»'[<Y|>< d‘i"” 2%:2:—2.

Deriving (5.1) we have assumed that
AT, 2T,/tg >> 1 1t is seen from (4.6) that the

condition T,>>1, implies that the "initial" time 1, is
large enough and the dielectric relaxation processes,
which develop at the initial moments after the
random torque has been turned on, are almost over at
the time T,.

The integration in (5.1) has been performed in a
similar way as in (A.10) by taking into account that
B(z)=1 (see Appendix A).
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The condition T,<<T, shows that the initial time
T, is small enough on a time scale which determines

the diffusive spreading of -the field g (y,t). Thus,

the averaged field g (y,t) may be evaluated from

(4.8) by use of the initial condition

6 (1b=0)=E (b =151 ) = E4()+ A6 (D).
(5.2

It should be stressed that the condition (5.2) is valid if

bg =1 ¢/t , << 1. In addition, it follows from the

condition T,>>1, that the relation (5.2) is useful for
analysis of the averaged field at a sufficiently long
times b>>by exclusively. It is not valid in the short

time region b< by, when the dielectric relaxation
processes discussed above are still important.- Hence,

our analysis of the required field g (yr) is

restricted by the condition b6>>b,. From Egs. (4.8)
and (5.2) used in conjunction with (5.1) one may

conclude that the additional field _A_g( yr) is.

proportional to the intensity of the "current noise" o?
and is small. It follows from (4.8) by use of Egs. (5.2)
and (5.1),

E (1.b)=6,(y.b)-p

8°6,(,b)
2_0._.’_.._. 5.
ay’ (5.3)

Hence, to obtain the averaged field g (»,b) the
dependence éTo( y,b) is required.

Let us evaluate éTo( »,b) in the short time region
bp<<b<<l. Substituting b,=0 into (4.8) one can
see that the integrand exp[—( y=-x)?/ 4b] in (4.8) is

a rapidly damped function of X, if b<<I. To perform
integration in (4.8), one may expand the slowly
varying function G,(x) into the power series around

the point x=y. Then, it is easy to get

E0(1:0) =64(»)+ Ry(1.b),
[ 2m (54)
ROty =3y LE4D

Retaining the leading term m=1 in sum (5.4) one gets
from Egs. (5.3), (5.4) and (2.4) approximately

260(}’) I: :l'
E (1b) =6, () +b—5"~E o) (5.5
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where Ly=1+by'tanhy. Thus, the mean field

F (»,b) in the short time region is similar to that of

free GL with a slightly smeared nucleus, the size of
the nucleus being linearly increased in time. From

(5.4) and (2.4) onc can also see that R,(—y)=—

Ry(y). Hence, the mean voltage drop over the
specimen is not influenced by the random

perturbations 8J().

In the long time region O>>1 the needed field
6_“ »,b) may be obtained from (4.9) by taking into
account that the integrand exp(—bg’) in (4.9) is a
sharp function of g, if b>>I(Appendix F)

B (D) =B +R(pD), 69

where

6,(y,b)=i+$o(iﬁ),‘

; 67
R (b)=F=Ya,0,(3b). |
Y w0
Here
O(x)=2n"" jdtexp(—t2 ) | 5.8)
0

is Frensel integral and

-312 _ Zz_
Q.(»b) = ya 7 [b exp( 4b)J' (5.9)

Coeflicient a, may be expwesed in terms of Euler
numbers E,

{21:"’[2(n+1)]} 2 2E | (5.10)

Rewmng the leading term in (5.7) one gets from (5.3)
and (5.7)

2 azao(ysb)
A (y.b)= Pt

= £p’n(y b)"zexp(-2%),

AT

-1
where z=(2\/3) y. Thus, the additional field

AS diminishes in  the

AB (yb)~+*
supplemental part of the field R, (y,b) is also

decreasing as T in the long time limit.

infinite ° limit:

if T—o0. Note,” that the

From Egs. (5.6) - (5.10) and (5.3) one can see that

the averaged field & (¥,b) describes the localized
wave which propagates with the unperturbed velocity
¢, and is appreciably smeared in comparison with the
free GL. It is also seen from (5.7) and (5.9) that the
following condition is satisfied: Rw(—y)=—Rux(y).
Therefore, neither supplemental (Rw) nor additional

(A6 ) parts of the field influence the total voltage
drop over the specimen. Neglecting the additional and
supplemental parts of -the field one has in
asymptotically long time limit

g(y,b)séw(y,b)=F+-7"—®(i§§—3-). 5.12)

Hence, the mean field 6. (1,b) describes the kink-
like wave characterized by a diffusively enlarged
nucleus which is extended over the distances

| y| <b" . The extreme values of the field in the

"averaged wave" coincide with those of free GL, as
seen from (5.12). This conclusion is in reasonable
agreement with the earlier results concerning the
dynamics of propagation of the single GL [5,7].
Indeed, by taking into account that the distortion of a
single wave induced by small current deviation 8./ is
almost homogeneous in the region outside the nucleus
of GL and is proportional to the magnitude of 8/,
one can see that the extreme values of the field in the
"averaged GL" will coincide with that of the free GL.
The smearing of the nucleus of the averaged wave
may be interpreted as being appeared due to the
random displacements of separate GL's along the
specimen. Evaluating the probability distribution

F(s)= <8 (S -sO(1 ))> of the paran;eter s which

describes the phase shift of GL; one gets by use of
Eqgs. (1.16), (2.2) and (2.6)

sZ
e )}, .13)

where 6 2(t) = Dt and the coefficient D is defined
in (4.4). Thus, the nucleus centers of separate waves
influenced by the random perturbation 8J(t) are
randomly distributed along the specimen, the
dispersion G2(t) of the distribution F,(s) being
linearly increased in time. It is interesting to note that

the diffusive spread of K-dV solitons analyzed in [8,9]
is of the same physical origin as described here.

F(s)=[4na?@)| " exp{—
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6. Conclusions

Summarizing we conclude that the current
fluctuations in a specimen influence the propagation
of GL waves in two ways, by disturbing the GL phase
and by transforming the shape of GL. In the case of
Gaussian fluctuations the average characteristics of
GL are found to be similar to those obtained in
considerations of the "random walk" of solitary waves
(1}

The "small ensemble” averages which describe the
mean characteristics of GL being arrived to a certain
point of the specimen show that the shape of averaged
GL is slightly deviated from that describing the free
GL. The deviations are proportional to the intensity
of the "current noise" and are mainly localized in the
nucleus region of free GL. They are antisymmetrically
distributed with respect to the nucleus center of free
GL, thus, the voltage drop in the averaged GL
coincides that in the free GL.

The averages over. "complete ensemble” show the
infinite diffusive spreading of the averaged wave. At
the times that significantly exceed the dielectric
relaxation time after the current fluctuations have
been "turned on”, the averaged field of GL's obeys the
diffusion equation, with the diffusion coefficient
linearly increased with the intensity of the current
noise. The average characteristics of GL's described
by the complete ensemble are similar to those eatlier

obtained in considerations of the "random walk" of

K-dV solitons [8,9].

We note that for the both ensembles considered
here the mean velocity of GL as well as the extreme
values of the field in averaged GL coincide with those
of free GL. This conclusion is in obvious
disagreement with the analogous result describing the
"random walk" of the damped sine-Gordon kinks [1].
The "conservation laws" of the mean velocity ¢, and

the averaged magnitudes of the wave, & and 6,
that appear in the case of GL's, may be interpreted as
being conditioned by the regime of the external
circuit, <J(1)>=J, Note, that the regular current
deviation 8/ influences both, the magnitudes §,,, &,
and the velocity ¢, of a single GL [5,7]. Thus, for
instance, the, total transit time of the averaged GL
changes if current oscillations are not strictly random
but contain also a regular part.

Fmally, let us present some numerical estimations
concerning the random walk of GL. The diffusive
spread of averaged GL described by Eq. (4.7) is
significant if the transit time of GL ©,. = L/c, (L is
the length of the specimen) considerably exceeds the

characteristic "diffusion time" T, = (A/O') Thus,
the spreading of GL wave is appreciable if intensity of
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random current oscillations o is sufficiently high,
6’2062 =A/t,. Taking the values L= 10'3
1,=10"" s, A=1 one gets in the standard units

07 =10"J}x, ~ 107(4/m? ) s if

J,=pgv, = 10" A/m? and ©, = 1075 (po is the

electric charge density of positive background in the
specimen). Such spectral density of current noise may -
be achieved by the use of dynamlcal noise generators
(10).

Let us evaluate the additional field AE (§)
described by Eq. (3.7). Taking &, = A one can see

from (2.4) and (3.7) that AB /6, =(o/o,)
where 6% = A’/ . Taking TR/t =107%, one

concludes that the additional field XE_‘Z)(J;) is

. observable if ¢ 2107 c,. Such spectral density

may be achieved by IMPAAT diodes.

Appendix
hA Performing the averaging in Eq. (3.3) by use of
(2.6) one gets
?f"’(é,r) -[4,E)+ 4,¢,7)) A1)
where
A4(8)=c(T| >< d6°> df,f), A2
A1) =cw[E,(E)]PE,). A3

The functions R( &) and P(&,t) are defined as
follows

RE)= qur,,(é)= [@2G,(2.8), A9

P@Et)= [dg [dp(h,+1,) "1, )r,E)a, ),

where
ap(v)={1-exp[-(0, +1, %]},
r(€)= (Y, | DY, (&),

and

(A.6)
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Gy(28)= [dg¥; ()](€)=
=8(z-€)- V" () ¥E).

Eq. (A.7) follows from the completeness of functions
Xo and expresses the closure condition of

eigenfunctions Y. It follows from (A.2), (A.4) and
A7)

AE)=—cXY |)< .d€°> d’;ég) (A8)

From Eqgs. (1.12) and (1.16).used in conjunction with
(A.1), (A.3) and (A.5) one gets in the case of relatively

long times T >>T 5 = A7,

(A7)

28 7€)~ [CRY, (), a9
where -

=1 NY, |B(z)),
C(k) =K ¥ |B(2)) “o

B(z)=-4(2)-c"w"[,(2)|P(2).

The function. Py(z) in (A.10) is defined by (A.5) if
one substitutes @,,=/ into (A.5). Thus, the explicit
expression of Py(z) may be derived from (A.5) by

taking into account that the integral (Yk II) in (A.6)

is relatively sharp function of k, localized in the
interval |k|<1. By method of contour integration in
the complex y-plane one gets

[dyexp(iky)tanh y = in sinh(nk/2). (A1)

Hence, the integral (Yk |I> in (A.5) is rapidly damped

function of k, as seen from the explicit expression of

Y.(y) (2.5. From (A.5) with the help of (A.7)
follows

Py(2)~ (2h,) 1= (T | )T ()] @12

Substituting (A.8) and (A.12) into (A.10) one gets

B(2)= 2"0"y< 6°>

i }dY(z)

{Y|1 +H1-(¥

In deriving of (A.13) the explicit expressions (2.3) and
(2.4) have been used. From (A.9), (A.10) and (A.13)
the Eqgs. (3.4) and (3.5) follow immediately.

B. It follows fror_n (34 ,
28 (€)= [dnBKY (),

where

b(k)=( Y,|B)= jdz Y;(2)B(2).

The integrand B(z ) in (B.1) is the localized function

of z with the characteristic length of localization of
the order of unity, as follows from Egs. (3.5) and
(2.5). From (B.1) one can see by use of (2.5) that the

function b(k) is Fourier transform of the "twin-

spike” function, localized in the interval |z{< I. Note,
that the distance between the "spikes" is also of the
order of unity. Hence, the dependence b(k) is an
oscillating function of Kk, rapidly (exponentially)

damped outside the interval |[K[< 1. Evidently, the
period of the oscillations is also of the order of unity.

Taking into mind that the eigenvalue A, in (B.1) is a
slowly varying function of k, one can evaluate the
field A (£) in (B.1) by expanding of A7 into
power series. Retainihg the-leading term of expansion
one substitutes A} = A’ into (B.1). Thus, by use of -
the closure condition (A.7) one gets

@®@.1

AB °(€) =N [d2B(z) [d Y} (2}, (E) =

=%'[BE)-(T|B)T ¢)]
(B.2) '

C. Starting from (3.5) we define the function

G,(z%)= [dATY; ()Y, (). €1
Let us define the auxiliary function
Lo(z,6p)=

(C2)

I die + 1)(K* + )™ () K ().
From (C.1) and (C2) by use of (2 5) follows
G,(z,x)=(-A,) "(n!)" W[},(Z,x; p=10.

(C3)
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Thus, the dependence G,(z,x) is fully determined by
the auxiliary function I'y(z,x; £). It follows from
(C.2)and (2.5)

Lo(z6.4) = (27)'S(x)S ™ (z) x

x ]‘zﬂcgo (k;2,%,4) exp[ik( x- Z)],

80(42:%,1)=T+(k* + 1) (tanh z tanh x — ) -

—ik(k* + n* (tanh z —tanh x).
(C.9)
From (C.4) is seen that

L(z,54) = S™(2)S(x){6(z - x) + 7,(2, %)

(tanh ztanh x - ) - 7i(z,x)(tanh z - tanh x)},

.5
where

7o) = @) [ah(l+ )" exgfi(x—)] =

=27 exp{ ~4"z —xi},»
(C.6)

(25 =i [+ 1) explk )] =

= i}'o(z,xw)-
&
(&)
Integration in (C.6) has been evaluated by the method
of contour integration in the complex K-plane.

From (C.1) used in conjunction with Eqgs. (C.3) and
(C.5)~(C.7) follows

Gy(2,x) = S(x)[84,5(z)cosh zcosh x] ' x
- (C.8)
X {exp( -2z,)+exp(-2z,)-2z ~ xf}

where z>=max {z,x} and z<=min {z,x}. Now Eq.
(3.8) follows immediatelly from (C.8) by taking into
account that S(x )~ 8™~ 1,if Ag>>1.

D. From definition of translational operator follows

Ts) = exp(sg—)) = is"(n!)‘l ;n .

n=0

®.1

From (1.16) used with Egs. (2.2) and (2.6) one gets

<<s"5> = 0 <<?>> =

=(r-IM<<s’>>" r =123, (D.2)

Now, from (D.1) and (D.2)it is easy to see that
2 3 - 2 a
<<T(s)>>=d(s)=exp| 2" << s >>52- .

(D.3)

From (D.3) the needed Eqs. (4.2) and (4.3) follow at
once.
E. It follows from (4.5) that

AE(y1)= [ak(Y,|DRY,(»), €1
where operator i?,( is defined as follows

R = rjau exp{4 (1 - 7)) << &) [s(1)]>>.
0
(E2)

Performing the averaging in (E.2) with the help of
(2.6) and (D.1), one gets

R= K r)gexp[Z" << s (r)>> gz'}

€3
where
Ki(7)= 4, [deexp[4,(t- )] << & (1)s(1) >> =
0
-1
= 20-2<)7l1)<17 %> [1 -exp(-4r)].

. (E.9)
From (E.1), by use of (E.3), (E.4) and (4.3), the Eq.
(4.6) immediately follows.

F. Expressions (5.6) - (5.10) are deduced from 4.9)
by taking into account the following relation:

él(q)=75(«1)11‘7"[(4—isigny)cosh(%)J ,
| F.1)

which may be obtained by the method of contour
integration in complex plane. One gets from (4.9) and

(E.1)
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bo(1b) = FEiy J(,b),

® -1
J(y,b)= qu[(q —isign y) cosh(—”zz_)] x (F.2)

X exp(— bq* + iqy).

The integrand cxp(—qu ) in (F.2) is rapidly damped
function g, if b>>1. Expanding the slowly varying
function,

o (2)-

and substituting (F.3) into (F.2) one gets

) (2", .
I+ Z(zn)!(i) e E3)

n=l

J=Jy+Js | )
where

Jy= qu[(q—i sign y)]_l exp(-bg” +igy)=

—0

(E.5)

)

( l)m+l 2(m+1)
J 2[2(m+l)]'( ) gmljm(y:b)

Here £, is Euler number, ®(x) denotes Frensel
integral and J,,(y,b) is the following integral:

I = uj‘dq(]’"'+l exp(—- bg* + z'qy) =

s Sl -2

From (F.2) and (F.4) - (F.6) the expressions (5.6) -
(5.10) follow immediately.

(F.6)
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Bo3aeiicTre ciyuanHoi ciwibl Ha goMeH I'auna
@.I'. bacc, P. Baxanac

PaccMaTpuBaeTcs pacnpocTpaHeHHe TaHHOBCKHX
cioeB (I'C) - HenuHeHHBIX BOJH 3MEKTPOHHOH
IUIOTHOCTH B NOIYNPOBOAHHKOBOM obpasile - NOx
piausHueM GIyKTyauuii TOKa, XapaKTepH3yeMblX
6enbIM rayccoBbiM LIyMOM. Pa3BuTa HTepaliHOHHAA
cxemMa I paja TEOPHH BO3MYLIEHHH € LeJIbIo
M3YYHTb CTATHCTHYECKHE CBOHCTBA rc =
ruapoguHaMudeckoM npubmkenun. HccnemoBaHbl
ycpenHeHHble XapakTepictuku I'C g geyx
CTATHCTHYECKHX aHcaMOJieH, ONKCHIBAIOUIMX
CyLIeCTBEHHO pa3lMyHble (UIHYECKHE CHTYALMH.
IToxasaHo, uyTo GUYKTyalMH TOKa CYLIECTBEHHO
BIMAIOT Ha ¢opMy cpeqdHero noma I'C, ocrasnss
HEH3MEHHbIMH B OGOMX Cy4yasX CPeOHIOI0 CKOPOCTb
I'C u nagenue HanpsxkeHHs Ha oOpasue. BeiBemeHo
ndbdy3uoHHOE ypaBHEHHe, OITHChIBAIOLEE PA3MbITHE
cpeasero npoduns I'C B ancambie I'C co cmyuaiino
pacnpeneneHHbIMU $azamu. IIpuBeneHbl YHCNEHHbIE
OLIEHKH.

His sunaakoBoi cuin na gomex I'anna
®. bacc, P. bakanac

Po3rnsHyTO MOIIHPEHHA TaHHOBCHKHX lapiB
(') - HenmiHiHHUX XBWIb €JNEKTPOHHOI T'YCTHHH Y
HANBIpPOBiJHUKOBHX 3pa3Kax - il BIUIHBOM
GaykTyauiii cTpyMmy, ski XxapakTepusyloTbci Oinmum
rayciscbkuM wmyMoMm. Po3BuHEHO iTepauiiiHy cxeMy
LN pAny Teopi'f 36ypeHb 14 BUBYEHHS CTATHCTHYHHX
pnactuBocteid I'TI y rinponnnauiqﬂomy Ha6IHXeHHi.
Hocnimkeno ycepeaHeni xapaxrtepuctuxu I ams
OBOX CTaTHCTHYHUX aHcaMbmiB, II0 OMHCYIOTh
icrorHo pisHi ¢isnyni curyauil. IloxasaHo, mo
¢nyktyauii crpyMy iCTOTHO BIUIMBAalOTb Ha (OpMY
cepemHboro noasa I'll, 3amuinaoud He3MiHHMMH B
o6ox Bunagkax cepemHio mweuakicts Il i naminus
Hanpyrd B 3pasky. BueemeHo mudysiiiHe piBHAHHSA ,
AKe OMUCYE PO3MHTTA cepeanboro npodimo I'l y
ancambuni 'Ll 3 BunagxoBo posnonineHuMu (asaMmu.
ITpuBeneHo YHCIIOBi OLIIHKH.
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