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Dielectric Function of Matrix Disperse Systems with Metallic Inclusions. Account
of Multipole Interaction between Inclusions
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Dielectric function of small density system of fine metallic particles soluted in dielectric matrix is calculated.
For that purpose, the improved variant of Maxwell-Garnett approach is developed taking into account the pair
multipole interaction between inclusions. The exact solution of two metallic spheres electrostatic problem is
brought in. The exact account of the pair interaction leads to the appearance in the dielectric function of non-
analyticity which is result of summing up of all the series of perturbation theory. Singularities of dielectric func-
tion connected with this non-analyticity give rise to the origin of new excitation branches in a system.

Processes of propagation and absorption of elec-
tromagnetic radiation (EMR) in two-component
disperse systems present a problem that has a long
history {1-3]. Promoted interest to the technological
aspects of such systems had led to revival of theoreti-
cal [4-21] and experimental {22-29] researches in this
classical problem.

In this and also aftergoing paper we will turn at-
tention to the study of some features of the EMR
absorption in matrix disperse systems (MDS), i.e. in
the systems which present a continuous matrix with
the other phase inclusions adopted in a way that the
volume part of the fraction intruded is small com-
pared with the volume matrix part. The MDS with
metallic inclusions (the most often of spherical form)
intruded in dielectric matrix are of pronounced inter-
est, because mainly on the basis of such MDS the
composite materials are created of ditferent aiming
purposes with predicted values of dielectric and mag-
netic permeabilities.

Upon the theoretical study of the processes of
EMR interaction with such systems the method of the
effective medium is widely used. This method in the
simplest case of non-magnetic media consists in that
the MDS with dielectric permeability values distrib-
uted between matrix and inclusions is replaced by
homogeneous and continuous medium with some

effective dielectric permeability ( € ) that depends as

on dielectrical permeability both of a matrix ( &,) and
of intrusions (&), as well on the intrusion concentra-
tion, and their statistical distribution in a matrix. This
approach gives results being in a good agreement with
an experiment only in the case if the wavelength of
the radiation interacting with MDS greatly exceeds
the mean particles dimensions and the distance be-
tween them (the longwave approachment). The review
of early researches on this method one may find in [1-
3], and its various modifications - in [1,5,7,9,12,16-

18,20]. The following schemes of E(a)) calculation

are traditionally used for MDS with spherical inclu-
sions of the radius 7:

ATA - approximation [1,30]
£-g, E—&,

F+2s, " e+2¢,

CPA - approximation [1,30]

g—¢ &E§— &
S (1) I
£+ 2¢, e+2¢,
IDA - approximation [1,9]

}_—_‘90_(2@)% =(1-/);

E+2¢e,\ &

Iz 5 . . . .
where [ = —§~r 1, nis the inclusion concentration.

ATA (average [-matrix approximation) is more
known in a literature as Maxwell-Garnett approxi-
mation (MGT) [31], and CPA - coherent potential
approximation - is often called the effective averaged
approximation or mean field approach [32]. IDA
(iterated dilute approximation) is based on successive
application of either ATA or CPA. These treatments
in some sense are complementary to each other, be-
cause they are used in different cases, that depends on
MDS topology, inclusion concentration and so on.
There, MGT is applied mainly to the calculation of
MDS % with a small inclusion concentration,
whereas CPA is used for statistical mixtures, i.e. when
both disperse system components are mixed in equal
parts. Lately, IDA-approximation has been used for
calculation of electrodynamical characteristics of
small particles fractal aggregates. Nevertheless, the
following regulations are common for all these ap-
proaches:

- they are applicable only in a longwave approxima-
tions;

- the information about the system's structure con-
tents in them only through a parameter £, i.e. the high
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order statistical correlations in the inclusion location
are not used.
In the present paper we developed the improved

variant of MGT for E(w) of the matrix disperse -

systems with spherical inclusions. By this, in a distinc-
tion from standard MGT approachment we will ac-
count exactly the pair multipole interaction between
inclusions belonging to MDS. In Supplement 1 the
exact solution is adduced of electrostatic problem of
two spheres behaviour in an external field. Note, that
the similar problems were considered in papers [8-14,
17-21}, and also in [33-38].

1. Dielectrical function

We will consider a system that consists of continu-
ous dielectric matrix with intruded spherical particles
of different kinds (noted below by indices a, b, c...).

The dielectric permeability of a matrix is €, and of
particles - €,,€,, €, .., correspondently. Let the
number of spheres of a kind a is 7,, b - H,,¢ - 1. and

so on. The whole particles number is 71 = Zna , the

a

n
concentration of particles of kind a is ¢, = —I—/‘i the

4]
whole one is ¢ = ~I7 All the system is located in an

external field proportional to e ™, and the wave-

: 2nc
length A =—— is large compared to sphere radius
0]

and the mean distance between them. For calculation
of the response of such a system to the external field
we will enter a following way.

Let us numerate all the particles by an index i

(I<i<N). Let P,.(l,...N) be the dipole moment

which is acquired by the i-th particle when the system
is located in an external field. It is clear, that the input

in ﬁi(l,...N) comes out both from the dipole mo-
ment produced in this particle due to its polarization

in a field E (the field in a medium in a place of loca-
tion of the i-th inclusion in the absence of other parti-
cles), as well as from polarization of the i-th particle

by a field of the rest (N - 1) particles. Note, that in
all three calculation schemes of g that were indicated

in an Introduction in f)i(l,...N) only the polariza-

tion induced in every particle by the field E is ac-
counted. The consequent account of the influence of
the field of other particles can be carried out in a fol-
lowing way:

P12 N =B+ 2.5, + D Bije*Pura i

i J<k J Jett
(1

where ]_51.‘}. is the input to ﬁi(l,...N) from two-
particle interaction, p,; - from three-particle onc

and so on. To find these quantities one should put
consequently N=1,2,... and solve the obtained equa-
tions for p,, 13!3/‘ ,... . There one finds:

D = ]_51.(1'); 13;,';' = ﬁ(ia ]) - ﬁi(i);
Pij = ﬁ(ia Js k) - ﬁ(i,k)— f?(i, J) ~ p,(i); and so
on. ()

In the present work we restrict ourselves in (1)

only by first two members, i.e. we account only the
pair interaction. For two spheres the quantity

f)i(i, j) is found in Supplement.
To determine the effective dielectric permeability
g((n) of the system we will hold the scheme first

proposed by Brown [33]. In the beginning, using (1,
we calculate the macroscopic medium polarization

<P(7)> averaged over system configuration which
because of the linearity of Maxwell equations will be

connected with E by the relation:
(AF)=K-E. )

where K is a linear operator.
In the second, as follows again from Maxwell

equations the mean Lorentz field <F > in a electro-

static limit is connected with the polarization by the
relation:

(F(7))= E+ fG(F 110 0 A )

where
Gaﬂ (F) =

and the prime by an integral means that the last is
considered in a sense of the principal value, i.e. the
integration is produced over all the space excluding a
sphere of a radius & (3—0) near the Green function

r—r' [35

o_ 1 ®
O0x,0x, 1~

pole G{(F — 7') which origins when
38].

Forth, after excluding E from (3) and (4) with ac-
count of relation [33-36]
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- 3 € -¢ -

P =— (F 6
<> 4n 8+280<> ©
one can obtain the needed expression for effective
dielectric permeability 5(0)) Note that a given cal-

culation scheme appears the more preferable as com-
pared with one proposed in [11,12] because in the
final result € comes in immediately through
Clausius-Mosotti factor [36]
~_ 3 ¥ ~€p
47: € +2¢,

which in the scheme of papers [11,12] may appear
only after summing up the infinite series of a certain
class of diagrams of the perturbation theory over
particles polarizability [17].

Now, we determine the explicit sight of operator

K. To make it, we fulfil the averaging of (1) using

the n-particle distribution function CD(?; Ty, ..rN) of
system configurations where

Oir,r,,...r

——~——“2 N)d”f dF (7)

N

is the probability to find the first particle center in a
volume dr . » the second particle center - in dar 5, and

B

E

:cgcaaa (an )

When obtaining (10) it was taken into account that
7 €,78p 3

a

Aﬁa:aa‘E’a’a:—— ra 4
e, +2¢,

and the tensor Ba'b(Fa,Fb) which determines the

bond between ﬁa,b(fa,?;) and E has a form
PoolFTs) = 2B (T )E, - an
[«2

Y and ¢ number the space variables X, y, z. Note,
that from (2) follows

Bos(7s7,) = Bala,b) - B, , (12)
ie.
(7 5) = B (7)) — o, (13)

3 Z C,Cp Id;';,bq)(ra Drb)ﬁa,b(ra 4

so on. When accounting that the i-th particle is fixed
and restricting in (1) with only first two members, we
find

> B+— Z_'.Ej(r,.,ﬂ.)d) (r,,rj)dr
®
where @, (!, 1) is the pair distribution function

[39].
Now, having summarized in (8) over i from 1 to n

and dividing both parts of the equation by ¥/, after
some transformations we obtain:

(P=cXet +"Fe [, T N0uli)

®

where

@, (r ) (1“%)(13@;(’71"7/)’

and D, =p,; pa’b(r ) P;,(;: J) when the

index i corresponds to particle's kind a, and j - to the
kind b.
Inverting now the expression (9) with the same ac-

curacy one can find also the field E.

(P) (10)

and the tensor f)° (7"; ,Fb) appearance is found from

the solution of the correspondent two-particle prob-
lem (Supplement 1):

pl(a,b)=pr (7,7 )E" . (19)

After exclusion of E from relations (10) and (4), we
obtain:

(- Tesn e Rl
Z (;naaa) 2
as)

The tensor Ba b( rb) as follows from Supplement

| can be presented in a form
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Blm( ) B bnlnm+ aJ,_b(Sl.m_ 1 m) (16)

-

where 71 = —— R]b F, —T,; m, [ mark the space

R,b
. el L
coordinates X, , z, and quantities B, and B, are
the functions of R, , equal to

By = Ao(R,)r o, —2

o0,

R,

an

= 4\(R,)r} -a +7;3j

Here A, and A}, are determined by the system of

LRS- NP (p

3 € — g

Czca% ;:‘c ¢ J.d"(D

equations (S.8). When obtaining (17), we have ac-
counted that

o* 1 1
—=—|2nn, - (5
axmaxl r 7'3 [ nlnm ( Im

and also the relation
[dr®,,(7,.7)6(7, -7 )(P) = [, 67, -7 )(P).
which follows from the fact that distribution function

d)uyb('fa,f‘b) for rigid spheres depends only on

when ‘7_‘; —al >0, and when

|f‘;, - i‘},l - ®, (Du,b(’-iz’;b) — 1. With account of (6)
the equation (15) turns to the form

7 )(B)- (19)

a’rh B ( a

After integration in relation (19) over the angle we obtain the equation for finding € :

*—"'anc,, [ RdR,,@,,(R,)[BLs(R,) +28(R,)]

4n € +2¢g, 1 s

3 € -¢g,

- CZ Ca(la
a

This is the ground formula for following investiga-
tion. To obtain (20) we assumed that

®,,(7,.7,) = @, (. 7). The tensor B,,(7..7)

in (19) accounts the pair multipole interaction be-
tween particles of the system. The formula (20) is the
generalization of the known Maxwell-Garnett rela-
tion to the case of multicomponent disperse matrix
systems with account of pair multipole interaction
between inclusions.

2. Dielectric permeability of matrix disperse systems
with single kind inclusions

In the case of the single kind particles having a ra-
dius r it follows from (20) the relation for a finding

- Af; . :jRZcD(R)[B"(R) + 2B*(R)[dR

£ —g, A

@b

20

(Ses)

where [ = %nrjn is the ﬁlling power, and
BY(R) = [Xm (R)- A]r‘? ;
pr(R) =[x, (R)-4]".

Here R - is a distance between two arbitrarily picked

€ —€,
spheres, 4 =———"—, and the coefficients X,O(R)

e+ 2¢g,
and X”(R) are found from the infinite systems of
the catching equations (S.11)

STrX,, =6,, [=12..,

I'=1

w By (1) (i) .
T, = A ( ) (l+m).!([’ —m)! R ,(22)
where A, = l(8 — SOl__

e +(1+ 1),

The keeping in (22) only of members with I'=1
means the account only of the pair dipole-dipole
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(DD}  interaction between inclusions, the members

with ['=2 the quadrupole (KP) one and so on. In
acase of I’ =1 we find from (22):

5 -1

xo= (S o))

X, = (gg?fi * Z(%)jj ) ; @9
0

The expressions (23) multiplied by r

senting the longitudinal and transverse polarizabili-
ties, correspondently, of two spheres in an external
electric field with account of DD interaction between
them. For the forthcoming calculation of € one
should know the pair distribution function ®(R). In
our case the potential of interaction between spheres
is of a kind:

() o, when R<d= 2r
ulr
0, when R>d=2r’

For such a potential it is known the exact solution of
the Percus-Jevick [39] equation for the pair distribu-

tion function @®(R) which had been obtained by

are pre Wertheim [40]. This exact solution is following:
; - x?H(x) sin(gl) R
R I+ I dx, when— > I,
CD(-—) =1 12f, Rx Q4)
d d
0, whenﬁ <l
L d
Here,
5°(x) sin (xy)
H(x)=—%" 2 2 X0(y)dy
(x) 1- s(x) x) fj. Xy (y)
1+27Y 6 1+2f
C(y)=—( ), - f4(1+2)y L2 Zy :
-7y (-7) (1- /)
and fis the filling power.
In the linear over of f approximation we find:
0, when —— <1
R 3(R RY’ R
CD(——)= 1+8 ]——(——) — ~) \ h I<—<2 25
a) ) f[ 4\a) " 16\d e sy s @)
1, when — > 2.

Note, that in the simplest case for estimates one may
use the expression for O(R), as

0, when
(D(E) o=

1, when

£<1
; (26)
-IS>1
d

Thus, the effective dielectric permeability € of
MDS with monodisperse inclusions of a single kind of
particles with the radius r under account of only the

pair multipole interaction between particles is com-
pletely found from the system of equations (22) and

R). .
(24). In a case when @, ; is of a kind (26) under

account of only the DD interaction we find from (21),

(23) and (26):
_ 1— 2f( -8 )1n-3§+-580
€ +2¢, 3 8+280 2e +6¢,
e~ = 27
€€ 7%
€+ 2¢,

Papmodnsnka 1 pamuoactponomus, 1997, 1.2, Ne | 23



L.G. Grechko, A.Ya. Blank, V.V, Motrich, A.A. Pinchuk, and L.V. Garanina

3. Discussion of obtained results
Let us keep briefly on the analysis of the results
obtained. We have already noted that the relation
(21), as well as (27) take place only in the electrostatic
approach with account of the pair interaction be-
tween the MDS inclusions. In distinction from (21), in
(27) only the DD interaction is accounted, and the

R
function (D(g) has the simplest appearance (26).

When in (27) one neglects the DD interaction (the
second member in a nominator) we will obtain the
known relation of MGT-approximation [31}. Pro-

vided the expansion in (27) is fulfilled over f within

2 . .
an accuracy of f°, two equivalent representations

for € can be obtained:

0 —1-3/4 —,6f2A{—

m

'5‘“§ 24

£

8+A}

(28)

8+ A
2 =1+3/4
: +3f +fA[3 21“8——214}’

where A =(8 —80)/(8 +2£0).

The first relation coincides with the result of paper
[7] (formula (18)), and the second - with the result of
[11] (formulas (5,7)). Besides, the relation (27) can be
presented in a form which is analogous to Bergman

representation for £ [17):

sl 2, 3-8 _1-, 270 du
f 9 2- 8t f o 9 1-u
(29)
1- ~
where [, = f;t= i) 1= SUN.
3 €,—¢ €y~ ¢

Note, that the logarithm in (27) or (28) is not a
simple addition accounting for DD interaction, but is
connected with the summing up of all the series of
perturbation theory over this interaction [7]. The
presence of the logarithm, as we will see below, leads
to the set of peculiarities in the absorption and radia-
tion processes in such systems. In a case of a proxim-

ity of the quantity € to €, the logarithm can be ex-
panded over small parameter
A= (8 - 80)/(8 + 280). The result is the relation

for finding € in a form of the series over parameter

Xy = (for single kind particles case Xx,, = [).
Tt

All these results can be obtained from (27) which may

be generalized easily to the case of account of the

higher multipole interactions between inclusions.
Besides, the scheme developed allows also the gener-
alization to the case of three-particle or higher inter-
actions. True, one should upon that solve the problem
of behaviour of three, four or more spheres in an
external electrical field, as well as know the corre-
sponding distribution functions.

Suppliement 1. Polarizability of two spheres
in an electric field

Let us calculate the mutual electrostatic response
(polarizability) of two spheres A(I;,Sa(co )) and

B(rb,t:,;((n)) to an external electric field

E= Eo exp(— iot). For calculation simplicity, the

coordinate system is chosen as it is shown in a Fig.1.
The axe Oz goes through spheres centres, the origin of
coordinates is in the first sphere center, and the sec-

ond sphere center coordinate is z=R. The spheres are
located in a medium with dielectric permeability €, .

The potential of homogeneous field Eo in a point 7
is
v, = ~(EfF). S.1)

The expression (S.1) can be written in two equivalent
forms

E7=BRO+Efwso=
= E,R+ Er'P'(®')+ E.r'B(@)cose’
where E“ is a field E component parallel to Oz |

and E, is the correspondent component which is

transverse to Oz axe (the field E lies in a plane
x0z).

The potentials created by polarized spheres are the
solutions of Laplace equation in spherical coordi-
nates. These solutions can be represented in a form
[41]

A, P (9 ) cos m(p

im
vi=3 ¥ e

I1=1 m=0
S AP @cosme Y
i=1 m=0
B, P"(®")cosmo

=3 >
n’+/ ’

I=] m=0

Y= Z Z B, (r')B"(0")cos mg

I=] m=0

where P[’"(G) are adjoined Legendre polynomials,
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and Yy ;(\|I JR T ;) are the solutions out and in-
side a sphere 4 (B), correspondently.

Fig. 1. Coordinate system used for solution of problem of two

spheres in external electrical field E()'

The summing over / begins from /=1, provided
the spheres ‘are not charged. Representing in accor-
dance with the superposition principle the solutions in
three regions:

\F|>ra;lf’l>rb;\|j :W;-{.-Wz_i_wo,
2. ,;|<r”’lF,I>rb’Wa:W;+W;+w0,(s4)
3. 17‘>ra;[7,'<rb;\l]b=w;+wz+wa
and taking into account the standard boundary con-
ditions
I. when r=r, vi=yo;

dyo _dwr . ( Wﬂ
Sa or S0 or (Sa 80) or or

(S.5)

2. when r=ry, (S T

6\413)
or )’

(5.6)

or

.
o1 s, 2 oo, f 2

and using the transformation rules from the center of
sphere 4 to B and inversely [42-44] which in our case
are of a kind

Pm(e) I+m ( )( ) (1+ l'\
I+l ];n ( 1) RI+I’+1 l'+m y
(R>r"), (.7
BO) 5 o BONY (101)
(r,)l+] - 1'%'( 1) _W l, +m ’

(R>r),

one can find that the

n n!
where =—
m/ m !(n - m) !
. t +
coefficients A, and B,
of equations

satisfy the following system

E
= 8,08y + E,8,,8, ~
o,

, S.8)
[+1I'Y B
{+m
_( 1) Z(l-i—m) R/+!+]
Im - % m() + EJ.SmISI!
wml LY B
_ _ l Iam ) 1',',,
;( ) (l+m Rl+l +1
Here &, is a Kronecker symbol, and o ( =a b) is

the sphere [-multipole polarizability in an external
electric field:

= ( —€ ) 21+1
ke, (1+ De, (=a.b) €3

These formulas together with (S.3) give a complete
solution of a given problem.

In an onward analysis we consider the more sim-
ple case, when spheres 4 and B are identical, i.e.
r,=rn=r,g,=¢€,=¢.In this case the system of
equations (8.8) simplifies and after involving of the
variable
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A;” - (—I)I—IB;" = (E\ 8 mo + EJ_8 ”11)5 llr“ZX'Im

(S5.10)
comes to the following infinite system
ST X, =5,, [=12,..., (S.11)
I=1
where

2i+] ’ i+l
r mf L+ r
T =——-38, (-1 ( ](ﬁ] , (8.12)
y o, " ( ) [+ m/\R

and o, is given by (5.9).
The expression in the first formula (S.3) for any /

gives a potential caused by the [-multipole moment.
In particular, for the dipole moment (/=/), induced in
a sphere 4, we have

p(1;2) F &~ L]
p( 3) d ::ZAtm;TRM(e)COS(m(P)' (813)

r m=0

Taking into account the appearance of the longitudi-
nal (E rPIO(G)) and transverse (E LJ"PI,I(G)COS(())

parts coming in the expression for A;n we find from
(S.13)

p(1.2)= m[}(m(R)ninj + X,,(R)(S ;= )]on :
J=x.0.z (S.14)

=

where 71 is a unit vector equal to 7i=—;, and ]
number the space variables X, y, Z.

The formula (S.14) gives the value of the dipole
moment of any from two spheres 4 or B in an exter-
nal electric field E, with account of the mutual influ-

ence each on other. To find it one should know the
quantities X,O(R) and X”(R) which are deter-

mined from a system of the infinite catching equa-
tions (S.11). Note, that by the similar method one
may solve also the N-particle problem providing that
instead of (S.7) one should use more general relations
of the transition from any I-center to any j-center
[43,20-21].
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IlHBJIEKT])!‘I'lBCKaﬂ IIPOHHUAEMOCTb MATPUUYHLIX
AHCTICPCHLIX CUCTEM C METAMIHYCCKUMU
BKJIIOMCHUAMM € YU€TOM MYJIbTHIIONIBHOTO
B3auUMOeHCTBUS MEXAY HUMN.

JLT. I'peuxo, A.4. Baaux, B.B. Motpuu,
A.A. Ilunuyk, JI.B. 'apanusa

Halinena  guwamexkTpuueckas  NMPOHULAEMOCTH
CHCTEMBI MAJIOW KOHLEHTPAUMH METAJLIMYECKHUX
YaCTHII, PACTBOPEHHBIX B TUIJIEKTPHYECKOH MaTpuIe,
Jins 5ToH uenu pa3sBUT ynyylieHHbI BapHaHT TEOPHH
Makcsemna-I'apHeTa, nO3BONSIOLMI YYeCTh MapHbIE

MYJbTUNIONbHBIE B3aUMONCHCTBUA MEXAY BKIIOUE-
HuAMH. TOYHO pellleHa 3JeKTpocTaTUYecKas 3a4aua o
NOJAPU3YEMOCTH  [JBYX  METAJUIMYECKHX  IIapoB.
ITpousBeneHHbI TOYHBIE ydeT NApHOrO B3aHMO-
IEHACTBUS NMPHBOIMT K HEAHANUTHYHOCTH B JMATIEKT-
pHYeCKOl NPOHMUAEMOCTH, YTO ABJIAETCA PeE3Yilb-
TATOM CYMMHPOBAHHMS BCETO PSJa TEOPUM BO3MY-
wennit.  OcoBesHOCTH AHMINEKTPHYECKOH IPOHHU-
LUAEMOCTH, CBS3aHHbIE C YKa3aHHOW HeaHATHTHU-
HOCTBIO OTPENENSIOT CIEKTP HOBBIX BETBEH BO30YX-
JEHHI CUCTEMBI.

JiesekTpryHA NPOHUKHICTL MATPHYHIX AUCTIEPCHAX
CHCTEeM C METAIEBHMH BKIIOUEHHAMH 3 YPaXyBaHHAM
MyJIbTHNOILHOI B32€EMOAIT MiXk HUMM.

JL.T. I'peuxo, O.51. Baaunk, B.B. Motpuy,
0.0. Ilinuyx, JI.B. I'apanina

3naiimeHo HieNeKTPUYHY IPOHHUKHICTL CHCTEMM
Mal0i KOHIEHTpaWii MeTalmiyHMX YAaCTHMHOK, pO3-
YUHEHUX y MAieNeKTpUYHid MaTpuui. 3 uiclo MeTor
PO3BMHEHO IOKpallleHHit BapiaHT Teopii MakcBena-
I'apnera, sxuit 2103BOJIS€ BpaxyBaTH NapHy MYNbTH-
NOJIbHY B3aEMOMII0 MDK BKIWYEHHAMH. TOYHO
pO3B’A3aHO e€NEKTPOCTAaTHYHY 3aJady mMpo MOJA-
PH30BHICTh OBOX MeTaniuHUX KyJb. [IpoBeneHe TouHe
ypaxyBaHHA mNapHOl B3aeMOXil NPHUIBOAUTL IO
HEaHAIITUYHOCTI, IO € pe3yIbTATOM MNiACYMyBaHHS
ycboro pspy teopil 36ypens. OcobnuBocri mienekr-
PHMYHOI TNPOHMKHOCTI, fKi NOB'A3aHi 3 BKa3aHOK
HeaHATIITUYHICTIO, BU3HAYAIOTh CNEKTP HOBUX TiJIOK
30y/KeHB CHCTEMM.
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