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The diffraction by a finite and semi-infinite system of plane screens with a slot is considered. The
problem is solved with the operator approach. The possibility of screens shift in the plane of their displace-

ment is taken into consideration.
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1. Introduction

Multilayered strip structures are widely used in a
number of applications, for example, in the creation of
metamaterials, antennas, selective devices, etc. [1-3].

The practical usage of such structures requires
the knowledge of fundamental solution of electro-
magnetic wave diffraction (in the general case,
with an arbitrary space-time spectrum) by multi-
layered structures. Such problems belong to clas-
sical ones of electrodynamics [4, 5].

Periodic structures with strip conductors have
become an integral part of a number of functional
elements long ago, and in the first place, of antennas
structures. For their synthesis the models, which al-
low to describe the properties of bounded periodic
structures where fields have a continuous space spec-
trum, are essential. Thereupon, the study of charac-
teristics of a semi-infinite and bounded system of
plane screens with a slot is of great interest since the
model where the field is represented as a wave beam,
even two-dimensional, is practically adequate to real
models. In this paper, an approach which describes
the electrodynamic properties of a system of plane
screens with a slot is proposed. This approach is one
of the forms of the so-called semi-inversion method
of the diffraction operator [6-8]. We may demon-
strate the application of such an approach in deter-
mining the scattering operators of a finite-element
and semi-infinite system of screens with a slot.

2. Finite-Element System

Let us place in free space a screen with a slot in
the z =0 plane so that the origin of coordinates be
placed in the middle of the slot. The slot width is 2d.
In the z=-nh plane let us place the (n+1)-th
screen with a slot, where n=1, 2, ... M —1, so that
the y-coordinates of slot centers would differ for
the neighboring screens by the A -value. The co-
ordinate system and structure geometry are shown
in Fig. 1. Time dependence of electromagnetic field
expressed as an exponential function of a negative
imaginary power being proportional to circular fre-
quency and time is implied everywhere in the fol-
lowing.
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Fig. 1. Finite-element structure
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For the E-polarization case, consider the electric
field £ component. Let us represent the incident
field from the half-space z>0 as

El(3,2)= | q(&)exp(ikéy —iky(§)z)dE,

where Y(§) =+/1-&%, Rey>0, Imy=>0. We sup-
pose that the transmission ¢ and reflection » ope-
rators of a single screen with a slot are known.
Their action on arbitrary function g({) is described
by expressions

oo

(12)(®) = [ #E 0§,

—oo

(rg)(&) = T r(€,0)g(©)dg,

and

r(€,0)=1(&8)-3(E&-0). (M

Following [7, 8], we denote Fourier amplitudes
of the reflected, transmitted fields and the field
between screens as a(§), d(&), C, (&) and B, (),
respectively, where n =1, ..., M —1. Using expres-
sion (1), these amplitudes in the operator notations
are related as follows

a=tq—q-+tes B, 2)
C =tq+tB,—B, 3)
C, =tes'C,_,+tes B,—es B,, n=2,.,M-1,
“)
B, =tes'C,—es'C, +tes B,,,, n=1.,M-=2,
(5)
B, ,=tes'C,, ,—esCy, ,, (6)
d=tes'C,, |, (7

where operator e determines the amplitude variation
of the field that occurs when the coordinate system
is shifted by the distance 4 along the z-axis toward
field propagation. Operators s* determine the field
amplitude variation that occurs when the coordinate
system is shifted by the A -distance either in positive
or negative directions along the y-axis. The system
of equations (2)-(7) may be considered as that of
integral equations.

In the case when the plane waveguide eigen-
waves propagation between layers is possible, pa-
rameter k4 >, functions C, (&) and B, (&), where
n=1,... M —1, have singularities in the points

2
Bp:sgn(p)‘fl—(Z—Z), where p=-N,.., N,

kh .
p#0, N= [—:l, which correspond to propaga-
T

tion constants of waveguide eigenwaves. Here no-
tation [-] denotes integer part of a number. First, we
assume that the excitation frequency does not coin-
cide with the cutoff frequency of plane waveguide
eigenwaves, 1. . parameter ki # mN. Then these
singularities are the poles of first order. Now intro-
duce functions C! (&) and B! (&) as follows

A

CO=1"0 (2ikiny(8))’
1

5@ =—

1—exp(2ikhy(€))

The poles excluding (regularization procedure) yields
a=tq—q+tes GB,,

(I-¢e*)'Cl =tq+tGB —(1-¢*)"'B],

(I-¢e*)"'C! =tes*GC! | +tes GB,
—esf(l—ez)le1 n=2,...M-—1,

no

(I-€*)"'B} =tes"GC} —es* (I-€*)"'C}
+tes7GB,11+l, n=1,.., M -2,

(I-¢e*)'B,,  =tes*GC,, ,—es*(I-€")"'C), ,,

d =tes*GC}, ,,
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({ is the unity operator).

The integrands in these equations do not have
singularities and operator G acts on arbitrary func-
tion g({) as follows

98
1—-exp(2ikhy(§))

(Gq) (&) =x(©)

. 7@1—exp6€(2§11hv(&))_ENS@_BP)
XES%g%%dC'ZE;S@—BQGfKR)
x{ln[%}+ Tcisgn(p)}, )
where [M;M,]5[-11], cp=—%,
ol 2

{1 s

In the case when the excitation frequency co-
incides with the cutoff frequency of one of the
waveguide waves, i. e. kh=7N, then in expres-
sion (8) p#*N and integral in the neighborhood
of points B,, should be considered as Cauchy
principal value [9].

3. Semi-Infinite System

Let us use the same notations in this section
as in the case of a finite-element system with
the only difference that in the case of a semi-
infinite structure we should assume M =oo. The
structure geometry and coordinate system are
shown in Fig. 2. The Fourier amplitudes of the
reflected field and these between screens are rela-
ted as follows
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Fig. 2. Semi-infinite structure
a=Rq, (€))
a=tq—q-+tes B, (10)
C, =tq+tes B —es B, (11)
B, =Res*C,, n=1,2,.., (12)
C,=tes'C,  +tes B,—es B,, n=2,3, ..,
(13)

where operator R is the sought for operator of a
semi-infinite structure. Now introduce notations

RED=REV+3E-0), ¢ =C(1-¢) .

The transformations of equations (9)-(12) and re-
gularization procedure, with the use of relation (1),
yield

Rq =tq+tes Res"GC —te*GC, (14)

-1
C= (1+es7Res+G) Rgq. (15)

After substitution C from equation (15) into equa-
tion (14) we obtain operator equation to determine
the operator R,

-1
R=t+ tes_Res+G(I + eS_ReS+G) R

—te’G (I + es_ResJ'G)i1 R.

Pammodusnka u paguoactpoHomus, 2011, T. 16, Ne2 179



M. E. Kaliberda, L. M. Lytvynenko, and S. A. Pogarsky

The amplitudes of field between the n-th and the
(n+1)-th layers may be obtained from equations
(12) and (13).

For the H-polarization case, instead of relation
(1) use the following relation

r(&, C) = t(&, C) + 8(& - C):

and introduce the functions

A
C
()= Y(E){1—exp (2ikhy(&))}
B,(©)= 5.0

Y(E){1—exp(2ikhy(&))}

Relation (8) should be rewritten in the form

B q(®)
B q€)
+ [X(E") V(&) {1-exp (2ikhy(&))}

p
p¢0

8E+D J LoD g e Jclq(l) dc]

+ Y, 8¢-B,)0,4(B,)

p=—N
pz0

1 Mz_Bp .
X4 In W + misgn(p)

+8(§+1)611q(—1){1n( _Afizl ]— m}

+3(§-1)oq(1) {ln(iw—z}\jlll J+ m},

where © ——;. o —iL
Po2khB,T T Akl

4. Numerical results

Fig. 3 shows the dependences of transmission t
and reflection p coefficients of a double screen with
a slot as functions of screen shift A along the y-axis
for the cases of normal incidence, @, =90°, and of
an angle of incidence @, =30° (see insert of Fig. 3).
The distance between screens is 4 =5/k. With such
value of parameter kh, the TE,, -wave can propa-
gate between screens. The dependences of excita-
tion factors of right #* and left +~ waveguides are
shown in Fig. 4 as functions of parameter A. The
transmission, reflection and waveguide excitation fac-
tors are calculated from the formulas

T 2
=M[|a(§)+8(§—cos%)| @dﬁ,

= J @) 1-82de,

kd sin@, 7,
ti = Tc—z
kdkhsin @,
+N 21— Bz
x Y |C(B,){1-exp(2ikiry(B,))}| ——L
P ‘ p‘
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Fig. 3. Dependences of transmission (solid line) and
reflection (dashed line) coefficients for the case of
an angle of incidence @, = 30°, and transmission (dot-
ted line) and reflection (dashed-dotted line) coefficients
for the case of normal incidence, @, =90°, vs. A of
a double screen with a slot. The structure parameters
are kh=35, d/h=1
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Fig. 4. Dependences of right (solid line), left (dashed
line) waveguide excitation factors for the case of an
angle of incidence @, = 30°, and right (dotted line),
left (dashed-dotted line) waveguide excitation factors
for the case of normal incidence, @, =90°, vs. A of
a double screen with a slot. The structure parameters

are kh=35, d/h=1

In the case of normal incidence, the curves of
transmission and reflection coefficients are symmet-
rical with respect to line A/A=0, and the curve of
right-waveguide excitation factor equals to the curve
of left-waveguide excitation factor and is reflected
symmetrically over the same line. In the case of angle
of incidence @, =30°, when A/h <0, the transmit-
ted field is practically absent. In this case, virtually all
energy of scattered field is consumed by plane
waveguide excitation and the values of right-waveguide
excitation factor are significantly greater than those
of left-waveguide excitation factor. When the second
screen center approaches the y =0 plane, the inci-
dent field passes through the slots into half-space
z<—h, and the transmission coefficient increases.
The module of normalized directional patterns of trans-
mitted field is shown in Fig. 5. The directional pattern
of transmitted field is calculated from the formula

D'(¢) = \2n/kd (—cos(9) )sin(p)e ™*, @€ [0,7].

The value of parameter A is chosen so that the
reflection coefficient in the case of normal inci-
dence coincide with the reflection coefficient for
the case of an angle of incidence @, =30°. As the
figure shows, when we change the incidence angle
by 60° the main lobe rotates approximately by 10°.
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Fig. 5. Module of normalized directional patterns of trans-
mitted field of a double screen with a slot for the cases
@y = 30° (dashed curve) and @, = 90° (solid curve)

Fig. 6 shows the dependences of transmission t
and reflection p coefficients of a structure of six
layers and reflection coefficient p_ of a semi-infi-
nite structure as functions of parameter A. As in the
case of a double screen, when parameter |A| is
decreased, the reflection coefficient is also decreased
while the transmission coefficient increased. But in
the six-element structure case, the quasi-passband
becomes narrower than in the two-element struc-
ture case. The reflection coefficient of a finite-ele-
ment structure approaches the reflection coefficient

Fig. 6. Dependences of reflection coefficient of a semi-
infinite structure (solid line), and transmission
(dashed-dotted line) and reflection (dashed line) coef-
ficients of a six-element structure vs. A, @, = 90°.
The structure parameters are kh=15, d/h=1
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Fig. 7. Module of normalized directional patterns of trans-
mitted field of a six-element structure for A/h=—0.28
(solid line), A/h=0 (dotted line) and A/h=0.28
(dashed line), @, = 90°. The structure parameters are
kh=35, dlh=1

of a semi-infinite structure when the number of
screens is increased.

Fig. 7 shows the module of normalized directional
patterns of transmitted field for a structure of six
layers. Normalization is performed by the maximum of
module of the directional pattern when A =0. Varia-
tion of parameter A leads to rotation of the antenna
pattern main lobe. In our case, one can observe the
rotation by the angle of 27° with respect to normal,
and simultaneous decreasing of main lobe level by no
more than 7 %. The further increasing of parameter
|A| leads to significant decreasing of lobe level. This
follows from the dependence of transmission coeffi-
cient of this structure as a function of parameter A.

5. Conclusions

The diffraction by the finite-element and semi-
infinite systems of plane screens with a slot is solved.
The presented approach may be applied to solve
the synthesis problems of antenna devices with
controlled antenna patterns, excitation of open
periodic structures, and creation of metamaterials.
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DJIEKTPOANHAMHYECKHE XaPAKTePUCTHKH
MHOTOCJIOIHO CHUCTEMBbI IVIOCKUX YKPAHOB
€O LIeJIBI0

M. E. Kanubeppaa, JI. H. J/IuTBuHeHko,
C. A. Ilorapckuit

Paccmotpena 31a9a mudpakiuy Ha KOHETHOAIe-
MEHTHOH 1 TTOITyOECKOHEUHOH CHCTeMe TIOCKHX K-
paHoB co mIenbio. Perienue HaiiieHO IpU MOMOIIX
OTIePaTOPHOTO METO/a. YUTeHa BO3MOXKHOCTH CMe-
IICHNS] 9KPAaHOB B IDIOCKOCTH WX PACIOJIOKEHHUSI.

EnexTpoauHaMiuHi XapaKTepuCTUKH
0araTomapoBoi CHCTEMH IJIOCKHX eKPaHiB
31 INIJIMHOXO

M. €. Kaai6epaa, JI. M. JIuTBUHEHKO,
C. O. orapchkuii

PosmsnyTo 3aqaqy qudypakiii Ha cKiHUeHHOEe-
MEHTHIH Ta HaIliBHCCKIHYEHHIH CUCTEMI TIIOCKUX €K-
paHiB 3i mIiTHOK. PO3B’ 130K 3HalIEHO 32 JOTIOMO-
TO0 OTIEPATOPHOTO METOAY. BpaxoBaHO MOXITHBICTB
3MIlIEHHsI €KpaHiB y TUIOLIMHI iX pO3TalryBaHHS.
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