Преобразование поляризации при незеркальном отражении электромагнитных волн от двумерно периодической решетки из закороченных волноводов прямоугольного сечения

А.В.Грибовский

Радиоастрономический институт НАН Украины, ул. Краснознаменная, 4, г. Харьков, 61002, Украина E-mail: grib@rian.ira.kharkov.ua

Статья поступила в редакцию 2 июня 2008 г.

Показана возможность преобразования поляризации при незеркальном отражении электромагнитных волн от двухэлементной двумерно периодической решетки из закороченных волноводов прямоугольного сечения. Найдены условия, при которых в автоколлимационном режиме и в режиме "ортогонального" отражения возможно преобразование линейно поляризованных волн в волны с кроссовой или круговой поляризацией.

Исследованию дифракционных свойств периодических решеток посвящено большое количество статей и монографий. Среди самых значительных и полных исследований по строгой теории дифракционных решеток следует указать монографию [1]. В ней рассмотрены задачи дифракции плоских волн на одномерно-периодических решетках различного типа. Следует также указать монографию [2], где особое внимание уделено физическим явлениям при дифракции плоских волн на одномерно-периодических решетках в резонансной области частот. В [3] проведен подробный анализ решений краевых задач дифракции волн на решетках в области комплексных значений параметров. В этих работах, как и в большинстве работ, опубликованных другими авторами, исследуются, как правило, одномерно-периодические решетки. Большое внимание в [1-3], а также в работах [4-7], было уделено режиму автоколлимации при дифракции плоских волн на отражательных одномерно-периодических решетках различного типа, а также на одномерных решетках из конечного числа элементов [8].

Режим незеркального отражения электромагнитных волн на решетках отражательного типа, при котором часть электромагнитной энергии отражается в направлении, не совпадающем с направлением зеркального отражения, имеет важное практическое значение. Как было отмечено в [2], использование отражательных решеток волноводного типа в режиме автоколлимации для конструирования различных приборов, например открытых резонаторов, может дать существенный выигрыш, по сравнению с решетками неволноводного типа. Для отражательной решетки типа "гребенка" доказана возможность проявления эффекта квазиполного незеркального отражения.

Как правило, исследование режима автоколлимации проводилось на структурах, которые не изменяют поляризацию электромагнитного поля, отраженного в обратном направлении. В работе [9] показана возможность реализации эффекта полного незеркального отражения при дифракции плоских *TE*- и *TM*-волн на модели отражательной двумерно-периодической решетки из закороченных прямоугольных волноводов. Рассчитаны модули амплитуд и фазы пространственных гармоник в автоколлимационном режиме в зависимости от длины закороченных волноводов.

Преобразование поляризации электромагнитных волн в режиме автоколлимации на одномерно периодических решетках исследовано в работах [10, 11]. В них рассмотрены задачи дифракции Е и Н линейно поляризованных волн на отражательных решетках, покрытых киральным слоем. Обнаружено проявление эффекта квазиполного автоколлимационного кроссполяризационного преобразования волн такими структурами. В работе [12] исследованы поляризационные характеристики зеркального электромагнитного поля, рассеянного на отражательной двумерно периодической двухэлементной решетке из закороченных волноводов, длина которых изменяется. Показана возможность преобразования линейно поляризованной волны в волну с ортогональной поляризацией или в волну с круговой поляризацией правого или левого вращения вектора электрического поля.

Преобразование поляризации электромагнитных волн в режиме незеркального отражения двумерно периодическими отражательными решетками ранее не исследовалось. Такое преобразование можно получить, например, если использовать двумерно периодические отражательные решетки, базовые ячейки которых являются трехмерными киральными объектами. В этой связи возникает необходимость исследования этого режима на двумерно периодических отражательных решетках, являющихся наиболее близкими моделями реальных объектов.

Базовая ячейка исследуемой решетки представляет собой киральный элемент и содержит два закороченных прямоугольных волновода, широкие и узкие стенки которых взаимно ортогональны (рис. 1). Центры базовых ячеек в общем случае располагаются в узлах косоугольной сетки. Их положение определяется углом χ , который отсчитывается против часовой стрелки от оси Ох до оси, проходящей через начало декартовой системы координат и центры базовых ячеек. Решетке с прямоугольной сеткой соответствует значение угла χ , равное 90°. Размеры поперечных сечений волноводных каналов $a_1 \times b_1$ и $a_2 \times b_2$ выбраны из условия распространения в них только основной *TE*₁₀-волны, где a_p – размер волновода

Рис. 1. Базовая ячейка двумерно периодической решетки

вдоль оси Ox, а b_p – размер волновода вдоль оси Oy. Центры волноводных каналов на базовой ячейке имеют координаты x_p , y_p . Волноводы закорочены на разных расстояниях от плоскости раскрыва решетки h_1 и h_2 . Размеры базовой ячейки – d_1 и d_2 .

Изменение длины закороченных волноводов на фиксированной частоте приводит к изменениям амплитудно-фазового распределения электромагнитного поля в плоскости раскрыва решетки, в результате чего изменяется поляризация отраженного поля. Длина закороченных волноводов может изменяться, например, *p-i-n* переключателями, помещенными в поперечных сечениях волноводных каналов между открытым концом волновода и перегородкой. Известно, что в активном состоянии значение коэффициента отражения *p-i-n* диода с высокой степенью точности совпадает со значением коэффициента отражения от идеально проводящей перегородки, а в выключенном состоянии отражение от него близко к нулю. Поэтому для простоты можно рассматривать решетку с управляемыми характеристиками как экран из закороченных волноводов переменной длины с перемещающимися идеально проводящими перегородками.

Будем исследовать электромагнитное поле, рассеянное отражательной решеткой, при про-

извольном падении на ее поверхность плоской линейно поляризованной электромагнитной волны единичной амплитуды. Поперечную компоненту электрического поля падающей волны представим в виде суммы *TE*- и *TM*-волн:

$$\vec{E}_t^i(x, y, z) = \cos\alpha \vec{\psi}_{00}^{(1)} e^{-i\Gamma_{00}z} + \sin\alpha \cos\theta_0 \vec{\psi}_{00}^{(2)} e^{-i\Gamma_{00}z},$$

$$z > 0.$$

А поперечную компоненту электрического поля отраженной волны представим в виде разложения по полной системе ортонормированных векторных пространственных *TE*- и *TM*-гармоник:

$$\begin{split} \vec{E}_t^r(x, y, z) &= \sum_{q=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} b_{qs}^{(1)} \vec{\psi}_{qs}^{(1)} e^{i\Gamma_{qs}z} + \\ &+ \sum_{q=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} b_{qs}^{(2)} \vec{\psi}_{qs}^{(2)} e^{i\Gamma_{qs}z}, \qquad z > 0, \end{split}$$

где $b_{qs}^{(1)}$ и $b_{qs}^{(2)}$ – неизвестные амплитуды пространственных *TE*- и *TM*-гармоник соответственно. Зависимость от времени выбрана в виде $e^{-i\omega t}$, а ортонормированные векторные пространственные гармоники определяются по формулам:

$$\vec{\Psi}_{qs}^{(l)} = \exp\left\{i\left(\kappa_{x}x + \kappa_{y}y\right)\right\}\frac{1}{\sqrt{S_{0}}\kappa_{r}} \times \left\{\kappa_{y}\vec{e}_{x} - \kappa_{x}\vec{e}_{y}, \ l=1\\ \kappa_{x}\vec{e}_{x} + \kappa_{y}\vec{e}_{y}, \ l=2\right\},$$
(1)

$$\kappa_x = k \sin \theta_0 \sin \phi_0 - \frac{2\pi q}{d_1},$$

$$\kappa_y = k \sin \theta_0 \cos \phi_0 - \frac{2\pi s}{d_2} + \frac{2\pi q}{d_1 \operatorname{tg} \chi};$$

 $\Gamma_{qs} = \sqrt{k^2 - \kappa_r^2}; \quad \kappa_r = \sqrt{\kappa_x^2 + \kappa_y^2}; \quad \Gamma_{00} = k \cos \theta_0;$ $S_0 = d_1 d_2$ – площадь поперечного сечения волноводной ячейки; $k = 2\pi/\lambda; \quad \vec{e}_x, \quad \vec{e}_y$ – единичные орты в декартовой системе координат *хОу*. Углы θ_0 и ϕ_0 – углы падения плоской волны в сферической системе координат. Угол поляризации α определен в плоскости, в которой лежат векторы \vec{E}^i и \vec{H}^i . Угол α отсчитывается против часовой стрелки от прямой, параллельной плоскости *хОу*, до вектора \vec{E}^i . *TE*-волне соответствует значение угла $\alpha = 0^\circ$ (180°), *TM*-волне – $\alpha = 90^\circ$ (270°).

Для нахождения неизвестных амплитуд пространственных гармоник применен операторный метод решения задач дифракции [13]. Система операторных уравнений и ее решение для модели исследуемой решетки приведены в работе [12].

Режим незеркального отражения на периодических решетках наступает тогда, когда часть электромагнитной энергии или вся энергия отражается в направлении, не совпадающем с зеркальным направлением отраженной волны. Условие, при котором возможна реализация режима незеркального отражения на двумерно периодической решетке, найдем, используя соотношения для постоянных распространения пространственных гармоник (1). Это условие имеет вид:

$$\left| \frac{d_1}{\lambda} \sin \theta_0 \left[\cos \phi_0 - \cos(\phi_0 + \phi_{nr}) \right] = q, \\
\frac{d_2}{\lambda} \sin \theta_0 \left[\sin \phi_0 - \sin(\phi_0 + \phi_{nr}) + \frac{\cos \phi_0 - \cos(\phi_0 + \phi_{nr})}{\lg \chi} \right] = s,$$
(2)

где θ_0 , ϕ_0 – углы падения первичной волны в сферической системе координат; ϕ_{nr} – угол, на который отклонился отраженный луч от зеркального луча; (q,s) – номер пространственной гармоники незеркального луча. Выражение (2) определяет связь между номером распространяющейся пространственной гармоники (q,s)и углами ее распространения θ_0 и $\phi = \phi_0 + \phi_{nr}$ в режиме незеркального отражения. Из выражения (2) видно, что режимом незеркального отражения можно управлять с помощью трех независимых параметров решетки: двух периодов – d_1/λ и d_2/λ , и способа размещения центров базовых ячеек – угла χ .

Из условия (2) могут быть получены два других условия для частных случаев незеркального отражения на двумерно периодических решетках:

режима автоколлимации $(\phi_{nr} = \pi)$ –

$$\begin{cases} 2\frac{d_1}{\lambda}\sin\theta_0\cos\phi_0 = q, \\ 2\frac{d_2}{\lambda}\sin\theta_0\left[\sin\phi_0 + \frac{\cos\phi_0}{\mathrm{tg}\chi}\right] = s \end{cases}$$

режима "ортогонального" отражения $(\phi_{nr} = \pm \pi/2)$ –

$$\begin{cases} \frac{d_1}{\lambda}\sin\theta_0 \left[\cos\phi_0 \pm \sin\phi_0\right] = q, \\ \frac{d_2}{\lambda}\sin\theta_0 \left[\sin\phi_0 \mp \cos\phi_0 + \frac{\cos\phi_0 \pm \sin\phi_0}{tg\chi}\right] = s. \end{cases}$$
(3)

Преобразование поляризации электромагнитных волн в режиме незеркального отражения на исследуемой модели решетки можно получить путем соответствующего выбора длины и размеров поперечных сечений волноводных каналов, а также путем изменения направления поляризации падающей волны. Следует отметить, что в режиме незеркального отражения, в отличие от режима автоколлимации, число распространяющихся пространственных гармоник может быть больше двух. Поэтому полного преобразования интенсивности падающей волны в интенсивность волны, отраженной в незеркальном направлении, не происходит, поскольку размеры базовой ячейки рассматриваемой решетки, при фиксированной длине волны падающего поля, ограничены размерами широких стенок волноводных каналов и определяют количество распространяющихся гармоник.

Провести детальный численный анализ эффекта незеркального отражения в рамках

настоящей статьи не представляется возможным. Поэтому приведем лишь некоторые данные, характеризующие работу исследуемой модели решетки в автоколлимационном режиме и в режиме "ортогонального" отражения.

На рис. 2 показаны зависимости интенсивностей поперечных составляющих электрического поля для случая двух распространяющихся пространственных гармоник с номерами q=0, s=0 и q=1, s=0 от длины второго закороченного волновода в режиме автоколлимации, а на рис. 3 приведены зависимости параметров Стокса волны, отраженной в обратном направлении. Параметры решетки с косоугольной сеткой и падающей плоской волны имеют следующие значения:

 $a_1 = 5 \text{ mm}, b_1 = 1 \text{ mm}, x_1 = 0.95 \text{ mm}, y_1 = 0,$ $a_2 = 1 \text{ mm}, b_2 = 5 \text{ mm}, x_2 = -2.9 \text{ mm}, y_2 = 0,$ $d_1 = 8.513 \text{ mm}, d_2 = 7 \text{ mm}, h_1 = 9.5 \text{ mm},$ $\lambda = 8 \text{ mm}, \chi = 70^\circ, \theta_0 = 30^\circ; \phi_0 = -20^\circ; \alpha = 20^\circ.$

Из графиков на рис. 2 видно, что при данных параметрах решетки и первичной волны не происходит полного преобразования интенсивность волны, отраженной в обратном направлении. Однако, как это следует из рис. 3, волна, отраженная в обратном направлении, при некоторых значениях длины второго волновода может иметь круговую поляризацию с левым вращением вектора электрического поля ($S_3 = -1$).

Рис. 2. Зависимости интенсивностей поперечных компонент электрического поля зеркальной (W_{00}) и автоколлимационной (W_{10}) волн от длины второго волновода

Радиофизика и радиоастрономия, 2009, т. 14, №1

Величиной интенсивности автоколлимационной волны можно управлять путем изменения поляризации падающего поля. На рис. 4 показаны зависимости интенсивности зеркальной и автоколлимационной волн от угла поляризации первичного поля α , а на рис. 5 – зависимости параметров Стокса автоколлимационной гармоники от угла α . Из рисунков следует, что при некоторых значениях углов поляризации можно добиться полного преобразования интенсивности падающего поля в интенсивность поля, отраженного в обратном направлении. Однако поляризация автоколлимационной волны при этом будет близка к линейной поляризации ($S_3 \approx 0$).

На рис. 6 и рис. 7 приведены зависимости интенсивностей поперечных компонент электрического поля и параметров Стокса от длины второго волновода для случая $\alpha = -70^{\circ}$. В этом случае параметр Стокса падающей волны $S_1 \approx -1$. Остальные параметры – без изменений. Видно, что при некоторых значениях длины второго волновода может быть получен эффект полного преобразования интенсивности падающей волны в интенсивность автоколлимационной волны. Кроме того, при определенных значениях длины второго волновода автоколлимационная волна может иметь поляризацию, близкую к ортогональной поляризации падающего поля ($S_1 = 1$).

В режиме полного автоколлимационного преобразования интенсивности падающего

Рис. 3. Зависимости параметров Стокса автоколлимационной волны от длины второго волновода

Рис. 4. Зависимости интенсивностей поперечных компонент электрического поля зеркальной (W_{00}) и автоколлимационной (W_{10}) волн от угла поляризации падающей волны α

Рис. 5. Зависимости параметров Стокса автоколлимационной волны от угла α

Рис. 6. Зависимости интенсивностей поперечных компонент электрического поля зеркальной (W_{00}) и автоколлимационной (W_{10}) волн от длины второго волновода для случая $\alpha = -70^{\circ}$

Рис. 7. Зависимости параметров Стокса автоколлимационной волны от длины второго волновода для случая α = -70°

поля исследовалась зависимость поляризации автоколлимационной волны от параметра киральности базового элемента решетки (координат центра первого волновода). На рис. 8 приведены зависимости интенсивностей зеркальной и автоколлимационной волн, а также параметров Стокса автоколлимационной волны от координаты y_1 . Видно, что, изменяя величину параметра киральности, можно управлять поляризацией автоколлимационной волны, практически не изменяя ее интенсивность. При этом изменяется не только поляризация, но и направление вращения вектора

Рис. 8. Зависимости интенсивностей поперечных компонент электрического поля зеркальной (W_{00}) и автоколлимационной (W_{10}) волн и зависимости параметров Стокса автоколлимационной волны от координаты центра второго волновода

электрического поля (параметр Стокса S₃ меняет знак).

В заключение рассмотрим режим "ортогонального" отражения на решетке с косоугольной сеткой, при котором часть электромагнитной энергии отражается в направлении, ортогональном направлению падения первичной волны. Связь между номером распространяющейся пространственной гармоники и углами ее распространения в режиме "ортогонального" отражения определяется условием (3). На рис. 9 и рис. 10 представлены зависимости интенсивностей поперечных компонент электрического поля зеркальной волны и волны, отраженной в ортогональном направлении, а также параметров Стокса "ортогональной"

Рис. 9. Зависимости интенсивностей поперечных компонент электрического поля зеркальной (W_{00}) и "ортогональной" (W_{0-1}) волн от длины второго волновода

Рис. 10. Зависимости параметров Стокса "ортогональной" волны от длины второго волновода

Радиофизика и радиоастрономия, 2009, т. 14, №1

волны от длины второго волновода. Параметры решетки и падающей волны имели следующие значения:

$$a_1 = 5 \text{ mm}, b_1 = 1 \text{ mm}, x_1 = 0.95 \text{ mm}, y_1 = 0,$$

 $a_2 = 1 \text{ mm}, b_2 = 5 \text{ mm}, x_2 = -2.9 \text{ mm}, y_2 = 0,$
 $d_1 = 8.5 \text{ mm}, d_2 = 9.9 \text{ mm}, h_1 = 13.5 \text{ mm},$
 $\lambda = 9 \text{ mm}, \chi = 67^\circ, \theta_0 = 40^\circ; \phi_0 = -45^\circ; \alpha = 0.$

Параметры "ортогональной" волны имеют значения: $\theta = 40^{\circ}$, $\phi = 45^{\circ}$. Как было отмечено выше, в режиме "ортогонального" отражения на исследуемой модели решетки не удается получить эффективное преобразование интенсивности падающего поля в интенсивность волны, отраженной в ортогональном направлении, поскольку не удается получить режим с двумя распространяющимися пространственными гармониками. При данных параметрах число распространяющихся гармоник равно трем: зеркальная волна с индексами q = 0, s = 0; "ортогональная" волна с индексами q = 0, s = -1 и волна с индексами q = 1, s = 0. Из рисунков видно, что максимальное значение отношения интенсивности поперечных компонент электрического поля "ортогональной" волны к интенсивности зеркальной волны составляет ≈ 0.6, а поляризация "ортогональной" волны близка к линейной поляризации $(S_1 = 1)$ и совпадает с поляризацией падающего поля.

Достоверность численных результатов, полученных в работе, контролировалась по точности выполнения закона сохранения энергии при нахождении обобщенных матриц рассеяния ключевых задач дифракции, а также по точности выполнения энергетического соотношения $S_1^2 + S_2^2 + S_3^2 = 1$.

Проведенные исследования показывают, что на основе двухэлементных двумерно периодических отражательных решеток из закороченных волноводов прямоугольного сечения путем включения в волноводные каналы управляющих электронных устройств возможно создание нового класса преобразователей поляризации и поляризационно-селективных фильтров с управляемыми характеристиками, работающих в режиме незеркального отражения электромагнитных волн.

Литература

- Шестопалов В. П., Литвиненко Л. Н., Масалов С. А., Сологуб В. Г. Дифракция волн на решетках. – Харьков: Издательство Харьковского госуниверситета, 1973. – 287 с.
- Шестопалов В. П., Кириленко А. А., Масалов С. А., Сиренко Ю. К. Резонансное рассеяние волн. Т. 1. Дифракционные решетки. – Киев: Наук. думка, 1986. – 232 с.
- 3. Шестопалов В. П., Сиренко Ю. К. Динамическая теория решеток. Киев: Наук. думка, 1989. 216 с.
- Масалов С. А., Яковлев Э. А. Отражательные характеристики эшелетта в поляризованном излучении для автоколлимационной установки // Оптика и спектроскопия. – 1977. – Т. 43, №6. – С. 1129-1137.
- 5. Масалов С. А. Резонансное рассеяние света на эшелетте в случае автоколлимации // Украинский физический журнал. – 1977. – Т. 22, №9. – С. 1497-1501.
- Масалов С. А., Сиренко Ю. К. Возбуждение отражательных решеток плоской волной в режиме автоколлимации // Изв. вузов. Радиофизика. – 1980. – Т. 23, №4. – С. 479-487.
- 7. Кириленко А. А., Кусайкин А. П., Сиренко Ю. К. Незеркальное отражение волн периодическими дифракционными решетками: Препр. / ИРЭ АН УССР; №212. – Харьков: 1983. – 33 с.
- 8. Просвирнин С. Л. Дифракция электромагнитных волн на гребенке с ограниченным числом ламелей // Доклады АН УССР. Серия А. – 1982. – № 2. – С. 57-61.
- Грибовский А. В. Свойства отражательной решетки из закороченных прямоугольных волноводов в автоколлимационном режиме // Радиофизика и электроника. – Харьков: Ин-т радиофизики и электроники НАН Украины. – 2003. – Т.8, №2. – С. 201-205.
- 10. Kusaykin O. P., Poyedynchuk A. Y. Electromagneticwave diffraction by a chiral layer with a reflecting grating of dielectric-filled grooves // Microwave Opt. Tech. Lett. – 2002. – Vol. 33, No. 6. – P. 462-465.
- 11. Кусайкин А. П., Мележик П. Н., Поединчук А. Е. Эффект широкополосного квазиполного автоколлимационного кроссполяризационного преобразования волн // Письма в ЖТФ. – 2005. – Т. 31, вып. 9. – С. 43-49.
- 12. Грибовский А. В. Преобразование поляризации электромагнитных волн отражательной решеткой из закороченных волноводов прямоугольного сечения переменной длины // Радиофизика и радиоастрономия. 2007. Т. 12, №1. С. 55-60.
- 13. Литвиненко Л. Н., Просвирнин С. Л. Спектральные операторы рассеяния в задачах дифракции волн на плоских экранах. – Киев: Наук. Думка, 1984. – 240 с.

Перетворення поляризації при недзеркальному відбитті електромагнітних хвиль від двовимірно періодичної решітки із закорочених хвилеводів прямокутного перерізу

О.В.Грибовський

Показано можливість перетворення поляризації при недзеркальному відбитті електромагнітних хвиль від двохелементної двовимірно періодичної решітки із закорочених хвилеводів прямокутного перерізу. Знайдено умови, за яких в автоколімаційному режимі та у режимі "ортогонального" відбиття можливе перетворення лінійно поляризованих хвиль у хвилі із кросовою або круговою поляризацією. Polarization Transformation under the Nonspecular Reflection of Electromagnetic Waves from a Two-Dimensional Periodic Grating of Rectangular Short-Circuited Waveguides

A. V. Gribovsky

Polarization transformation under the nonspecular reflection of electromagnetic waves from a two-element two-dimensional periodic grating of rectangular short-circuited waveguides is shown possible. The conditions for transformation of linearly polarized waves into those cross- or circular polarized in autocollimating and "rectangular" reflection modes are found.