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The empirical upper estimate is obtained for the number of elements of a nonredundant con-
figuration on a given size hexagonal telescope aperture. Nonredundancy means that all the differ-
ences between vector radii of the configuration elements (“vector differences”) are distinct. The
suggested estimate agrees well with the data available and can serve as a guiding line in evaluation
of the maximum element number of a large-order nonredundant configuration.

Introduction

The problem of constructing a large-order
nonredundant configuration (NRC) on the 2-D
telescope aperture is highly pressing for astro-
nomical imaging applications such as radio
interferometry and removal of the effects of
atmospheric turbulence from ground-based
observations at visible and infrared wave-
lengths [1]. Given the aperture size, it reduces
to obtaining the maximum-element NRCs.
This issue has been first studied in [2] for the
NRCs on square and hexagonal integer grids
of small size. NRCs on square grids (also called
Golomb squares [3]) of a larger size were then
studied in a number of papers, the latest data
being given in [4].

A similar problem for hexagonal apertures
that is even of more interest for astronomical
applications has been as yet studied to a con-
siderably less extent. Two methods for build-
ing large-order NRCs on hexagonal grids, both
employing planar cyclic difference sets (CDSs),
have been proposed. One of these was suggest-
ed in [1, 5] as a particular case of constructing
uniformly redundant arrays. In a different way,
the NRCs on hexagonal grids were obtained
in [6, 7] by folding segments with planar CDSs
placed on them onto squares and then turning
into hexagons.

© L. E. Kopilovich, 2006

Building NRCs having the maximum num-
ber of elements encounters serious difficulties
with larger grids. The NRCs on rectilinear
hexagons of radii up to 13 whose element num-
bers reached or at least were close to maxi-
mum were obtained in [6], and also with the
method of random search in [§].

To be able to predict maximum element
number of the NRC on a grid of large size,
its reasonable upper estimate will be required.
Estimates for a square grid, though overstated,
were obtained in [3, 9], while, to our best knowl-
edge, no one studied this issue for hexagons.

In this paper an attempt is made to fill
a want, and an empirical estimate for the NRC
element number on a hexagonal grid whose
quality is approved by comparing with the
available data is suggested.

Estimating the Element Number
of a Nonredundant Configuration
on a Hexagonal Grid

Take an nxn square (with the n odd) and
place an NRC on it. As shown in [10], by using
the transformation with the matrix
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the interior domain of this square

xS (=12 @)

can be converted into a rectilinear hexagon
of radius r=(n—-1)/2 (see Fig. 1; the radius
means distance between the hexagon centre and
its vertex). At this point, because of linearity of
transform (1), the NRC arranged in domain (2)
of the square turns into the one on this hexa-
gon. Thus, this domain will be dealt instead
of the relevant hexagon.

Now, scan the square and obtain a set of
dots on a segment of length N =n*. In the
general case, the elements of the set obtained
on the scan would be located throughout its
length, and, at this point, some differences
between them would double. However, in our
case, when the NRC elements are concentrat-
ed in domain (2) of the square, the set on the
scan possesses some peculiarities.

To make things clearer, assign numbers to
the elements on the square accordingly to those
of the relevant elements on the scan. Then one
may call a vector difference between two ele-
ments on the square as “forward-directed”
(type I) or “rearward-directed” (type II) accord-
ing to the direction of the arrow connecting the
“smaller” and the “larger” elements, with re-

Sx

spect to the direction of axis x (see Fig. 2, a).
It can be seen that owing to the shape of do-
main (2) representing a stripe stretched ahead
and downwards, the vector differences of type I
between the NRC elements arranged on it oc-
cur much more frequently than those of type II.
So, in Fig. 2, a, among the vector differences
between the NRC elements, 44 belong to type |
and 16 to type II (there are also 6 vertically
directed ones).

Further, a pair of distinct vector differences
of the same type cannot give equal differences
on the scan. Therefore, the number of the two-
fold differences on the scan is no more than that
of the rearward-directed ones. In fact, it is much
smaller (in our example, there are 8 pairs of equal
differences (4, 7,13,16, 22, 23,32,53) on the
scan: 4=49-45=71-67, 7=45-38=52-45,
etc (see Fig. 2, b)).

Similarly, when scanning the square in Fig. 1,
one obtains that among the differences between
the 10-element set on the scan there would be 5
two-fold ones.

So, the share of the two-fold differences
between the set elements on the scan is small,
1. e. a set on the scan thus obtained may pos-
sess only a weak redundancy.

Then, when scanning an nxn square, the
NRC elements located in domain (2) cannot
fall into some regions of the scan. One might
say that these regions (whose total length

Fig. 1. An nxn square and the hexagon of radius r=(n-1)/2 obtained from the undashed domain of this
square. The NRC on this domain turns into the one on the hexagon
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Fig. 2. (a) A 12-element NRC located in the undashed domain of a 9 x 9 square. The forward- and rearward-
directed vector differences between its elements are denoted by I and 11, respectively. The difference between
the elements located in the same grid column is denoted by a vertical arrow.

(b) The set obtained from this NRC by scanning (the figure is scaled down). The regions on the scan forbidden

for the set elements are outlined with arcs

equals nearly a quarter of the scan length) are
“forbidden” for arranging elements of our set
(see Fig. 2, b).

It will be noted that the mentioned pecu-
liarities of such a set on the scan would differ
little from the nonredundant set on a segment
of equal length; at this point, the elements
would differ in number otherwise: the presence
of the forbidden regions reduces the number
of elements possible, whereas the redundancy
increases it. Such reasonings prompt an idea
of trying to evaluate the maximum element
number of our set by making use of the esti-
mate for the element number (k) of a nonre-
dundant set on a segment of length N [11]:

k<N +¥N +0.5. (3)

There is one-to-one correspondence be-
tween the obtained set on the scan and the
NRC on the hexagon, therefore, accounting
for the relationships N =n*=(2r+1)*, ine-
quality (3) can be rewritten in the form

k<2r+~2r+1+1.5, 4)
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or, equivalently, as k <k,, where k, is the in-
teger part of the right-hand side of (4).

To check inequality (4) as an upper esti-
mate for the NRC element number on a hexa-
gon of radius r, compare the values of k, with
the data on k given in [6, 8] — see Table.

As can be seen, the estimate fits our data
quite well, and we may suppose it also holding
for grids of larger radii.

Note that the data on k for grids of radii
r>13 also obtained in [6] are essentially less
than could be expected from (4). However, the

Table. Estimate of the NRC element number on hexa-
gonal grids

r k k, r k k,
1 4 5 8 21 21
2 7 7 9 22 23
3 9 9 10 25 26
4 12 12 11 27 28
5 14 14 12 28 30
6 16 17 13 30 32
7 19 19
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search made for such grids was far from being
exhaustive, and NRCs with larger numbers of
elements might exist there.

Conclusion

Estimate (4) for the maximum number of
elements of nonredundant configurations on
hexagonal grids is suggested. Although ob-
tained non-rigorously, it agrees well with the
best values found of their number on hexa-
gons of radii for which the search was ade-
quately made, and provides a guiding line in
evaluation of the maximum element number
in nonredundant configurations on the grids
of larger sizes.
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IMnupuYecKas oleHKa
4YHCJIa 371eMEHTOB 0e3bI30bITOYHOI
KOH(Urypauyuu Ha reKcaroHa/IbHoii

aneprype TeJecKona

JI. E. KonuioBuy

[Tomyuena sMnupryecKasi BEpXHsisl OICHKA
YHCIIa JIEMEHTOB 0e3bI30BITOUHON KOH(pHUTY-
palu Ha TecaroHAJIbHOW alepType TelecKo-
mma 3aJJaHHOTO pa3Mmepa. be3rr30BITOYHOCTD
O3HAYaeT, YTO PA3HOCTH PAIUYC-BEKTOPOB
3JIEMEHTOB KOH(UTrypauuu (“BeKTOPHBIC pa3-
HoCcTH’) BCce pa3inuuHbl. [loydeHHas oreHKa
XOPOIIO COTJIACYETCs] C UMEIOIINMUCS TaHHBI-
MU U MOXET CITY)KUTh OPUEHTUPOM TIPH OIICH-
K€ MaKCUMAaJbHOTO YHMCIIa 3JIEMEHTOB Oe3bI3-
OBITOYHON KOH(PUTYpAIIMN HA PEIIETKE OOITb-
IIUX Pa3MEPOB.

Emnipuuna ouninka
KIJILKOCTI eJIeMeHTIB 0e3HAJIMIIKOBOI
KOH(Irypaitii Ha rekcaroHaJbHii
anepTypi Tejeckomy

JI. 10. Konniiouu

OTpuMaHO eMIIPHYHY BEPXHIO OIIHKY
KIJIBKOCTI €JIEMEHTIB Oe3HaIJIMIITKOBOI KOH(DI-
rypailii Ha TeKCaroHaJIbHIN anepTypi TeJICCKOITY
32JIaHOTO PO3Mipy. be3HaUTUIITKOBICTh O3HA-
yae, IO PI3HMII Paaiyc-BEeKTOPIB €JICMEHTIB
KoHpirypatii (“BeKTOpHI pi3HUIL") yCi pi3HI.
OTpuMaHa OIiHKa TI0OPe MOTOIKY€EThCS 3 HASIB-
HUMH JTAHUMH 1 MOXKE CIIYT'YBATU OPIEHTHPOM
y OIIHIII MaKCHUMaJbHOI KIJTbKOCTI €JIEMEHTIB
0e3HaUIMINKOBOI KOHQIryparil Ha PeIriTIi
BEJIIMKHUX PO3MIpIB.
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