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We offer a review of present day state of an approach to constructing of the theory of wave
diffraction by multi-layered periodic partially transparent screens. A key point of the approach
is definition and using of an operator of reflection of corresponded semi-infinite screen sets.

Introduction

We offer a review of present day state of
anovel approach introduced in [1] to construct-
ing the theory of electromagnetic wave inter-
action with periodic sets of screens. A periodic
set is understood either as an infinite structure
of equidistant planar screens, or as a semi-infi-
nite or finite part of such a structure. The spec-
tral operator of reflection R by a semi-infinite
periodic structure is most essential in the de-
veloped theory. Actually the properties of a
structure consisted of a finite number of equi-
distant screens can be found, if an effective
description for field diffraction by boundaries
of semi-infinite structure exists.

In finding the reflection operator R of a
semi-infinite periodic screen set, the specific
shift symmetry of such structure is employed.
Actually the diffraction properties of the struc-
ture will be not changed if one or any finite
number of boundary screens has been cut off.
The said property of symmetry allows to de-
rive an equation for the operator R on the
assumption of the known spectral scattering
operators of a single screen, which forms the
building element in a semi-infinite set.

A field incident on a semi-infinite structure
excites there an eigenwaves of the correspond-
ing infinite periodic structure. The transmis-
sion operator, which permits finding the vec-

tor of spectral amplitudes of the excited eigen-
field, can be expressed by R. The eigenwave
field can be studied and the equation for find-
ing the propagation constants for these waves
can be obtained using the known operator R.
Furthermore, if the eigenwave in a semi-infi-
nite structure is propagating towards the free-
space boundary, the reflection and transmis-
sion operators for such a field can also be ex-
pressed by R. The operator method has been
used to obtain the reflection and transmission
operators for a periodic structure with finite
number of screens. These operators can also
be expressed by R. Thus the knowledge of op-
erator R allows obtaining a completely char-
acterization of an electromagnetic properties
of an infinite periodic screen set, as well as of
its semi-infinite or finite-layered parts.

The developed theory has been used for the
detailed study of the diffraction properties of
periodic structures. Those structures can be
composed of dielectric layers or of semi-trans-
parent anisotropic screens which are dense strip
gratings (including those of finite thickness),
as well as of screens which are strip gratings
operating in a multiwave mode. This theory
has been applied also to a study of electro-
magnetic field transformation at the junction
between regular and diaphragm waveguides,
as well as of the field in a waveguide with fi-
nite number of diaphragms. This approach has
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also allowed studying the diffraction proper-
ties of multilayered sets of double periodic
plane screens. Such structures are an effective
model of artificial media.

1. Operator Method for Problems
of Wave Diffraction by Planar Screens

The boundary value problem of electromag-
netic wave diffraction is usually brought into
a functional equation

(Ax)(F, 1) =b(F,1), FeT, (1.1)

where x(7,T) is the unknown coordinate and
time function defining the diffracted field,
b(7,7) is the known function connected with
the incident field, I" is the obstacle boundary,
and A means linear operator. To obtain the
solution of the problem

x(F,7) = (A'b)(F,7) (1.2)

the operator A must be inverted. The operator
A" involves all information contained in the
formulation of the problem which is necessary
for its solution.

1.1. Generalized Scattering Matrix
for a One Periodic Structure

As an example, consider the plane electro-
magnetic wave diffraction by a planar one
periodic screen (see Fig. 1). Let the incident
wave is linearly polarized (either E or H vec-
tor is parallel to the direction of the screen ho-
mogeneity). We shall assume harmonic time
dependence e™™* of field, which is omitted in
the following. When a plane wave

uinc(y, Z) — eik(ysin(x+zcosoc) (1 3)

is incident on a periodic structure, the transmit-
ted electromagnetic field is a superposition of
space harmonics with discrete spatial spectrum

W' (v,2)= Y bl(h)e™ " z>a,  (1.4)

n=—oo
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Fig. 1. Plane wave incidence on a periodic structure

where i, =ksino, h, =h, +2mn/l, v, =\Jk> =1,
and Imy, 20 if Imy, =0, then Rey, >0, an
index ¢ marks transmitted field variables. If vy,
is real, the n space harmonic propagates in the
half-space z>a at an angle o, with respect to
the positive Oz-axis, which is defined by
tano, = h, /v,. If || > k, the nspace harmonic
is a slow wave propagated along the Oy-axis.
Its field decreases exponentially with distance
from the surface of periodic structure. Therefore
these space harmonics, which do not propagate
in any non-zero angle direction from the screen,
are inhomogeneous plane waves, whose field
is localized near the surface of periodic structure.

Assume that the incident field is a homoge-
neous or inhomogeneous plane wave

U (y,z) ="t (m=0,+1,+2,..). (1.5)

Substituting £, in (1.4) by h, and proceeding to
another summation index s =m+n, we obtain

up, (,2)= Y by, (h,)e"™ . (1.6)

§=—00

It follows from (1.6), that when the plane wave
(1.3) is incident on the periodic screen at an
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angle o, and another plane wave (1.5) is inci-
dent on the same screen from the direction
which coincides with the propagation direc-
tion for any space harmonic, the sets of prop-
agation directions for the waves of the trans-
mitted field spectra appear to be the same.
All properties of the transmitted field ex-
plained above do also hold for the field re-
flected by the periodic structure. The propa-
gation directions of the space harmonics of the
same index of the reflected and of the trans-
mitted fields are symmetric to the plane z =0.
The amplitude column-vector of the space
harmonics of the transmitted field corresponds
to each of the plane waves of unit amplitude
u' (y,z) (in the case of an inhomogeneous
wave, the field shows an unit amplitude at
z=0). We construct now the infinite matrix
t=|b,(h,)|"_ =, . and call it as the gener-
alized periodic structure transmission matrix.
With the #-matrix it is easy to obtain the trans-
mitted field, if a superposition of waves in the
form of (1.5) is incident on a periodic struc-
ture. Assume, that the wave amplitudes in this
superposition define a column-vector

{b,’;l }mi_ . Then the vector of the transmitted
field amplitudes can be found from the formula

b =1b' ={ D bnmbfn} .
The infinite 7-matrix determines a linear oper-
ator ¢, which relates to each amplitude vector
b' of the incident field the ' —vector of the
transmitted field amplitudes. A generalized re-
flection matrix is similarly built up.

From now on, we will consider that opera-
tor 7 and reflection operator 7, solving the
corresponding boundary value problem (1.1),
are known.

1.2. Operator Method for Solving the Problem
of Wave Diffraction by Two Periodic Screens
Coincidence in space harmonic propagation
directions for the diffracted field, if plane waves
with propagation constants i, (m =0, £1;£2 ...
along the Oy-axis are incident on a periodic
structure, is very important. For any system of

parallel plane periodic structures, possessing
different geometry and electric properties in
the general but identical periodicity, this fea-
ture results in an electromagnetic field which
shows a spectrum of plane waves, whose prop-
agation directions are the same as those of the
partial plane waves which are diffracted by
each of the individual screens of the system.
Now let us consider the problem of plane
wave diffraction by two parallel periodic
screens (see Fig. 2). A plane wave with ampli-
tude b} is incident on this system from the half-
space z<-—a, at an angle a. Let the periodic
structures show identical period /, let they be
symmetric with respect to planes z =0 and Az,
respectively, and assume that the transmission
and reflection operators are known for each
structure (they are marked with indexes 1 and 2).
Denote the amplitude vector of the reflect-
ed field space harmonics by 4, that of the field
transmitted through the structure by B’, and
denote the amplitude vectors of the space har-
monics in between the periodic screens which
propagate (or are exponentially decaying) in
positive or negative direction of the Oz-axis
by C and D, respectively. The transmission and
reflection operators which have been men-
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Fig. 2. Plane wave incidence on a two-layer periodic
structure
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tioned above, are written with respect to the
screen located at z =0. Hence the reflected and
transmitted fields at the first screen (4 and C)
should be written related to the xyz—system,
and fields D and B’ (generated by the second
screen) should accordingly be written related to
the xyZ-system, where Z=z—Az. In order to
study the C-field interaction with the second
screen and the D—field interaction with the first
one, these fields should be rearranged in terms
of the obstacle-related coordinate systems. Ob-

viously, to transform the 2 fre™ e _field

§=—00

from the xyz-system to the xyZ-system and

the Z fre™ ™% _field, accordingly, to the

xyz coordinate system, vectors { i }: and
{f s }700 should be multiplied by the same di-

i’YVl
, where 3,

n,m=—oo

agonal matrix @ = Hf)mne
means Kronecker delta.

Let the vector describing the incident wave
be called B'. Its only non-zero component is .
The complex amplitude vectors of the fields
are connected to the incident field vector B’ by

A=7B +1D,

B' =1,0C,

e (1.7)
C=7B +7¢D,
D=20C,

where indexes 1 and 2 mark the operators cor-
responded to the first and the second screen,
¢ is operator corresponded to the matrix @.
These equations yield the amplitude vectors of
the transmitted and reflected fields

B' = l?26[)(1 - ”l@fzfp)_llei,
(1.8)
A=[ R+EPROU - 76RH) ' | B

The solution of the diffraction problem in
the form of (1.8) actually determines the trans-
mission and reflection operators for the whole
system. In principle, by applying the same algo-

rithm with new operators, we may also solve
the diffraction problem for a system, whose el-
ement consists of a two-layer periodic structure.

1.3. Operator Method as One of the

Realizations of the Half-Inversion Method

In diffraction theory, the operator method
is one of the effective realizations of a fairly
general approach to the solution of the related
boundary value problems which is called the
method of operator partial inversion (some-
times called as “the half-inversion method”).
The idea of the half-inversion method lies
in that the diffraction problem, formulated
as operator Eq. (1.1), is solved in two steps.
As first step, the A—operator is represented as
sum of two operators A=A +A, inaway that
the inverse to the A —operator can be found,
and that the A,—operator shows a small norm
under the physical conditions of the diffrac-
tion problem. The second step then is obtain-
ing the solution of equation

x=—A"Ax+ A'D. (1.9)

For example, in solving the problem of plane
wave diffraction by a strip grating with the so-
called “method of Riemann-Hilbert” [2], op-
erator A is a static part of operator A. Hence
A, is small in its norm, provided the wave-
length exceeds the structure period. If in this
problem the static part of the A—operator
which is related to a single strip [3] is taken for
the A —operator, the A —operator will be the
smaller in its norm, the smaller the strip width-
to-wavelength ratio is and the bigger the grat-
ing period compared to the wavelength is.
The application of the operator method
assumes that part of the operator, which cor-
responds to diffraction by one of the obstacles
included in the studied structure, is subject for
inversion. Represent third Eq. (1.7) as

C=4B +P,C, (1.10)

where P, =#¢7d. By comparing (1.9) and
(1.10), it is easily found that the operator part,

which corresponds to the problem of diffrac-
tion by a periodic structure (shown in Fig. 1),
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is inverted. Operator ﬁb describes the interac-
tion between the first and the second screen.

The problem becomes much more compli-
cated, if the components of the complex struc-
ture have different periods. If the periods are
multiples of a common base, then the biggest
value should be taken for the period of the whole
structure. If the period—to—period ratio is a ra-
tional number, the period is their least common
multiple. In this case, the fields and operators
should then be reduced to a new basis corre-
sponding to the period of the whole structure.
When the period-to-period ratio is not a ratio-
nal number, the whole structure is not periodic.

It is not accidentally that we took the ma-
trix spectral operators of scattering as an ex-
ample. Firstly, such operators appear in the
problems of wave diffraction by periodic struc-
tures, which are widely used and actively in-
vestigated. Secondly, since the properties of
such operators have well been studied, and the
physical interpretation of the results of their
application is fairly simple, their basic intro-
duction to methods of research for multilayer
structures will henceforth be carried through
with the example of objects generating scat-
tered fields with discrete space spectrum. Third-
ly, operators with infinite matrices take a spe-
cial intermediate position between operators
with matrices of finite order (or even in the
one-dimensional case, between the complex
transmission and reflection coefficients) and
integral operators, which arise in problems of
diffraction either of a field with continuous
spectrum or by obstacles generating scattered
fields with continuous space spectrum.

2. The Method of Study of Wave
Diffraction and Propagation in Periodic
Layered Structures

In the section title, the word “periodic”
should be put into quotation marks: strictly
speaking, the considered finite or semi-infinite
set of screens is a structure of equidistant screens.
However, for short, the term “periodic” will be
applied thereafter also to obstacles which con-
sisted of a finite number of elements, with the
assumption that such a structure is a finite or
semi-infinite part of a periodic infinite set.

2.1. Reflection Operator of Semi-Infinite
Periodic Structure

Assume that half-space z >0 is filled by an
arrangement of equidistant and identical pla-
nar screens, each being a periodic strip grating
(see Fig. 3). The strips in these gratings are con-
sidered to be infinitely thin and perfect conduct-
ing. The medium has e =p =1 in the gaps and
in the half-space z<0. From the left, a plane
linearly polarized electromagnetic wave

u' =be™ 2.1

is incident on the boundary z=0. To avoid
complexity, we consider here the case of nor-
mal incidence and for definiteness consider
vector E of the incident wave being in paral-
lel to the grating strips, i. e. ' in (2.1) means
a unique nonzero E —component of the elec-
tric field.

Let us solve the diffraction problem by the
operator method. Consider the transmission
¢ and reflection 7 operators for a single screen
to be known. Introduce the reflection opera-
tor R of a semi-infinite periodic structure.
When solving the diffraction problem, the re-
flection operator R will be found, so that for
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Fig. 3. A semi-infinite system of planar periodic
gratings
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any incident field with spectral amplitude vec-
tor B' ={b} }1 , the sought vector A" ={a; }:
of spectral amplitudes of the reflected field can
be defined by the formula

A" =RB'. (2.2)

Enumerate the gaps between screens by as-
signing the number “0” to the near-boundary
semi-infinite structure (see Fig. 3). Represent
the field in each gap as a superposition of fields
of plane waves

uj=u1+uf, Lj<z<L(j+1),

where

ul = 2 bl ey (2.3)
f—eo

ul =Y ale MMy (2.4)
feeo

L means layered structure period, j=0,1, 2, ...
is gap number, and &, =2nn/l for oo =0. Con-
sider first the fields in the region z<0 and in
the gap j=0 between the near-boundary
structure screens 0<z< L. It can easily be

B/ = {bn’ } , and B’ of the fields in these space

oo
—oo

seen that the amplitude vectors A’ ={a,{}

regions fulfill the equations

B’ =iB' + FpA°, (2.5)
RB =B +1¢A°, (2.6)
A" = RGB°, (2.7)

where @ is the operator determined above with
Az = L. Equation (2.7) follows from the afore-
mentioned shift symmetry of a semi-infinite
structure.

Eliminate vectors B’ and A° from the sys-
tem (2.5)—(2.7) and obtain an equation with
respect to the reflection operator R

R=7+ip(I — Rprd) " R (2.8)

Notice some features of Eq. (2.8). First
along with Eq. (2.8), another equivalent form
of notation is valid:

R=7+1ORP(I - 79RP)'7. (2.9)

R=Rp, F=rp, 1=1¢ (2.10)
are introduced, then, instead of Eq. (2.8) we
obtain a more compact equation
R=F+i(I-RF)"'Ri. (2.11)
Thirdly, if operator R, is the solution of
Eq. (2.11), then the inverse operator R,
fulfills to this equation also.

In the general case, Eq. (2.8) can be solved
numerically, for instance by the Newton

method, or in some cases, by the method of
successive approximations.

2.2. Eigenwaves of Periodic Structure
Let us now study the field in the periodic
part of the structure in more detail. In the
neighbored j and j+1 gaps the field ampli-
tude vectors fulfill the equations

B/ =B’ + ipA’,
(2.12)

AT = RGB!, j=0,1,2,....

After elimination of A’*' we obtain the recur-
rent formula

B =(I-7oR®)'7GB’, j=0,1,2,... (2.13)
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Equation (2.13) allows to express the vec-
tors of field amplitudes for any screen gap
through the corresponding vectors of fields in
the gap with j=0. It is easily seen that the
vectors B® and A’ are connected to the vec-
tor of the incident field amplitudes by

B’ =(I-7pRp)'iB', A"=ROB°.  (2.14)
Provided that transmission operator T of the

semi-infinite structure is introduced:

B’ =TH', (2.15)
then from Eq. (2.14) follows, that
T =(I - PpRY) 7, (2.16)

and the recurrent formula (2.13) can be writ-
ten as

B =T¢B’. (2.17)

An eigenfield of the infinite periodic struc-
ture is a superposition of eigenwaves. The eigen-
wave has two components in each screen gap
propagating in opposite directions. Provided the
vectors of spectral amplitudes for the k—th eigen-
wave are denoted as B/ and A/, then for any
j on the one hand, we have the relation

B/M' =T¢B/, (2.18)
and on the other hand the eigenwave field in

the neighboring screen gaps may only differ
by a phase factor

B/* =™ B, (2.19)

It is easy to obtain the dispersion equation
now for finding the k—th eigenvalue ™! of
operator TQ:

det[l — e L — f‘(b(l — et )_l f(Ap} =0.
(2.20)

Thus operator T contains information on the
phase velocities of all eigenwaves, which are
excited in the semi-infinite structure by an in-
cident field.

2.3. Eigenfield Reflection and Transmission
Operators at the Boundary
of a Semi-Infinite Structure
Let now all half-space z <0 be filled with a
periodic structure of screens possessing the
same parameters as above. Consider the prop-
agation of an eigenfield in a layered structure
which is incident from the half-space z<0
through the free-space boundary in the plane
z=0. Assume that in the screen gap which is
closest to the boundary, the incident eigenfield
components are described by

u = 2 b ei(z+L)Yneih,,y,

n
—izy, ih
u_ = 2 a,e lZYnel ny’
n=—oo

and those for the reflected eigenfield, accord-
ingly, are

— i(z+L)y, ih,y
bne ne''n ,

c
£

[
Nl

—co

=
Il

a_e_iZYn eihny.

n

IC’
1
1

—co

n

Denote the vectors of spectral amplitudes of
these fields by

B={b,}"_, A={a,}"_,
B ={b- }2 A ={a, }2

Represent the free space transmitted field as
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t ¢t izy, ih
u = 2 bnelZYnel ,,y’

n=—oo

B' ={b, }1

Introduce operator of reflection p of the
eigenfield and operator of its transformation
into the free-space transmitted field (operator
of transmission 7) by the formulas

iB=B'.

A A A A

% =71 + RPp).

Thus knowing the semi-infinite structure re-
flection operator R, it is possible to determine
operators of reflection p and transmission 7.

2.4. Operators of Transmission and Reflection
Sfor a Periodic Structure with Finite Number
of Layers

Consider the incidence of a field with ampli-
tude vector B’ on a periodic structure with fi-
nite number of screens N, Fig. 4. Introduce op-
erators of reflection 7, and transmission #, of
the N-layer structure and find their expressions
by using the operators of reflection and trans-
mission for a semi-infinite periodic structure:

_.
W

F-J
by
[
-

Fig. 4. An N—screen periodic structure

A

Py = R+ATN T [1 ~(p7" )2 TT,
=20 1-(p7 ) |

A few important problems may be present-
ed to illustrate the efficiency of the offered
method in the theory of electromagnetic wave
diffraction. First consider the problem of peri-
odic structure eigenwave propagation through
the junction of two semi-infinite systems of
screens. From the left half-space the eigenwave
of the corresponding periodic structure is inci-
dent on the junction of these two sets. The
operator of reflection of this wave from the
half-space boundary and the operator of exci-
tation of the second layered half-space eigen-
field (i. e. the operator of transmission) were
found. We analyzed also the eigenfield trans-
mission through and the reflection from an
arbitrary gap between two different layered
half-spaces. As a next example, operators of
transmission and reflection for two layered
slabs of identical strip screens were obtained.
Each slab differs in its number of screens. The
screens have been disposed in each slab with
different periods also. The gap is arbitrary
between slabs.

Thus in this section we outlines the formal
procedure of the operator method for solving
the problems of electromagnetic wave diffrac-
tion by multilayered periodic structures. The
reflection operator of semi-infinite periodic set
has fundamental significance for this method.
The next sections will be dedicated to a phys-
ical analysis of solutions for a number of prac-
tical problems, as well as to an exposition of
peculiarities which occur in using the operator
method in concrete situations.

3. Wave Diffraction by Periodic Sequence
of Dielectric Layers

Wave reflection by semi-infinite system of
loss-less and lossy dielectric slabs was studied
in [4, 5]. The transmission and reflection of
finite number layers were analyzed in compar-
ison with properties of semi-infinite structure.
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3.1. Reflection Coefficient for Semi-Infinite
Periodic System of Dielectric Layers
Let the half-space z >0 be filled with a lay-
ered structure of equidistant dielectric slabs of
the same thickness 7 (see Fig. 5). An incident
electromagnetic wave is

u' =E.=¢", (3.

If the wave (3.1) is incident on a single slab
0<z<h in the free space, the reflected wave
shows the form u” = re”™ and the transmitted

wave accordingly reads u' =re*“™  where
(e-1) (eﬂm/Eh _ e—ik«/gh )
= 2 2
(\/E_I_l) eﬂk\/Eh _(\/g_l) eszEh
(3.2)

4e
(\/5_1_1)2 e—ik\/gh_(\/g_l)z eik\/gh.

=

If introduce R=Rg, F=r¢, and 7=1q,
where ¢ =e™, d =L—h, Lisstructure period,
the Eq. (2.8) becomes a quadratic algebraic

E E E
h:l
-
& - : - - - - - - —h
i} H L 2L 7
HI’
'

Fig. 5. A semi-infinite set of dielectric slabs

equation for obtaining the reflection coefficient
of semi-infinite set of dielectric layers:

Lo = ii=o. (3.3)

Two roots of Eq. (3.3) fulfill the equality
RR, =1, so that |[R|<1 for one of the roots is
always met, what is physically meaningful.
The reflective properties of such a structure
were studied versus the relative thickness of
the slab h/L, the frequency parameter L/A,
and the value of € [4, 5]. For small L/A —ratios
all layered half-space can be considered as ho-
mogeneous with an effective permittivity

he + (L —h)
of 3 . (3.4)
If the wavelength A is commensurable with the
characteristic sizes (L and /) of the structure,
the reflection coefficient behavior is governed
by two main factors. First, if the thickness of
a single dielectric slab is close to integer num-
ber of half wavelength in the dielectric, then
the transmission coefficient |r| is close to one,
being equal to one in the resonance case. Such
resonant character of transparency of a single
slab determines the electrodynamics behavior
of their semi-infinite set as well: the reflection
coefficient \R\ vanishes in the same resonance
points, irrespective of the slab spacing. The
studied structure is matched completely with
free space in these points.

The second factor, which essentially affects
the reflective properties of the structure, is con-
nected to its periodicity. It is well known, that an
eigenmode in the periodic structure can exist only
for certain structure-to—wavelength parame-
ter ratios. In particular, forbidden zones ap-
pear, where the phase mismatch between the
waves, which undergo multiple reflections by
the slabs, prevents propagated wave formation.
In fact, if the parameters correspond to a for-
bidden zone of the infinite periodic structure,
the reflection coefficient |R| of a semi-infinite
set should be one. The dispersion equation was
analyzed for a field in a periodic set of dielec-
tric slabs.
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4. Wave Diffraction by Periodic Sequence
of Dense Strip Gratings

4. 1. Semi-Infinite Peviodic Structure
of Dense Strip Gratings
The sets of dense strip gratings were stud-
ied in [4]. Assume the grating strips are perfect
conducting and — at first — infinitely thin. Fig. 3
shows the strip grating. If a wave

E =E =0, 4.1)

Lti — E)zc — eikz’ ' !
is incident on a single screen lying in the plane
z=0 and k=I/A<]1, only the zero spectral
harmonic both the reflected and transmitted
field will be a non evanescent plane wave. Suf-
ficiently far from the plane z =0, the total field
is well described by a main wave

z<0,
E =

X

eikz + aoe—ikz’
4.2)

bye™, z>0.

The distance Az from the plane z =0, at which
the diffracted fields defined by full partial wave
superposition included evanescent waves and
(4.2) practically coincide, essentially depends
on the ratio I/A; we may consider Az ~1[ if
I < A. Hence it is clear that for an analysis of
the reflection by a semi-infinite set of gratings
which fulfill the conditions k<1 and L>1 the
values g, and b, from (4.2) should be used for
r— and t—coefficients, respectively. These val-
ues can be obtained from the rigorous solu-
tion of the problem of plane wave diffraction
by a strip grating (see, e. g. [2]) or by using
Lamb’s approximate formula [6]

-1
b, =iK21ncosﬂ 1+i1<21ncosﬂ .43
21 21

From the boundary conditions there also fol-
lows 1+a,=b,.

Reflection of an incident H—polarized wave
(u'=H,, H,=H_,=0) is similar to the con-

sidered one. For H—polarization the Lamb’s ap-
proximation of the transmission coefficient is

-1
B, =(1+iK21nsinZ‘ll) . 4.4)

The relation 1-A,=B, follows from the
boundary conditions.

The |R|—coefficient of semi-infinite struc-
ture is notably small in a very broad range of
d/l and L/A values for H-polarized incident
field. For E—polarization, the structure shows
a considerably worse transparency for small k.

The zones of total reflection are connected
to the band-gap zones of the periodic screen set.
To study the eigenmodes of an infinite struc-
ture, the corresponding dispersion equation can
easily be obtained. It can clearly be seen, that
for a single-wave mode, the fields diffracted
by a single strip grating, fulfill the averaged
equivalent boundary conditions. For small k,
the analytic Lamb’s approximation formulas
(4.3) and (4.4) can be used. For an infinite
structure, matching the fields at the boundary
between two neighbored regions, one obtains
equations for the eigenwave propagation con-
stant § for E—polarization

2nl  .b,—1 . 2mL
cosPL =cos +i-9—sin , 4.5
B it LT @

and for H—polarization

cosBL=c052nL—i 4 sin 2EL. (4.6)
A 1-A, A

Occurrence of the regions of total reflection
which are repeating in steps of 0.5 on the scale
of relative values of the screen disposition peri-
od (and are connected to the forbidden bands
of the infinite set of screens) in a semi-infinite
sequence of screens is the common property for
such class of structures. However, in the strip-
grating case, a specific standing-wave mode with
nodes coincident with those points, where the
planes of semi-transparent screens are located,
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exists in the points L/A=n-0.5 (n=1,2,..),
which are exactly located on the boundary of
each of the regions of total reflection. It can be
proven, that for ¢ =1 a unique solution is the
R =-1 value (or for H—polarization the R=1
value). From (4.5) and (4.6), the range of pa-
rameter values can easily be shown, for which
the considered structure totally reflects an inci-
dent plane wave.

We showed that for k<1 in the partial re-
flection mode, the phase of the R—coefficient
(for normal plane-wave incidence) is indepen-
dent from the d/I-ratio.

4.2. Anisotropic Artificial Dielectric

It seems to be of interest to find performanc-
es of the equivalent dielectric of a multilayer
set of gratings by using the reflection coeffi-
cient value for the layered half-space and its
relation to the effective refraction index. The
electrodynamics properties of such anisotro-
pic structure are described by two tensors €
and i, and in order to recover all components
of these tensors, we should generalize the solu-
tion to plane linearly polarized waves, which
are incident at any arbitrary angle. However,
for most cases, no necessity to recover all €
and I components emerges. It is sufficient to
determine the effective value of the refraction
index n for normal incidence but with £E— and
H- polarizations of the waves. For this pur-
pose with the known R -values, we may use
the Fresnel formulas or define the B from the
dispersion equation. In this case an unambig-
uous solution of Egs. (4.5) or (4.6) is ensured
by the condition [BL—kL|<2m.

4.3. Sequence of Gratings of Finitely
Thick Strips

Note that — within the developed approach —
it is fairly easy, at least for the H—polarization
case, to investigate limits for using the ideali-
zation “infinitely thin strips”. With this objec-
tion in mind, employ, for example, the results
of work [2], where analytical expressions for the
transmission and reflection coefficients of an
H-polarized wave, which is incident on the
periodic grating of perfect conducting, finitely
thick bars, are derived for the long-wave ap-
proximation. For normal incidence, these for-
mulas in our notation take the form

Th d
=—jK| — —2Insin— [X
A (d 2IJ

-1
X[ 1-ik n—h—Zlnsinﬂ , 4.7)
d 21

B, =1-A,, (4.8)

and they are valid under the condition that
h/A <1, where h means bar thickness.

The reflection coefficients were found calcu-
lations for the H—polarized wave normally inci-
dent on a semi-infinite set of gratings of finitely
thick perfect conducting bars and for the struc-
ture with finite number of layers for some pa-
rameter values. A comparison of the graphs for
corresponding dependencies shows, that for H—
polarization the electrodynamic properties of
multilayer structures, which are periodic grat-
ings of finitely thick strips, practically do not
differ for k <0.5 and 4/l <0.05 from the prop-
erties of structures with infinitely thin strips in
a fairly wide range of parameter values.

4.4. Periodic Structures with Period “Failure”

As a matter of fact, a practical multilayer
structure may differ from the considered ideal
model, for example, in a failure in the strict
periodicity of screen disposition within a set.
It is important to study the influence of possi-
ble structure period failures on the character
of reflection and transmission coefficient de-
pendencies versus the key problem parameters.

Let us consider first the reflective proper-
ties of a structure, which consists of periodi-
cally disposed M screens with period L and of
one more the same screen at a distance of A
from the M—layer sequence. A change in A be-
tween the group of periodically disposed
screens and the non-regular one practically has
no effect on the zones of total reflection, while
the reflection coefficient behavior inside the
zones of partial reflection changes: instead of
the points of perfect resonant transparency
(which occur at A=L), resonances are ob-
served which are not so regular and different
in depth and where the reflection coefficient
does not vanish. With increasing L/A, the
transparency in the zone of partial reflection
decreases from zone to zone.
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The second model of period “failure” is
concerned with two layers of M and N period-
ically (with identical period of L) disposed iden-
tical screens in a distance of A.

The third possible study of a broken peri-
odicity in element disposition is concerned with
two layers of periodically (with period of L)
disposed screens, which are distant from each
other by A=2L or A=3L. This models the
situation of 1 or 2 screens missing inside the
finite-layered periodic sequence.

And finally, the fourth example concen-
trates on two multilayer periodic structures of
identical screens (with M and N being the num-
ber of screens and L the screen disposition
period), one located at distance A=2L from
the other. However, in this gap at a distance of
A, from the left-hand layer (with M screens),
there is one more screen disposed, so that dis-
tance from this screen to the right-hand layer
(with N screens) is equal to A, =2L—-A,.

The analysis allows the conclusion that the
properties of layered structures within the zones
of total reflection are sufficiently stable against
any failure in periodicity, while a small failure
in the zones of partial reflection can already
exert an essential influence.

5. Multimode Wave Diffraction
by Periodic Set of Strip-Gratings

Assume, as above, the screen strips perfect
conducting and infinitely thin, suppose, how-
ever, the strip disposition period / to wave-
length A ratio being no longer small [7]. In this
case, the diffraction properties of gratings and
of their sets essentially differ from the corre-
sponding properties in the above-considered
long-wave mode. The electromagnetic field
interaction with such screens should be de-
scribed by the corresponding scattering opera-
tors, because now not a single plane wave, but
some space harmonics are propagating in the
diffracted field for /A >1. Reflection opera-
tor R is found numerically by solving the non-
linear operator Eq. (2.8).

A fairly close problem is the problem of
wave transformation by the junction of two
rectangular waveguides, a regular one and
another one loaded by a semi-infinite or a fi-

nite set of diaphragms. The problem of wave
diffraction by a periodic system of slots of the
plane waveguide walls was studied also.

5.1. On Numerical Solution of Operator
Equation
For obtaining the solution in the multimo-
de case the numerical method of successive
approximations can be used by realizing the
iterative process

n=1,2, ...,
5.1

where Ro is the initial approximation (e. g.
R, =7), and R, is the approximate solution of
Eq. (2.11), which is obtained from the n-th
iteration.

5.2. A Strip-Grating Periodic Structure
(Multi-Mode Conditions)

The electrodynamics properties of a strip grat-
ing depend essentially on the k—parameter. In
the analysis of diffraction properties of a period-
ic set of gratings operated in a single-wave mode
(x <1) oneis then allowed to treat the screens as
homogeneous along the Oy—axis and semitrans-
parent films, on which the equivalent boundary
conditions are fulfilled. The described approach
is justified only in the case that the screen gap L
is sufficiently large compared to wavelength.
Within the framework of the discussed approx-
imate solution it is, however, impossible to de-
fine its limits of applicability and to evaluate the
error of the results. The exact solution opens such
possibility only, when the grating properties are
described for k<1 with operators # and 7 as
well, and their periodic set properties are calcu-
lated with operators R, T.

We proceed now to the analysis of the elec-
trodynamic properties of a periodic set of grat-
ings in the multi-mode case 1<k<2. This
means that in the space spectrum of the dif-
fracted fields, three plane waves propagating
in different directions will occur for a normal
incident plane electromagnetic wave. The
screen interaction with the fields of these waves,
as well as with the local fields of higher space
harmonics of the spectrum, results in the very
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complicated dependencies of amplitudes and
phases of the reflected and transmitted fields
of the system parameters. In analyzing the dif-
fraction properties of such periodic screen sets,
it was most convenient to begin with a study
of the eigenfield structure (the eigenwave fam-
ily) and the dispersion dependencies of the
eigenwave propagation constants.

The most important conclusion, which fol-
lows from a consideration of the eigenwave
structure, consists in dividing the waves into
two groups: into those with even and with odd
field distributions. Indeed, for the waves with
odd indices the space harmonics with positive
and negative numbers of equal magnitude show
identical complex amplitudes, while the waves
with even indices show amplitudes which are
opposite in sign. Eigenvectors with even dis-
tribution are orthogonal to vectors with odd
distribution; hence the corresponding (even or
odd) fields can be excited independently of each
other. In particular, if a plane wave is normal
incident on a semi-infinite structure, the odd
eigenwaves cannot be excited.

Since for normal incidence, the odd eigen-
wave 1s not excited, then even for the multi-
wave region, in the even eigenwave forbidden
zones, the structure is completely reflected.
However, in the band-gap zone the reflection
coefficient of the zero space harmonic |a,| is
not equal to 1 (except for, possibly, at some
isolated points). This is quite natural, because
for 1<k <2 the reflected energy is transport-
ed by the zero and the first (numbered by +1)
space-spectrum harmonics. The total energy
flux of the reflected field in the cutoff zone is
equal to the flux in the incident plane wave.

5.3. Junction of Regular and Diaphragm
Waveguides

The junction of two rectangular waveguides
consisting of a regular one and another one of
the same cross-section, but periodically loaded
by diaphragms was considered. A rectangular
waveguide periodically loaded with diaphragms
is a transmission line with a specific dispersion
characteristics being strongly dependent on struc-
ture parameters. Strong dispersion and presence
of the frequency “cutoff” regions allow using
sections of such waveguides as frequency filters.

In this case, because a waveguide section with
finite number of diaphragms shows frequency
characteristics which are considerably different
for the fundamental and the higher propagating
waveguide modes (in the multi-mode case), such
a waveguide section is also effectively used as
mode filter or mode structure converter.

5.4. Junction of Regular Plane
and Periodically Slotted Waveguides

The propagation of electromagnetic waves
in a plane waveguide with slots periodically dis-
posed in its walls was considered. The interest
in such a structure arises in the design of
waveguide components or microwave antennas,
because of a frequent necessity to consider the
transformation of waveguide waves by a
waveguide section with transversal slots. Despite
the diffracted fields possessing in this case a
continuous space spectrum, the approximate
problem can be solved with a matrix instead of
integral operators. For simplicity, any interac-
tion between the waveguide slots by means of
the free-space slot-radiation fields is supposed
to be negligible. In such approximation, the field
radiated from any slot to outside the waveguide
does not imply any change in the complex am-
plitudes of the waveguide waves at the other
slotted waveguide sections. The error of such
solution is the smaller, the narrower the slots
are and the bigger the period of their displace-
ment is in comparison to wavelength.

If the final goal of the research is finding
the reflected and transmitted fields in a
waveguide with finite number of periodically
disposed identical slots, then with operators ¢
and 7 known, the above-described method al-
lows to easily obtain the reflection operator R
at the junction of a regular waveguide and a
semi-infinite waveguide with periodically dis-
posed slots, and thus all necessary characteris-
tics of the fields. If the interest is concentrat-
ing on obtaining the parameters of the field
radiated in a free space then the found solu-
tion also allow to obtain all necessary infor-
mation. Let, for example, the waveguide pos-
sess a finite number of periodically disposed
slots. Then with operator R known it is easily
to find the waveguide fields in front of the first
slot, between the slots, and behind the last slot.
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An essential point of this approach lies in the
possibility of studying systems with large num-
ber of slots, including also systems of several
groups of slots which are periodically disposed
in each group, but with different period for each
group, and also the waveguide multi-mode case.

6. Wave Scattering by Structures of Planar
Double Periodic Screens

Electromagnetic wave scattering by layered
sets of double periodic planar structures are
considered in this section.

6. 1. Operators of Scattering by Planar
Double Periodic Arrays

It is considered an infinite planar array,
whose elements are periodically disposed in the
mesh nodes plotted in nonorthogonal coordi-
nates s, and s, as shown in Fig. 6. The ele-
ment position in the plane z=0 is determined
by radius vector with two indices v, and v,
according to ()Vlvz =v,lé +v,l,é, where ¢, and
¢, are unit vectors directed towards s, and s,,
and [, and [, are the corresponding mesh pe-
riods. A plane electromagnetic wave is inci-
dent on the grating from the upper half-space.
A polarization of the incident field is defined
by polarization vector. An electromagnetic field

e =y o L A
|'i-
i e
Ny, /7 7 7
l\,.-l'rl I.'\. |'___ I...-"l:l.-_l r./.) '-\,..-"'.-_!.3
- S
| it A /7 /7
ToROL | K Wi W

Fig. 6. A double periodic planar array
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for each of the space harmonics is represented
as a superposition of TE and TM waves. The
constructive methods of obtaining the opera-
tors of reflection and transmission for double
periodic arrays of complex-shaped strip parti-
cles and rectangular perforated metal screens
of finite thickness have been developed.

As array elements of strip periodic struc-
tures some planar metal strips of any shape
are chosen in particular C— and S—shaped ele-
ments. The strip length is assumed be larger
than its width. The width may vary along the
strip. The longitudinal component of the strip
surface current is assumed to essentially exceed
the transversal component, so that the latter may
be neglected. The problem of obtaining the spec-
tral transmission and reflection operators is re-
duced to the numerical solution of the integral
equation for an unknown surface current den-
sity by the method of moments [8, 9]. The de-
veloped method allows obtaining the reflection
and transmission spectral operators for strip
periodic structures in free space as well as placed
on a magnetic-dielectric substrate.

Diffraction properties of double periodic
finite thickness metal screens with rectangular
perforation were described by generalized scat-
tering matrices. These planar screens have
waveguide channels of rectangular cross sec-
tion which are periodically disposed in two
directions. For simplicity, the perforation
shows dimensions that only the fundamental
mode can propagate. The operator method was
used to determine the generalized reflection and
transmission matrices for such screen. In the
considered problem a key point of the opera-
tor method was obtaining the operators of
transmission and reflection for a periodic ar-
ray of semi-infinite rectangular waveguides
which is a simplest part of structure with re-
spect to its electrodynamic description [10].

6.2. Reflection and Transmission Operators
Sfor a Semi-Infinite Periodic Structure
of Double Periodic Screens
Let the half-space be filled with a system of
equidistant identical plane-parallel double pe-
riodic structures. For simplicity, we consider
the normal incidence of plane electromagnetic
wave and the frequency range, in which only
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the principal space harmonic of the field must
be taken into account.

We distinguished the two classes of period-
ic structures: symmetric and chiral ones. The
chiral structures, unlike the symmetric, are
those whose mirror image and structure itself
cannot coincide by shifting and turning in the
structure plane. The chiral feature of the peri-
odic structure can result either from chirality
of its elements or from the chiral arrangement
of structure. For example, if non-chiral ele-
ments are disposed asymmetrically with respect
to a rectangular mesh, the whole structure can
show a chiral feature.

The dispersion equation for electromagnetic
waves in a layered periodic system is derived.
The relationship between the eigenwawe pro-
pagation constant and the reflection operator
of the semi-infinite structure is established.
Some simple examples were considered [11].

Assume first, that the off-diagonal elements
of the matrices 7 and ¢ are zero. Examples of
such structures are arrays of cross-shaped strip
elements with strips which are oriented along
the orthogonal directions of periodicity, fur-
ther arrays of strip rings with a split in one of
the directions of periodicity, planar arrays con-
sist of disks or a perforated metal screen with
square holes in the orthogonal mesh. The sys-
tem of equations for the field in the periodic
layered structure splits into two independent
systems with respect to the amplitudes of two
eigenwaves linearly polarized along the Ox—
and Oy-axes, respectively. Two eigenwaves
which are linearly polarized along these axes,
with different propagation constants can pro-
pagate in such a structure.

Assume now that the main-diagonal ele-
ments of the matrices of the reflection and

transmission operators are equal 7 =7,
f,, =1,,. The non-diagonal elements shall be
non-zero. Such structures may be formed by
planar arrays with equal periods along the Ox—
and Oy-axes, further with strip elements be-
ing rectilinear sections which are oriented at
an angle of 45° against the directions of array
periodicity, or by a strip ring with a split again
oriented at 45° towards the periodicity direc-
tion. The matrices # and f of such infinitely
thin structures show identical non-diagonal el-

ements: 7, L= fxy. The dispersion equations for
the propagation constant of eigenwave in pe-
riodic systems of such type (e. g. for thin strip
structures or for strip structures in a dielectric
layer) are derived and its solution analysis has
been fulfilled analytically.

The properties of a structure consisting of
S—shaped strip elements were considered. The
S—shaped strips are plane-chiral elements. Elec-
tromagnetic waves with left- and right-hand
circular polarizations are reflected from and
transmitted through the S—shaped element grat-
ing, thereby changing both amplitude and po-
larization in a different way. The grating obvi-
ously possesses resonance properties. The reso-
nance is observed for that frequency, for
which the strip length is about multiply half
the free-space wavelength. A numerical solu-
tion of the dispersion equation of a periodic
system of S—shaped element gratings was found,
1. e. the eigenwave propagation constants ver-
sus the interlayer spacing length—to—wavelength
ratio. The wave reflection by a semi-infinite
system of gratings of S—shaped strip elements
with same parameters as in the above analysis
of the infinite structure is considered.

The results related to study of wave reflec-
tion by layered set of metal screens with dou-
ble periodic system of rectangular holes are
presented in [12].

Conclusion

In the conclusion we would like to comment
that the development of the present theory is
certainly not comprehensive. In particular, the
solution methods for the main nonlinear oper-
ator equation in respect of reflection operator
of semi-infinite set require a further develop-
ment. The problems related to optimization of
the algorithms of the numerical solution for such
equations, as well as those related to the argu-
mentation of existence and uniqueness of the
solution, need to be investigated also.

Much attention was paid to study by using
the developed method the diffraction proper-
ties of periodic structures exciting diffracted
fields with continuous space spectrum. In par-
ticular, first discussed are the solutions of prob-
lems connected with the junction of a regular
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waveguide and a waveguide with periodically
disposed transversal slots [13]. The approach
to analysis of wave scattering by a semi-infi-
nite periodic set of cascade arrangement strips
as well as a semi-infinite planar strip grating
has been considered [14]. However the numer-
ical solution of the last problem and the phys-
ical analysis of scattering are not fulfill yet.
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JAudpaxuust BOIH HA NEPUOTUIECKUX
MHOT'OCJIOIHBIX CTPYKTYypax

JI. H. JInTBunenko, C. JI. IIpocBupHuUH,
K. llyneman

[Ipencrasien 0030p paboT MO Pa3BUTHIO
MOAXO0/1a K TIOCTPOCHHUIO TEOpHH Iuppaxiuu
BOJIH HA MHOT'OCIIOMHBIX TIEPUOIMYECKHX Yac-
TUYHO MTPO3PAYHBIX IKPaHAX, OCHOBY KOTOPO-
IO COCTaBJISIIOT OIpe/elIeHne U MCIIOJIb30Ba-
HUE OIEpPaTOPOB OTPAXKEHUSI COOTBETCTBYIO-
IIMX TTOJTyOECKOHEUHBIX CUCTEM JKPAHOB.

JAmndpaxuis XBUJIb HA NePiOANIHUX
OdaraTomapoBuX CTPYKTypax

JI. ML. JInTBunenko, C. JI. IIpocBipHiH,
K. lllyneman

HanaeTncs ormsig poOiT 3 po3BUTKY MiAXO-
Iy 10 oOyI0oBU Teopil Audpakiii XBUIb HA
OaraTomapoBUX NEPIOTUIHUX YACTKOBO MPO-
30pUX €KpaHax, SKUH IPYHTYEThCS Ha BU3HA-
YEHHI Ta BUKOPHUCTAHHI OIIEPATOPIB BIIOUTTS
BIIMOBITHUX HAMIBHECKIHUEHHUX CHUCTEM €K-
paHiB.
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