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Chaotic Dynamics of Weakly Nonlinear Systems

D.M.Vavriv

Radio Astronomy Institute of the Ukrainian Academy of Sciences
4 Chervonopraporna Street, 310002 Kharkov, Ukraine

The progress made in recent years in the study of chaotic states of weakly nonlincar sysiems is re-
viewed. We concern with the class of chaotic states pertaining to physical systems with any degree of non-
linearity however small. The conditions for, and the mechanisms of, the transition to chaos are discussed
for the weakly nonlinear oscillators and compared with that for the strongly nonlinear ones. Considerable
attention is given to analytical methods of the chaos onset prediction. The dynamics of parametric ampli-
fiers, SQUIDs, and variable stars is considered to illustrate these results.

1. Introduction

It has recently been realized that the chaotic
states are typical not only for strongly nonlinear
systems, but they can arise in weakly nonlinear
dissipative systems as well [1-6]. A wide range of

typical situations was found where the chaotic

states arise under the weakly nonlinear excitation
conditions, including various types of oscillators
with a quasi periodic forting, multimode autono-
mous and non autonomous systems, distributed
systems. The existence of the chaotic states in the
quasilinear limit implies that the condition for the
chzos to arise is not very stringent for many prac-
tica! situations, and that the influence of the cha-
otic instabilities on the dynamics of real systems
can be much more severe as compared with the
recent thinking.

The main results in this direction of research
have been obtained for the systems described by
the equations of motion of single or coupled os-
cillators

- 2 _ . . .
¥ 40 %, =eF(1,X,X,X0,X0, Xy, Xy ),
i=1,2,..,N,

where X, are the generalized coordinates of the
oscillators, @, are their proper frequencies, F, are
the functions describing nonlinearity and dissipa-
tion, € is the parameter of nonlinearity, being
small for the weakly nonlinear systems, N is the
number of interacting modes. It is well known that
this mathematical model naturally arises when
studying the dynamics of a variety of systems with
a weak nonlinearity.

The chaotic states of weakly nonlinear oscilla-
tors manifest themselves in the form of a weak
chaotic modulation of the amplitude and phase of
a periodic or quasiperiodic oscillation having the
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frequencies close to the natural frequencies of the
oscillators. The characteristic time scale of the
modulation is ®/e, which is much greater as com-
pared with 1/®,. Due to that, the direct numerical
study of these states by using the initial system of
cquations leads to a cumbersome computational
procedure. The are also no analytical methods
which can be used to detect the chaotic states in
this case. Moreover, the weakly nonlinear systems
are characterized by specific mechanisms of the
transition to chaos as compared with strongly
nonlinear systems. Due to these reasons, a demand
arose for adequate methods of studying of the
weakly nonlinear systems . A large experience thus
far is accumulated in this direction. and the inves-
tigations of the chaotic dynamics of the weakly
nonlinear systems constitute now a scparate direc-
tion of the research in the ficld of chaos being im-
portant both for the basic study and applications.
In this paper some general approaches to the
study of chaotic phenomena in weakly nonlinear
systems are described along with the resuits of the
investigations of some practical systems. For bet-
ter illustration of the obtained results, at first, we
review in Section 2 the conditions of the formation
of chaotic states in the strongly nonlinear oscilla-
tors, and then we compage this process with that
going on in the quasilinear limit. When studying
the chaotic dynamics of the weakly nonlinear os-
cillators, we introduce the concept of induced sad-
dle states [7] which appears to be useful for the
understanding of the mechanism of the chaos on-
set. Then we describe several analytical ap-
proaches to the chaos onset prediction by using
the quasiperiodically forced Duffing-type oscilla-
tor as an example. In Section 3 characteristic fea-
tures of the dynamics of parametrically forced
oscillators are considered. The mechanisms of the
transition to chaos are discussed along with the
conditions of the arising of multistable states.
These findings are applied to the stability analysis
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of parametric amplifiers. In Section 4 we study
conditions for chaos due to the interaction of low-
and high-frequency oscillations. The SQUIDs sta-
bility is considered to illustrate the significant in-

fluence of this effect on the dynamics of some .

practical systems. Section 5 deals with the chaotic
dynamics of multimode systems. We restrict our-
selves to a few examples of the two mode systems
among a great number of multimode system that
have been studied to date. The dynamics of vari-
able stars is discussed here as a recent example of
the application of the theory of the weakly nonlin-
", ear systems.

2. Conditions for chaos in strongly
and weakly nonlinear systems

In this part of the paper we discuss the main
differences in mechanisms of the transition to
chaos in strongly and weakly nonlinear oscillators.
To illustrate these results, we start from the sim-
plest model, as the quasiperiodically forced
Duffing-type oscillator

vje+oa02x= s[— (60 +6,x2))’c+yx3 +
+ A coso,t+ 4, coscozt]
.1

Here x is a generalized coordinate of the oscil-

lator, 8, >0 and 8, >0 are the coefficients of lin- -

ear and nonlinear damping, v is the nonlinearity
parameter, @, is the proper frequency of the os-

cillator, 4, and 4, are the amplitudes of the
parametric and external forcing with the incom-
‘mensurate frequencies ®, and ®, . The e-factor is
introduced in eq.(2.1) in order to express in the
explicit form the degree of nonlinearity of the os-
cillator.

Note that the oscillator (2.1) can be considered
as the Duffing type oscillator due to the limita-
tions imposed on the coefficients: &, >0 and
8, >0. The case of 8, <0 and 8, >0 corresponds
to the Van der Pol oscillator, and is not considered
here. The interested reader may refer to Refs. [3-
10] for the later case.

A great deal of work has already been done to

study chaotic solutions of this equation and its

special cases. One of such cases is the harmonically
forced Duffing oscillator, whose chaotic dynamics
has been much investigated starting from the ini-
tial works in the field of chaos [11-13]. It was
shown that the chaotic.motion arises because of

the formation of a homoclinic structure in the
phase space of the system due to the transverse
intersections between the stable and unstable
manifolds of hyperbolic periodic orbits. The next
important conclusion was made that a strong
nonlinearity is required for the chaos onset in any
single-degree-of-freedom  dissipative  oscillator
with periodic excitation. The dynamics of the
strongly nonlinear oscillator with quasiperiodic
forcing was studied, for example, in Refs. [14,15].
Notice that beginning with the above-mentioned
paper and up to now, the systems possessing a
homoclinic loop (or loops) to a saddle point(s) in
their Hamiltonian limit have been mainly consid-
ered. With respect to the equation under consid-
eration such saddle points exist in the unper-
turbed oscillator with y>0 when the dissipation
and the amplitudes of the external forcing are
equal zero. We call this type of singular points as
original saddle points. The systems with an original
saddle point are amenable to a theoretical treat-
ment by using a global perturbation technique
developed by Melnikov {11], and that is possibly
the main reason why these systems have received
much consideration (see Refs.[16,17]). This tech-
nique was generalized by Wiggins [18] to quasipe-
riodically forced oscillators. In the later case, the
chaos origin was associated once again with the
existence of the original saddle point, and chaotic
states of the strongly nonlinear oscillators were
considered as for the harmonically forced ones.
However, in the case of quasiperiodically -
forced oscillators, there is also another way of the
chaos arising that is not related with the existence
of homoclinic orbits in the unperturbed oscilla-
tors, and where the strong nonlinearity of the os-
cillators is not required. This possibility was pre-
dicted and studied independently by several
authors in Refs.[1,2,4] and proved experimentally
in Refs.[10,11]. The alternative way of the transi-
tion to,_chaos is associated ‘with the occurrence of
new saddle orbits in the phase space of the systems
under the action of one of the external harmonic
component. We call such orbits as the induced sad-
dle orbits [7]. With the availability of an additional
.incommensurate spectral component of low inten-
sity in the external force, a normally hyperbolic
invariant tori are formed in the phase space in-
stead of saddle orbits. The chaos results from the
transverse intersection between the stable and un-
stable manifolds of the torus when the perturba-
tion is increased. The formation of a homoclinic
structure occurs here at much more lower values
of amplitudes of the perturbation as compared to
the case when this structure is formed on the base
of an original saddle point. Now let us consider in
“ more details these two mechanisms of the chaos
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onset, beginning from the case of the strongly
nonlinear oscillator.

- 2.1, Strongly nonlinear oscillators

Let us rewrite eg.(2.1) as a system of first-order
equations:

X=y
y=-oix+ef (x,y,1), 2.2)
where:

F(x,y,0) = (8, +8,x7)x+yx* +
+ 4 cos((x),t) + A4, cos(mzz)

To obtain analytical conditions of the onset of
chaos through Melnikov's method, we make use of
the fact that at 8(=81=4=47=0 the system under
investigation is described by the following Hamil-
tonian [2]

(23)

2 2x2 € x4
Huyy¥%+9%——%ra Q2.4
X

X

N7
/\%

Fig.1. The phase portrait for the Hamiltonian sys-
tem (2.4), S| and S are saddle points, C is center.

////H\§\\\\J/

Provided that y>0, this system possesses an
original saddle points in the phase space (x,y) with
the coordinates ,

y=0,x=%0,/er | @5)

and a heteroclinic orbit (separatrix loop) shown in
fig. 1. Note that a center-type singular point is
located at y=0, x=0 in the phase space of the sys-
tem (2.4).

The influence of the other terms of the function
(2.3) not included in eq.(2.4) is considered as per-
turbations. It permits to apply the standard Mel-
nikov technique developed for similar systems (see

Refs.[1-3] for details). We eventually come to the '
following condition of the homoclinic structure
formation [7}:

nw,

0]
osech| —=— | + 4,0, cosech 2)2
Ao, cosec (\@%J Lo, cose (\/50)0

20, ( 80)2)
> 0 5.+ -0
3n ey ¢ Sey
(2.6)

This criterion is considered as a necessary con-

* dition for the chaos to arise. It incorporates a va-

riety of particular cases that have been described
up to now in the literature. For example, assum-
ing 81=0, we have from eq.(2.6) the condition of a
homoclinic structure arising obtained in Ref.[2] for
the oscillator with the two-frequency excitation.
Setting in addition 47=0 in eq.(2.6), we come to
the result given in Ref[l] for the harmonically
forced oscillator.

It is evident from eq.(2.6) that the chaotic os-
cillations can arise when the oscillator is excited
only periodically. Under the quasiperiodic excita-
tion, the threshold for chaos to arise is not
changed essentially. Now let us consider the tran-
sition to the case of the quasilinear oscillator that
corresponds to the limit: 0. According to the
expression (2.5), the manifolds cease to intersect
for any values of 4 and A7 if the g-value is suffi-
ciently small. Due to it, this mechanism of the ho-
moclinic structure formation can not lead to the
chaos onset in the weakly nonlinear systems.

However, this result is true only when we deal
with the formation of homoclinic structures asso-
ciated with the original saddle points (2.5). The
situation is changed dramatically if we take into
account that additional saddle states can arise un-
der the action of the external force. In the later
case other homoclinic structures can arise on the
base of homoclinic loops associated with this
states due to the frequencies' interaction of the
external forcing. It leads to the chaotic states for-
mation in the weakly nonlinear limit. Thus, to
predict analytically the chaos onset in the weakly
nonlinear systems, one should at first detect the
induced saddle states. In the case under considera-
tion such states are saddle orbits arising under the
action of one or each of the harmonic components
of the external forcing due to resonances occurring
in the system. The direct application of the initial
equations (2.1) or (2.2) do not allow detect ana-
lytically these orbits as well as to predict the chaos
arising. One way around this problem is applica-
tion of the averaging method [21], and it is demon-
strated in the next section.
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2.2. Induced saddle states

Let us apply the method of averaging to the
system (2.2), assuming that the right-hand side of

eq.(2.2) is small, that is, alf(x,y,t)‘ << 1 We are
interesting in the case of the resonant’excitation of
the oscillator, when

!col - (Dol = O(ew,), and |m2-(00| =0(cwg) (2.7)
Then, by using the transformation

x = Ucos(o ) + Vsin(w,f)
y = -Uo, sin(nf) + Vo, cos(w,r) (2.8)

and applying the standard averaging procedure.
we come to the following system of averaging
equations for the slowly varying time functions {(
1), V(1):

dUu
e —[oco +0L|(U2 + Vz)]U—
~[a+p(Ur+V?) Y- pysinar
(2.9)
dv
e —[ao +ocl(U2 + VZ)]V+

+[A + [S(Uz + VZ)]U— P+ p,cosQt

where dimensionless parameters are introduced: 1
=em !, 0)=8p/(205 1) o0 1=01/(8wy),
p, =4 ,r(?.m,z). py = A (2(:)f ). A=(w-0g)/(ew
1) Q=(w -0y )(eo ), and = 3{ (80),2) >0

For the case of the pure periodic excitation
(p7=0) this system is reduced to a second order
autonomous system. On this basis we conclude
again that the weakhy nonlincar oscillators with
harmonic excitation .an not have any chaotic
states. Such states can .ise here only due to the
interaction of the external frequencies provided
that one of the frequencies induces a saddle orbit
in the phase space of the system (2.9).

The transition from the original equation to
the averaged ones allows to reduce the investiga-
tion of bifurcations of two-dimensional tori in the
phase space of the original system (2.1) to the
analysis of bifurcations of periodical orbits in the
phase space of the system (2.9). It is important .to
note that the latter system does not contain € as
independent parameter. The € changes lead only to
the variation of the time scale of the excited oscil-

lations, provided that values of the parameters A

and Q are kept constant. From this follows that, if
the system (2.9) demenstrates chaotic behavior,
than such behavior can arise for any degree of ¢
however small, i.e., in the quasilinear limit.

The averaged equations are convenient tool for
the detection of the induced saddle orbits of the
initial equation (2.1). In terms of the averaged
equations these orbits are seen as saddle singular
points. They can be induced by any of the external
frequency components, or due to their combined
action. We shall consider the case when the ampli-
tude of one of the component. say p», is relatively
small and the induced saddle states can arise
mainly due to the second component. Assuming
that py=0 and the-dissipation is absent, we have
instead of (2 9) the following Hamiltonian system:

dU 12 A
E:{MB(L[ +17)v

: dK::.\+B(L'3+V3)]U- P, (2.10)
dtv ¢

with Humiltonian cnergy ginven by
_ B(,n 2y, A1y 2 .
H((/,x/) = Z(U +V3) - 2«[v +U*]-pU

.10

Unlike the previous case (see eq.(2.4)), this
Hamiltonian contains the amplitude of the exter-
nal force py as a paramcter As long as p1=0, there
is only a center-type singular point in the origin of
the coordinate. thus. we come to the result fol-
lowing from the Hamiltonian (2 4) tor p1#0 and
~A/B >0, the center is sphit into three singular
points: two centers and a saddie. This situation is
illustrated by the phase portrait of the system
(2.11) in fig.2. Note that the phase portrait is
characterized by the cxistence ot a double homo-
clinic orbit (separatrix) going out and in the saddle
point with the coordinates U={. }'=0. Here U is
the minimum of the real roots of the following
cubic equation,
U‘3+—A-U‘—L=O,

) 4

where f = 4p,/B.

The separatrix equation was found in ref. [22]
and can be written in the form:

U(v) = U, + S(x)[2(8 - UZ) + S(x)|/f.
(2.)3)

(2.12)
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where  S(t') = (q2 - bz)/(2(qcosh v - b));
v =Bult—1o); q=12J2fT: b=-4(3-U2):
uk =-2fU; —b*/4,8=-A[B, 7 is an initial
moment of the "slow" time. The signs "+" and "-"

correspond to the small and large loops of the
separatrix, accordingly.

Fig. 2. Phase portrait of the system (2.1 1)

The regions in the parameter space where the
saddle states exist are reduced under the influence
of dissipation. Let us consider this effect by intro-
ducing into the consideration the corresponding
dissipative terms into the system (2.10). Then in-
stead of it, we have:

au '
A_ 1o v (2 +VP)U-[a+pll? +V)V,
= o (U + V) |U-[a+B(L? + V)]
(2.14)

av
dv
+[A+ B(U” + VZ)]U—pl

By means of the stability analysis it can be
shown that this system has a saddle point in its

phase space when the following conditions are
hold:

= —[oc0 +oil(U2 + VZ)]V+

8 3 2 2
g pl= M (2.15)
_ 3J§(B——J§a,)
o, +/3B
A<A =~ —1 2.16) -
cr O(’O [3—\/5001 ( )
(2.17)

B> 30,

When the value of the parameter of nonlinear
dissipation aj is negligibly small, these conditions
read

3
8o,

2> pl= 2.18
P > Dy 3\/§B ( a)
A< A, =—30, (2.18b)

The above given conditions determine the re-
gions in the parameter space where the induced
saddle states arise and due to i, they can be con-
sidered as necessary conditions for the chaos onset
in the weakly nonlinear systems.

We complete these conditions in the following
section by using several analytical approaches to
the chaos onset study.

2.3. Analytical methods of the chaos onset pre-
diction

2.3.1. Melnikov's criterion. -

In practice, Melnikov's method [11] is widely
used as the constructive analytic approach to de-
termining the approximate conditions for strange
attractors to occur. It is usually applied to dy-
namical systems of the following form

x =f(x)+eg(x,t), X€ R"

in which a closed homoclinic loop exists when =0
(¢ is a small parameter). Experience in using Mel-
nikov's method shows that systems which are
Hamiltonian when €=0 are mainly amenable to
investigation, although such a constraint is not .
imposed in the method itself, The main difficulties
in the case when the unperturbed system is dissipa-
tive arise in determining the position of the homo-
clinic loop and the determining the solution on it.
Let us apply Melnikov's method to the aver-
aged equations (2.9) to find necessary conditions
for the chaos onset with respect to the parameters
of the second external spectral component. We
make use of the fact that when dissipation and the
amplitude of the second external periodic compo-
nent are equal zero this system becomes Hamilto-
nian one with the motion equations (2.10) and
Hamiltonian energy given by (2.11). The system
(2.10) is considered as the unperturbed one. Con-
sidering in the system (2.9) the terms with dissipa-
tion and the amplitude of this component are
small perturbation, we write down the Melnikov

function ‘AM(TO) which determines the distance

between the stable and unstable manifolds of the -
saddle point in the Poincare map of the averaged
equations:
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o

A1) = j[iq(u,,v;,x)QO(U,J;)—

- o

_o (U, V1) R(U, ]
where

R, =-[A+pU} + V.
0, =[Aa+plu; + VU, - pr
R = —[(X() +a, (U] + V? )]Ul — p, sin(Q1).

Q = —[a() + U‘l(U/z + Vlz)]vl + D COS(QT)‘
The functions Ugt) and V(1) are given by the
relations (2.11)-(2.13). After performing the inte-
gration in eq.(2.19). onc can find from the condi-
tion of the manifolds intersections A\,(t(,) =0

the following necessary condition of the chaos
onset [22. 23]

A{2.19)

17,

Py 4,,,,/,‘Smh(ftcim, .
Uy \27tu202 exp(—c -signg - arccos(— b q))

1+b
x 1 3p — 80 arctani —+
2u

+ 75}14(86(:(13 ~23)- S(f)arctanq‘{' Al
% 4 2

(2.20)

where ¢ = (2Q)/(Byt). Ihe equality sign corre-
sponds to p = p,,. where p,, is the lowest thresh-
old of the chaotic motion arising with respect 1o
the amplitude of the external force. Tt was found
in Refs. [22.23] that this condition taken simulta-

neously with the conditions (15)-(17) o1 e uriang
of induced saddle states gives possibilit. o detine

quite accurately the regions of system control pa-
rameters where the chaotic state arise.

When applying Melikov's method, it should be
remembered that this method gives in general case
neither sufficient nor necessary conditions of the
chaos onset. That is due to the following reasons.
Melnikov's approach do not allow to determine
whether or not the homoclinic structure associated
with some saddle orbit is attractive, and hence,
this approach can non be considered as sufficient.
Besides. there may exist other saddle orbits in the
phase space which may bring into existence other
homoclinic structures. Because of it this method
can not always give necessary condition for the
chaos to arise. The application of Melnikov's
technique should be always accompanied by addi-

tional detailed numerical experiments to check the .
accuracy of the analytical results. In this connec-
tion it is rather important to develop the alterna-
tive analytic approaches to determining the condi-
tions for strange attractors to occur. Some of such
promising approaches are discussed in the next
{wo sections.

2.3.2. Current Lyapunov exponents technique

The current Lyapunov exponents technique is
based on the investigation of the local properties
of the motion on an attractor. The possibility of
the constructive use of this technique to determine
analytical conditions for the chaos onset was
pointed out in the papers [24,25].

The current Lyapunov exponents are intro-
duced in the following manner [24, 25]. Let an ar-
bitrary dynamical system be specitied by the ordi-
nary difterential equations
= F(x.1)., xeR". 2.21)

As in the usual procedure for determining
Lyapunov exponents [50}, let us write in the case
of (2.21) a linearized system of equations which
determines the evolution of an arbitrary vector y
in the tangent space

b=l 0, 2.22)

where J(x. 1) = 8F(x.1) ¢y s the matrix of the
lincavized system.

[et us choose an arbitrary sct of orthogonal
vectors {yif. k=1 20 .onm the tangent space.
Then, the spectrum of the current Lyapunov ex-
ponents, which is denoted by (0, k=1, 2, .0, 18
introduced as the logarithmic derivative of the -
norms of these vectors

d
)=+ Iny]. (2.23)

The functions i, (7) are exponents of the local
extension or contraction of the phase flow in the
neighborhood of the trajectory x({/) in the direc-
tion of vectors yi(0).

" The use of current Lyapunov exponents en-
ables one to characterize the properties of regular
and chaotic attractors using the probability distri-
butions of these quantities and their moments. A
knowledge of },Lk(t) also enables the fractal di-

mension of attractors to be calculated immediately
[49].
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The relationship between pk(t) and the
Lyapunov characteristic exponents Ag, which are
introduced in following manner {51]

i L (T
WEIT O

is of fundamental importance in the subsequent
analysis.

It can be easily shown that, assuming the mo-
tion in an attractor to be ergodic, Ay are found

from plk(t) by averaging over time

1 T
iy = lim - [ (n)ar
7'9U'JTO

(2.24)

that is, A are the first initial moments of the
probability distributions for the quantities pk(t).
The relationship should be noted between cur-

rent Lyapunov exponents and the effective (local)
Lyapunov exponents Ag(x(1), 7) which, unlike

pk(l‘), characterize the properties of extension or
contraction of the phase flow after a certain finite
time interval 7. The relationship between uk(l‘)
and Ag(x(1). T) is given by the following expres-
sion

w6 = tim 2 (x(1),T)
T->0

In the general case non autonomous dynamical
systems with one and a half degrees of freedom
can be represented in the form

dxl/‘dlzi‘l(xl,xz,t), dxz/dtzfz(xl,xz,t).
(2.25)

Let us specify the expressions for the current
Lyapunov exponents in the case of these systems.
The equations, corresponding to system (2.25), for
the amplitude p and the phase ® of a vector in the
tangent space have the form

dp/dt= -g-[f” 16y, +(F, ~ ) cos(2) +

(£, +F,,)sin()] ,
(2.26a)

1
dd/dt = E[fz, _f, +(F, + 1)

cos(2d) +(f,, - fn)sin(ZCD)] .
(2.26)

Here f, :af}/ax,l\ :,\‘I'(I). where xj*(t) ‘

is the jth coordinate of the trajectory of system
(2.25). Then, when account is taken of the fact

\ = p and that the angle between the vec-

that “‘YI
tors yy and y) in the tangent spuce is cqual to /2
by definition, from (2.23) and (2.26) we find the
following expressions for the current L.yapunov
exponents

Hio = [fu +1, i(fn - f22)><

(2.27)
« cos(20) (1, + £, )sin(2)] /2

In particular, it follows directly from these re-
Jationships that the usc of cwrent Lvapunov ex-
ponents enables one to simplify appreciably the
procedure for calcufating the spectrum of the
Lyapunov exponents Aj 2 comypared with the gen- -
erally accepted technique [50] Phis tollows from
the fact that, firstly, the quantitics pty,. whose av-
erages over time are identical 1o Ay ). are inde-
pendent of the amplitude p and it is sufficient to
integrate just one of the equations (2.26) for the
phase @ by determining the cocllicients fj; from
the solution of the system of cquations (2.25/). Sec-
ondly, as follows from (2.27). no additional cal-
culations (orthogonalization of vectors or addi-
tional integration) are required in order to find the
second Lyapunov exponent.

The possibility of using current Lyapunoyv ex-
ponents for the analytic determination of the nee-
essary conditions for the oscillations to becomy
chaotic is attributable to the following. It follows
from relationship (2.24) that the occurrence of
chaotic oscillations (A>0) is only possible when
the maximum current Lyapunov exponent pi(f) is .
positive during finite intervals of time. Then, using
expression (2.27) for py it turn out to be possible
from the condition >0 to determine the relation-
ships between the controlling parameters of the
problem. When these relationships are satisfied.
chaotic oscillations can occur. Hence, the require-
ment of the existence of local instability of the
trajectories of the phase flow is used as the neces-
sary conditions for the oscillations 10 be chaotic.
Of course, this conditions is not sufficient, since
stretching of the phase flow may be compensated
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by its contraction during traversal by the trajecto-
ries of other domains of phase space. It is found,
however, that in the space of the controlling pa-
rameters, the limits of the existence of a local in-
stability are often located fairly close to the
boundaries of the domain of occurrence of global
chaos (A1>0) and, hence, the use of this criterion
enables one to predict fairly well the values of the
parameters for which one observes the oscillations
becoming chaotic.

Let us apply it to the system under considera-
tion. We first write down the equation for the am-
plitude p and the phase @ of a vector in the tan-

gent space of the system 2.9

d
P (p-a,-20,a +
du

+a*{Bsin[2(P -y ]-o,cos[2(P~y)1})

‘;_f: +2Pa’ +a’ {Bcos[ AP -y ]+
+oc 2 @-y)I})

(2.28)

The expression for the largest Lyapunov expo-
nent can be written in the following form

(2.29)

where tan(20)=—0(, /B .. From this expression we

immediately obtain that positive values of pj(t)
can only be attained when

>3 (2.30)
Hence, a necessary condition for the chaos on-
set is that the parameter of nonlinearity B should
exceed a certain threshold determined by the value
of the nonlinear dissipation. Note that this condi-
tion coincides with the condition (2.17) of the sad-
dle state arising under the action of a harmonic
perturbation. According to the expressions (2.28)
(2.30), this condition does not depend upon the
form and parameters of the external action. The
inequality which is the inverse of (2.30) is the suf-
ficient condition for the stability of the oscillator.
A second condition, which is necessary for the
onset of chaos, is found from eq. (2.29) with re-
spect to the amplitude a(7). The function uj(t)
can take positive values in finite time intervals
only in the case when

‘max{alt)} >a, =

12
Ay

(af + [ESZ)’V2 -2a,

@30

that is, the onset of chaotic oscillations is a
threshold effect with respect to the amplitude
forced oscillations. The condition (2.31) enables
one to obtain an estimatc for the smallest value of
the amplitude of the spectral components of an
external action, starting from which the develop-
ment of stochastic instability is possible. In order
to do this. we make use of the fact that the greatest
amplitude of the excited oscillation of the har-
monically forced oscillator does not exceed a value

of p,,, and s identical to it when aj. Let us as-

sume that the amplitude of the second spectral
component of the external action is relatively
small which means that we may also adopt the
above-mentioned value p, as an estimate of

maxia 1) i this case. Summing up what has
been sard, it is possible 1o write the following ap-

proximate condition for the onset of chaos
12

p-p.=d [ Lo ——

T - (2.32)
{,(u{ + [3) T =20

When the nonhinear Jissipation is small, then
mstead of {2.32) we have

12
PP = “n[ao / B] (2.33)

This condition is identical to relationship
(2.18a) apart from a factor which is close to unity.
Thus. the condition for the chaos onset (2.33) is
equivalent to the onset of saddle states during a
harmonic action on the oscillator.

When the inequalities (2.30), (2.31) are simul-
tancously satisfied, then to obtain positive values
of wy(t). it is that a certain "phase" condition
should be satisfied, which according to eq. (2.29),

is

sin[2(® -y + 6))] >0,

which corresponds to the orientation of the vector
in the tangent space in directions where its
stretching occurs. The results of the paper [25] in-
dicate that this condition takes place due to a
parametric instability of the solution of the line-
arized equations (2.28), and it is typical mecha-
nism of the chaos onset in passive single-degree-of-
freedom system with external excitation.
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2.3.3 Mapping.

Under some reasonable assumptions the dis-
traction of quasiperiodic oscillations in weakly
nonlinear oscillator can be reduced to the study of
a discrete map [26,27]. To obtain the map for the
equation (2.1), let us set the number of the spectral
component of the external forcing equal to an in-
finity instead of the two ones in the following way

n=w
A coso |l + A, COS®, T — > A, cos(o,0).

n=—o

(2.34)

where @, = ®, + 10, T =0, — O This new
expression contains two incommensurable fre-
quencies and, due to it, holds main properties of
the previous one. When employ such substitution,
we also use the well-known fact that the most sig-
nificant influence on the behavior of the weakly
nonlinear oscillator is exerted by the harmonic
components of the external force with frequencies
close to the natural frequency of the oscillator.
One can expect that when @ > €0y, then the sub-
stitution will be almost equivalent. Assuming that
all the amplitudes A, are equal to same value A,
and using the following representation for the Di-
rac 8-function,

D=

k=w
3 cos(nQr) =T > 8(v—kT).

P k=—t

where 7'=27/Q, the system (2.10) is replaced by
the following onef[26]

%g:”[% +o (U +V2)]U—[A+B(U2 + V)|V
(g—: = ot v, (U + vy +
+[A LB+ Vz)]U+ AQTk:fS(r —kT)

k=—n

(235
We come to the system of equations with an in-
finite sequence of the d-pulses. Now let us use the
fact that during the time intervals betwcen the
pulses, eqs (2.35) become autonomous. This allows
one to write the solution of this system by con-
necting the solutions of the corresponding
autonomous equations between neighboring -
pulses. The result of that is the discrete map which

for a, = O takes the form

7 = zexp|-a,T + (i - AT + EnpTIZ})] + AT -

Here 7= V(KT +0)+iUKT + 0) and
Z=V(kT+T+0)+iU(kT+T+O) are the
complex variables representing the envelope of the

oscillation at the time moments corresponding to
two consequent, A-th and k+1-th, &-pulses and

W= [1 - exp(2a0T)]/(2aoT) .

Fixed and periodic points of the map (2.36)
correspond to periodic
orbits in the phase space of the averaged equations
(2.10) and, therefore, to two-dimensional tori of
the initial equation. Thus, the problem of studying
of a quasiperiodic motion of the weakly nonlinear
oscillator is essentially simplified.

Each fixed point Z of the map on the complex

phase plane z satisfies the equation Z(Z)=Z
which can be transformed to the following one ‘

2esplor, T cosh{ -0 7) —cosl = AT+ W[ = AT

(2.37)

where | = lle is the intensity of the forced oscil-
lations. Analyzing the stability of the fixed points,
we obtain the following cquation for the bounda-
ries of the instability regions

cos(~ AT+up 77) +

+ 13 Hsin(— AT+ pP '17) = cosh((x() T)
(2.38)

Here sign () corresponds to the tangent (or
saddle-node) bifurcation when one of the charac-
teristic multipliers of the fixed point becomes -
equal to 1. This curve surrounds the regions of the
existence of an induced saddle fixed point. Sign (-)
in eq. (2.38) corresponds to the period-doubling
bifurcation occurring when one of the characteris-
tic multipliers becomes cqual 1o -1. When the re-
sponse curve of the oscillator (2.37) crosses over
the latter region, the corresponding fixed point of
the map undergoes the period-doubling bifurca-
tion.

The boundaries of the chaos onset in a pa-
rameter plane are usually not far from that of pe-
riod doubling. Tt allows to estimate the condition
for chaos by using eq. (2.38). Let us suppose that

exp(—o,,T) <<1, then from egs. (2.37).2.38)

one can obtain the following condition for the
chaos onset
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APT? e o™ >>1 (2.39)
The left-hand side of this condition achieves its

maximal value when

OLOT =2 (2.40)
It means that the most favorable conditions for

the arising of the chaotic motion appear in the

case when the relaxation time of the system has the
same order as the period T If the condition (2.40)

is hold, then from eq. (2.39) we find the expression .

for the threshold value of the amplitude of the
external force

Ay, = 1.35007p 7"

which coincides (with accuracy up to a numerical
multiplier) with the same value found above (see

eq. (2.33)).

3. Chaotic states of nonlinear
oscillators with parametric excitation

The phenomena of parametric generation, am-
plification of oscillations and frequency conver-
sion are distinguishing features of the dynamics of
a variety of physical systems. For the non
autonomous single-degree-of-freedom  systems
which are investigated in this paper, these phe-
nomena can be adequately described within the
framework of a universal mathematical model.
like the motion equation of the following nonlin-
ear oscillator:

X+ +0302[1 - aMcos(mpt)]x;

= g[8, +8,x°)x+7x’ + Acos{w,1]],
(3.1)

subjected to combined parametric and external
forcing. Here x is a generalized coordinate of the

oscillator, ¢ is small parameter,8, > 0 and &, > 0

are the coefficients of linear and nonlinear damp-
ing, v is the nonlinearity parameter, o) is the natu-
ral frequency of the oscillator, M and A the ampli-
tudes of parametric and external forcing with the
incommensurate frequencies ®, and wg. For ex-
ample, in the case of optical and microwave
parametric amplifiers, M and A are respectively
proportional to the amplitude of a pumping os-
cillation and a signal wave to be amplified.

The unperturbed oscillator (3.1) possesses the
same properties as that studied in the previous
part of the paper (see (2.1)) with the same original
saddle points and corresponding heteroclinic orbit

\

(see fig.1). The condition of the homoclinic struc-
ture formation on the base of this orbit can be
found by using the Melnikov method. The final
result reads [7]

o
Ao, cosech( : ] +
‘ V2w,

2 .2
Moo,

\2ey

3 2
cosech[ . J 2‘ 20 (60 +5'm°)
: \/5030 ’3“#? Sey
G.2)

One can see from this equation that the chaotic
oscillations can arise when there is only parametric
excitation (4=0) or only external one (M=0). Un-
der the combined excitation (420 and M=0), the
threshold for chaos to arise is not changed essen-
tially. It is easy to check that the formation of a
homoclinic structure can take place only in the
oscillator with a strong nonlinearity. In the weakly
nonlinear limit (e—»0) this criterion does not pre-
dict the chaos onset. However, the chaotic states
are also typical for the parametrically forced os-
cillator (3.1) under weakly nonlinear excitation '
conditions. The mechanism of the chaos arising is
determined by induced saddle states, and by the
interaction of the parametric and external reso-
nances. In this part of the paper we describe gen-
eral conditions of the transition to chaos and
study the properties of chaotic and regular states
of the system (3.1). To carry out this plan we di-
vide the problem into two parts. The first one is
devoted to the investigation of the induced saddle
states in the oscillator. We consider the case when
the amplitude of the external forcing p is relatively
small and the induced saddle states can arise
mainly due to the parametric excitation. Thus, this
problem is reduced to the study of the nonlinear
parametric resonance (see Section 3.1). This case is
of prime interest for many practical situations, for
example, for microwave and optical parametric
amplifiers where amplitude of the pumping wave (
scm) is much more greater than that of signal wave -
(«p). The opposite case was considered by Ya-
gasaki [28]. The second part of the problem deals
with the formation of homoclinic structures on the
base of the induced saddle states, and with phe-
nomena pertaining to the chaotic states arising
(see Section 3.2).

3.1 Nonlinear parametric resonance

Hereinafter we shall study the condition of the
chaotic states arising in the weakly nonlinear os-
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cillators, interesting in the case of the main
parametric resonance when

o - ®,|= O(ew,), and log-0gl =g (3-3)
where ® = © , /2. Then, by using the transforma-

tion
x = U coswt +V sinw?
y =-Uw sinot + Vo coso!, (3.4)

and neglecting by the terms O(g’), we come to

the following system of averaging equations for
the slowly varying time functions U(x), V(1)

%g— =—[oc0 +a, (U +V2)]U—

—[A ~m+ (U + Vz)]«V— psinQs
av
s —[OLO +o, (U + Vz)]V+

+[A +m+B(U” + V2)1U+ pcosQr
(3.5)
where dimensionless parameters are intro-
duced: ‘t-‘-ag)pt/Z, a0=60/0)p, a1=81/(4wp), m=M/4,
p =24/, B=3/(203)>0, A=y 200/
p) and Q=(0)p-2ms)/(amp).
Let us consider the conditions of the induced
saddle states arising under the influence of the

" parametric modulation. Assuming that the dissi-

pation and the external forcing are absent, we
have instead of (3.5) the following Hamiltonian
system:
au
—d—’ = —[A—m+[5(U2 +V2)]V

1

D _[a+m+p(U? NalY (3.6)
dat
with Hamiltonian energy given by
H(UV)= —%—(,UZ 1) -
' 3.7

- La-mp+aemu]

As long as m=0, there is only a center-type singu-
lar point in the origin of the coordinate. For
m# 0 one can find from (3.6) that the center is
split into three or five singular points depending
upon the relation between /1 and A. The two pos-
sible situations are illustrated by the phase por-
traits of the system (3.6) in fig.3. Note that these
phase portraits constitute Poincare maps of the
initial system for the case under consideration:
8, =8, = A=0, and small values of the ampli-
tude of the forced oscillations. When jAl<m, there
are three singular points: a saddle point in the ori-
gin of the coordinates (U=0, ¥'=0) and two centers

with coordinates (U,1)=(0, + J(m—A)/B) which
Vv

Fig,3. Phase partraits of the Hamiltonian system (3.6) for: (a ) |Al<m and (b) |5]>m.
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are denoted in fig.3a as Cy, Cy. In the second case,
when |A|>m, there are three centers Cy,Cy, C3and
two saddle points with coordinates

U=m{(-m-A)/B,V=0 in the phase space as
shown in fig.3b. Because of these saddle points,
the system pOSSesses induced homoclinic or het-
eroclinic orbits (separatrix) indicated in fig. 3.
Owing to the induced centers, the system acquires
a multistability property when Oty # 0 (see below).

Let us consider in more detail the structure of
the separatrix loops for the two cases. For |Aj<m,
there is a double symmetric saddle loop. The sotu-
tion of the motion equation U=Ugr) and VEV (D)
on this separatrix was found in Ref.[29] and can
be written in the form:

abb,(1- cosha(c =)

((b. - bz)cos,h{al(T ""o)]-— b bz)g :

(3.%)

Ue) =

Vi) - 4bb?(1+coshla(x -4)])

((bl —bz)cosh{a,(r —‘CO)] -b - bz)2 |
where b, , =(im—A)/B, a,=2p—=bb. . o

an initial moment of the "slow" time

In the second case shown in fig 3b. because of

the two saddle peints, double heteroclinic loops
arise: the small and large ones. After intensive cal-
culations one can find the following equation of

these loops:
U e)=- N +b2)sinh[az(r —r(,)l
=T+ b)oosh[a,fr —to)| -a. (b~ )

3.9)
N 2(bl -b, )bzq -

V)= G +b2)cosh[az(T—To)]“qt(b' ~b)

where o =By 2B -b,). 4 =+&+b)/(B-b)

g,and g_ correspond to the large and small loops
of the separatrix, accordingly.

The regions-in the parameter spacc where the
saddle states exist are reduced under the influence
of dissipation. However, for any value of the lin-
ear (og<o) and nonlinear (o}<®) dissipation

these regions have. finite dimensions. Let us show:

it by introducing into the consideration the corre-
sponding dissipative terms into the system (3.6),
thus we have

dU

e —[oco +o, (U + Vz)]-‘U—
—[A— m+B(U” + Vz)]:V,

(3.10)
%?V = —[ao +a, (U + Vz)]Vl

+[A +m+p(U + Vz)}U
This svstem yields the following equation for
the equilibrium states.

A= -pBHT \ m —(a‘, ;’(;,Wz)z ,

3.11)

where W =07+ }2 and I is the amplitude of
oscllation Note that B=0 is also an equilibrium .
tate The amplitudes of stationary states versus A
(the 1espanse curve of the oscillator) are shown in
fig.4. The saddle states arc marked by dashed
.urve. It 1 easy to check that the saddle states with
1'=0 exist in the folowing parameter region:

RIS (3.12)

(3.13)

1

VoM g
whereas such states with W20 exist when

3o —-m w + B’
po o By ool (19

o
1
provided that the amplitude of modulation m sat-
isfy simultancously the condition (3.12) and the
following one

B, —my o] + B <o —ag. G19)
\ o W
A .. 30
\\\ 20
“‘\\\ 10 -
5 A 30 a5 ;A;E A, 15 A

Fig4. Response curve of the system (15) Sfor
ag=1, ay=0.1, p=1I, m=5. Solid curves correspond
10 stable states and dashed ones - saddle states. The
boundaries of the regions with different types of the
system behavior are

A, Z(Bao"m\fa% + B )/al s

— 2 2
A,,=mym —0;.
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The above given conditions (3.12)-(3.15) de-
termine the regions in the parameter space where
Melnikov's method can be applied to the system
(3.5). These conditions should be considered as
additional ones to Melnikov's criterion of the
chaos arising that will be obtained in the next sec-
tions. They determine the threshold of the chaos
arising with respect to the amplitude of the
parametric force and the resonant condition for
the chaos to exist.

3.2. Chaotic states of the oscillator with
induced heteroclinic orbits

In this section we illustrate the mechanism of
the transition to chaos for the oscillator with the
heteroclinic orbits associated with the pair of sad-
dle points as shown in fig.3b. The second case was
considered in Ref. [29]. We start from the applica-
tion of Melnikov's method to the averaged equa-
tions (3.5) to find necessary conditions for the
chaos onset. Performing the corresponding calcu-
lation in the way similar to that described in the
Section 2.3, we come to the following condition of
the manifolds' intersections:

s 2 m/P sinh(nc2) y
m

nQexp| to, arccos| M |- A

m

X {0 rziAarccos(i ——] -
A

L WY (2mA - Az)arccos(qi \[ - ﬂ]
B A
(3.16)

Here 7, = 1/—m(A+m) ,0, = Q/(2r2).

A typical example of the bifurcation diagram
in the parameter plane (p.€2) obtained numerically
along with Melnikov's criterion (curve 1) are given
in fig.5. The best way to explain all possible be-
havior of the system is to start from the Hamilto-
nian case, i.¢., fig.3b, and then put aq#0. We ob-
tain three stable foci instead of three centers, and
all trajectories will eventually come to oné of
them, depending on initial conditions. The attrac-
tors which arise in the vicinity of

0 5 10 15

Q

Fig.5. Bifurcation diagram of the system (10) for
and ag=1, o=0, B=1, A=-6, m=5. Curves 1-3 cor-
respond to the attractors formed on the base of the
small heteroctinic loop: (1) boundary of homoclinic
structure existence according 1o Melnikov's crite-
rion, (2) - symmelry breaking, (3) - first period
doubling bifurcation. Curves 4-6 correspond to the
attractors due 1o the saddle orbit induced by the
external force: (4) - tangent bifurcation, (5) and
(6) - first and second period doubling bifurcations, .
(7) - attractors crises. Curves 8, 9 correspond to the
attractors formed on the base of the large hetero-
clinic loop, and represeni boundaries of homoclinic
structure existence found numerically and with
Melnikov's criterion correspondingly. Curve ( 10)
denotes the boundary of the strange aitractors
arising due (o the intersection of stable manifold of
the small loop and unstable manifold of the large
loop.

the centers C},C.C3 Wwe shall mark as
ALALAS accordingly. That is, the system is
three-stable initially. Provided that the amplitude
p is small enough, the foci turn 1o stable periodic
orbits, and the three of them will exist simultane-
ously in the phase space. The attractor A under-
goes the symmetry breaking crises on curve 2, and
to the left of ‘this curve four attractors

(Al,Az,AE,A;) coexist in the phase space. At .

curve 3 both attractors A;,A; undergo the first
period doubling bifurcation, and then a pair of
strange attractors appears through the period
doubling cascade. In fig. 6a the situation is given,
when these two attractors merge and a unified
strange attractor arises. It turns out that the
strange attractors here are very sensitive to the
variation of parameters and exist only in very nar-
row band adjacent to curve 3. Obviously, their
basins of attraction are small and the majority of
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initial conditions lead to two stable attractors co-
existing with them.

In this region of the parameter plane the
strange attractors arise duc 1o the manifolds' inter-
sections of the small loop. and other roads to

4 -
T A
2 .
vV .,
2
B C
-1,5 -0,5 0.5 15
u
a)

Fig.6. All coexisting atlractors of the system (10 al”

1=0. B=1, A=-6, m=5.

Clearly our way of the Melnikov's technique
application does not allow to predict the appear-
ance of these strange attractors. However, it can
be done by considering the parametric force as a
perturbation, rather then the external force.(see,
i.e.. Ref. [28]).

The intersections of the manifolds of the large
loop associated with the parametrically induced
saddles Sy p (see fig. 2b) took place at relatively
large values of the external amplitude indicated by
curve 8 in fig. 5. T'his curve practically coincides

with that found from Melnikov's criterion (curve -

9).-One can conclude that this criterion works here
well again. The chaotic oscillations exist in a nar-
row layer adjacent to these lines, and they arise
through the period doubling cascade. We have not
detected here any significant influence of the sad-
dle orbits arising after each doubling bifurcation
on. the system dynamics. Instead, another layer-
like chaotic region has been found next to curve 10
with a peculiar kind of the homoclinic structure
formation. In this region the chaos onset is due to
the intersection of the manifolds of different loops

- large and small ones, not some of them. This -

situation is illustrated in fig.7, where the crossings
of the unstable manifold of the large loop with the

chaos were not observed. In this case Melnikov's
criterion works well and good predictions can be
developed on its basis.

-1
-3
-5
4 2 0 2 4
u
b)’

g Q=395 p=19 (b) Q=92 p=28 for ag=l, o

stable manifold of the small loop take place. To
our knowledge, such mechanism of the transition
to chaos has never been observed. It is interesting
to find other system exhibiting this road to case, as
well as to develop an analytical tool to detect the '
presence of such homoclinic structure.

Fig.7. Intersections of stable (dashed curve) mani-
fold of the small loop and unstable (solid curve) '
manifold of the large loop in the Poincare section
for p=3.2,Q=12, ag=1, a;=0, p=1, A=-6, m=5.
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3.3. Chaos and stability of practical devices

In this section, we have considered the condi-
tions of the chaotic states arising in the weakly
nonlinear Duffing-type oscillators subjected to the
combined parametric and external forcing. It was
shown that homoclinic or heteroclinic orbits in-
duced by one of the external harmonic component
play crucial role in the oscillator dynamics. Be-
cause of these orbits the formation of a homoclinic
structure tooks place here in the weakly nonlinear
limit under the action of the another incommensu-
rate frequency, and the chaos onset is due to the
distraction of two-dimensional torus. The gener-
ality of these results does not depend on the per-
turbations, being considered, and they most
probably hold for a variety of single-degree-of-
freedom systems with quasiperiodic forcing.

We have also detailed some of phenomena
which accompany the chaos onset. Multistability
of the oscillator conditioned by the formation of
several attracting sets in the phase space is one of
such phenomenon. This study along with the fore-
going ones [22, 30] suggests that the multistability
is a typical feature of the quasiperiodically forced
weakly nonlinear oscillators. It has been shown in
this paper that the splitting of a center-type sin-
gular point into several stable and unstable orbits
under the action of the periodic force is primarily
responsible for the multistability property of the
oscillator, at least for relatively small values of the
force amplitude.

This study along with the previous results indi-
cates that there are three typical roads of strange
attractors arising depending upon the mechanism
of the homoclinic structure formation. Let us cite
them as they are seen in term of the averaged
equations. The first road is through the intersec-
tion of the stable and unstable manifolds of some
parametrically or externally induced homoclinic or
heteroclinic loop. The second road described in
ref. [7] is through the manifolds' intersections of an
additional saddle orbit arising after one of the pe-
riod doubling bifurcation. The third one is
through the intersection of the stable and unstable
manifolds associated with different loops (see fig.
7)

An important motivation for this work was re-
sults of experimental investigations of microwave
parametric amplifiers which indicated that the
amplifiers being stable under the action of only
pumping oscillation or signal wave lose their sta-
bility when this oscillation and the signal wave are
applied simultaneously [31]. The results of this
paper give an explanation of such phenomenon
and provide mathematical tools for its study and
prediction. It is also obviously that our results are
applicable, within certain limits, to other types of

similar devices, say, Josephson-junction paramet- ’
ric amplifiers, optical amplifiers, etc. It is worth
noting that the factors which are responsible for
the chaos onset in the weakly nonlinear limit and,
hence, for the low stability threshold of the
parametric amplifiers are precisely the same as
that providing low noisc amplification from the
point of view of the conventional theory of
parametric devices. Indecd, according to the clas-
sical results of this theory, parametric amplifiers
posses a low noise output level because they con-
sist of a reactive circuit (anharmonic oscillator)
and they utilize an ac power supply (pumping os-
cillation). In the mathematical model used the re-
active type of nonlinearity is described by the term
with parameter y (see (3.1)). Proceeding from the
obtained results, it is clear that exactly the combi-
nation of this type of nonlinearity and the
parametric excitation leads to the possibility of the
chaos onset in the weakly nonlinear limit when the -
external signal is applied. This is the main reason
why the parametric amplifiers are extremely sus-
ceptible to the chaotic instabilities. These findings
work also for Josephson-junction parametric am-
plifiers, SQUIDs and other types of similar de-
vices.

4. Interaction of low- and high-frequency
“oscillations

Up to now we have considered the destruction
of the quasiperiodic oscillations under the reso-
nant excitation conditions which take place for
each of the spectral components of the external
forcing (see (2.7), (3.3)). However, the transition to
chaos in weakly nonlinear oscillators is observed
when the resonant condition is fulfilled only for
one of the spectral components. An additional
perturbation may act in a nonresonant manner, .
and it can be a low-frequency external force or a
low-frequency modulation of an oscillator's pa-
rameters. There are several evidences that the cha-
otic states arise in weakly nonlinear systems under
such excitation conditions. For example, it was
shown in ref. [32], that the synchronized Gunn-
diode oscillators can go into chaotic regimes of
oscillations under the influence of a low-frequency
hindrance in a supply circuit. The low-frequency
modulation of the parameters of an electron beam
exerts strong influence on the operation regimes of
BWO tubes and free-electron lasers [33]. It was
demonstrated recently [34, 35], that the interaction
of low- and high frequency oscillations can limit
the attempts of obtaining a large range of fre-
quency deviation in varactor circuits.

In this part of the paper the problem stated is
considered on a specific cxample, namely, dynam-
ics of quantum magnetometers (SQUIDs) [36]
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Such devices are widely used to record and meas-
ure extremely small magnetic fields or other quan-
tities associated with them. The key element of
magnetometers is a superconducting quantum in-
terferometer which is a superconducting ring
closed by a Josephson junction (see fig. 8). The
interferometer is inductively coupled to a resonant
oscillatory circuit which is excited (pumped) by an
external harmonic oscillation. The change in the
impedance of the interferometer introduced into
the circuit leads to a change in the amplitude of
the alternating potential in the circuit which en-
able one to record variations in external magnetic
fields.

Superconducting
rmng with |
Josephson junction

T
L _:L C

Resonant circuit

(De- magnetic flux

Fig.8. Schematic diagram of the one-contact
SQUID.

A great deal of work has been done to study
chaotic instabilities of SQUIDs (see, i.e. [37-39]).
Most of the studies are based on the assumption
that a "chaotization" of the §(t) phase of a SQUID
wavefunction is supposed to be the main cause of
the chaos onset. In this case, the time variation of
the phase can be obtained as a solution of the gen-
eralized pendulum equation

1 ——dzd)AJr ——dq;+  +Ising = A t
py: i o o +1sing =@, + ACOS®
4.1

where ¢ is the normalized phase, ®, is the intrin-
sic interferometer frequency, o is the dissipation
; coefficient, / is the dimensionless inductance, ¢e is
the normalized external magnetic flux, and A and
o are the external pumping amplitude and fre-
quency, respectively.
The first term in eg. (4.1) describes the bias cur-
rent passing through the Josephson junction, and
it is defined by a junction capacity. The presence

of the bias current is required for the chaotic os-
cillation excitation, as it is seen from the above
equation. However, in most practical SQUIDs, the
junction capacity effect on their dynamics can be
reduced by shunting that allows for the intrinsic
interferometer frequency to become significantly -
higher than the pumping frequency. Then, a sim-
plified model follows from eg.4.1

b - )
ocg;—ﬂb +lsing =@, + Acoswl 4.2

This equation has no chaotic solutions, and
hence. in this case, the chaotic solutions will not be
typical for the model (4.1). Then the question
arises: can we observe the chaotic instabilities in
such magnetometers?. The investigations described
below give an affirmative answer to this question.
We shall show that exactly the interaction of the
high- and low-frequency oscillations gives rise to
the chaos onset, and that this phenomenon causes
a4 limitation on the sensitivity of SQUIDs.

4.1. Mathematical model of weakly nonlinear
SQUIDs

I et us write equations which describe the inter-
action of the interferomcter with the SQUID cir-
cuit. For the SQUID shown in fig 8, these equa-
tions are as following [40]

Qd’ L0 + 00, = 2bw’ cosol + Koll,
d- @
4.3)

dp -~ -
a}%+¢+lsin¢=(pe+¢lel 4.4

where ¢ is the normalized voltage across the cir-
cuits, ®, and Q the natural frequency and Q-
factor of the circuit, k is the coefficient of coupling
between the circuit and the superconducting ring, .
b is the normalized pumping amplitude, I, is the
normalized Josephson junctiof current.

In order to simplify this system, we take into
account that for practical devices the following
conditions have place

0>>1, k¥ <<1, o —o |/o<<1

Due to these conditions the solution of the sys-
tem (4.3), (4.4) can be seeking in the form of a
quasiharmonic oscillation

o,(t) = a(r)coslot =y (1)]
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where amplitude a(1) and phase y(t) are slow
varying functions of time which can be found from
the following system of averaged equations

da
aa _ - bsi
o a-bsiny
dy
a = _Aa + RJ,(a)cos(9,)— bcos(y)

T
(4.5)

Here A = (0 —®,)2Q /@ is the normalized
frequencies shift, R = 2k2Ql is the parameter of
nonlinearity, T =to /2Q is the nslow", time, and

J,(a) is the first-order Bessel function. For a
more illustrative representation of the subsequent
results, we restrict ourselves to an adiabatic
SQUID model that corresponds to o = 0 in eg.
(4.4). However, it should be emphasized that tak-
ing the finite value of o into account does not
practically affect the structure of egs. 4.5 (see ref.
[40]), and the following results should also be true
for this case.

By holding the coefficients in egs (4.5) constant
in time, only the constant values of a=A4 and y=T
satisfying the equations

A +[RJ,(A)cos(h,) - ] =’
tan] = A/[Ad - RJ (A)cosd,] (4.6)

can be considered as its solution for T —> 90.

The situation changes qualitatively if the exter-
nal magnetic flux ¢e ., which is an additive sum of
the measured signal and biased flux, is considered
to be a function of time. Consider the case when
¢, is given by

0, = +d cos(€2r) @7

where ¢, is the constant flux component, ¢, is the
alternating component amplitude, and € is the
dimensionless frequency. The frequency of varia-
tion of the magnetic flux @, = Qo / 20 is con-
siderably less than o, i.e., the effect of the low-
frequency magnetic flux variations is considered in
our analysis. The interaction of this low-frequency
oscillation with the pumping oscillation leads to
the transition of chaos in the weakly nonlinear
limit. Because of the pumping, the induced saddle
states arise in the phase space of the system (4.5),
which are of prime cause of the homoclinic struc-
tures formation under the low-frequency modula-
tion. An analysis of solutions of eg. (4.6) and their

stability shows that the induced saddle states arise
under the following conditions

R>4 b>b, =5/JR, Al<A, =R/2-+3
(4.8)

In the next section these conditions of the
chaos onset will be supplemented with that ob-
tained in the framework of the current Lyapunov
technique. It is interesting to note that approxi-
mately the same conditions as given above were

* proposed in refs. [40] to use for the increasing of

the SQUID sensitivity, however, the expected
high-sensitivity level has not been achiever. The -
chaotic instability is probably one of the possible
causes.

4.2. Conditions for the chaos onset

The chaotic instability of SQUIDs can take
place if the values of the parameters satisfy the
conditions (4.8), then for periodic variations in ¢
with the frequency Q =1, one can observe the
excitation of chaotic oscillations at a relatively
small modulation amplitude 0y. To obtain addi-
tional relations between parameters that can cause
the chaotic instability, let us use the current
Lyapunov exponents (see Appendix) for the sys-
tem (4.5). With this purpose we linearize egs.(4.5)
in the vicinity ~of  arbitrary solution
a = a(r),y* = y(1) The equations for the am-
plitude p and phase @ of the perturbation vector
can then be written in the form '

d R AT
ﬁzp{—l%—*c—;ﬂi{%(a AL )}x
a

X Sin2(<l)—'y*)}

atDZ_A_‘__Ii_cg;d)ﬁ{Jo(a*)+{]O(a*)—2-]l((f )}X

dt a

x cos Y D—y *}
(4.9)

From these equations, the expression for the
maximum current Lyapunov exponent follows

w(t)=—1+ gcos(q)o +¢, cos(Qt)) x

X{Jo(a‘)—z—‘]‘;—‘ﬁ}smx .

(4.10)
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where the phase v(t)=2(D~-y ") is defined
from the equation

dy, _ y
i R cos{@, + & cos(Qr ))

J(a")

x| J,(a)=2
a

2b
](1 + Cos x) + - cosy *
“.11)

According to eg.(4.10), two conditions have to
be satisfied, i.e..(i) the x phase should predomi-
nantly take on the values corresponding to a direc-
tion of extension, siny > 0; (ii) the prefactor of
siny, in eg.(4.10) should exceed unity at the finite-
trajectory parts. With allowance made for the
maximum value of the function

[Jo(a)—Jl(a)/a]max = 0.5, it follows that the

second condition is satisfied only when the rela-
tion

gcos(cbo + 6, cos(Qr)) > 1 (4.12)

is met for finite intervals of variation in 1. Thus,
the occurrence of chaotic oscillations is possible
only when

R=20Q%l>4. (4.13)
0.9 ' =T

0.8

0,7

0,6

0,84 0,86 0,88 09 092 wix
Fig.9 Bifurcations diagram of SQUIDs mode on the
parameter plane for R=10, b=3, Q=1, A=-1. The
lines of the period-doubling bifurcations are 1] and
l5. The dashed line defines the boundary of the re-
gion where in agreement with eg. (10) local exten-
sion of the phase flow can occur.

By assuming some values from eg.(4.12) for
R>4, itis easy to find limits of those regions for ¢
o and ¢ wherein a transition to chaos can be ob-

served. In fig.9, one such boundary defined from
eg.(4.12) at R=101is shown by a dashed line on the
plane of ¢q , 1 parameters, ie.

oy =0y + arccos(4/ R) -7 (4.14)

Below this line, condition (4.12) is satisfied. At
the same plane, a region of the chaotic system be-
havior defined by means of the numerical analysis
is shown by dots. This region adjoins the analytic
curve. confirming the assumption that the phase-
flow extension (according to eg.(4.12)) immedi-
ately causes the chaotization of oscillations. The
chaotic oscillations, however, cannot exist over a
whole region of parameters defined by eg.(4.12),
since the above condition for the x-phase stabiliza-
tion in the cxtension direction should be fulfilled
simultancously with eg.(4.12). .

The investigations of the SQUID stability
permit the following conclusions to be made [36].

|. The generation of chaotic oscillations in
SQUIDs is possible in a quasilinear regime of op-
eration as well, the interfcrometer excitation mode
being nonhysteretic and interferometer processes
approaching adiabatic and equilibrium ones. In
this case. the interferometer can be regarded to
occur nonlinear elementin a SQUID circuit.

5 The chaotic instability arises due to the in-
teraction of the low-frequency variations of the
external magnetic flux and the pumping oscilla-
tion. It is clear that not only the variations in the
magnetic flux but pumping amplitude and fre-
quency variations as well can initiate the transition
to chaos.

3. The results obtained allow the assumption o
be made that limited SQUID sensitivity observed
in some experiments may be explained by noise
oscillations generated due to the chaotic instabil-

iy.
5. Chaotic dynamics of two-mode systems

Multimode nature of the variety of physical
systems creates a number of additional ways for
the transition to chaos in the: weakly nonlinear
limit. Now it is clear that even two interacting
weakly nonlinear modes can exhibit the chaotic
behavior. It can be two active modes as well as one
active and one passive modes [41]. We call a single
mode passive when it is in a state before a Hopf
bifurcation in contrast to the active modes which
have undergone this bifurcation. The autonomous
systems with the interaction of a passive mode
with the active one may be considered as the sim-
plest physical systems when the chaotic states can
arise. According to this, for example, the transi-
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tion to turbulent flows in bounded volumes can be
as following. As the result of an increase of a non-
equlibrium parameter's value of the system (e.g.,
the Reynolds or Rayleigh number), a periodic mo-
tion has arisen due to the Hopf bifurcation, and a
single-mode oscillation has been established. Then,
because of the interaction of this active mode with
one of the infinite number of passive modes, the
turbulent flow is formed. This scenario is realized
under weakly nonlinear excitation conditions, and
it is worth consideration as a typical way to tur-
bulence.

Two passive weakly nonlinear interacting
modes with a periodic forcing is the simplest non
autonomous multimode system with the chaotic
behavior. The mathematical model of this system,
typical for many applications, consists of two cou-

pled weakly nonlinear. Duffing-type oscillators -

with an external harmonic force. To simplify its
study, the method of averaging can be used which
results in the following system of equations [42]

da 3 . .
e —a,a—oua’ - kbsin(y —¢) - Psiny
d b P

&Y _A- Ba’ -k, ;cos(w —(p)—-a—cosw

dt

6.1
db o
E——Sb—kzasm(\p -Q)
do a
'd—r,—:_A+“—kZZCOS(w -¢)

with respect to the amplitudes a,b and phase y.¢
of the interacting modes. These equations are
given for the case when only one of the modes is
linecar and the second mode is nonlinear. This
situation was considered in Ref. [42], and a good
correspondence between theoretical and experi-
mental results were observed. In some aspecis the
mechanism of the transition to chaos here is simi-
lar to that described for the quasiperiodically
forced oscillator in Section 2. In the both cases the
prime reason for chaos is the induced saddle states
that arise due to the external forcing. Then, under
the additional perturbation, which is coupled lin-
ear mode in the above given system (5.1), a homo-
clinic structure is formed on the base of one of the
induced saddle states. The application of the cur-
rent Lyapunov technique to the system (5.1) leads
to the following necessary conditions for the chaos
to arise

3
2 80g

W

which are similar to that given by egs (2.17c),
(2.18a).

When studying the dynamics of multimode
weakly nonlinear systems, two types of the modes
interaction are introduced: resonant and nonreso-
nant one. Usually, the resonant interaction is con- -
sidered as that giving rise to chaos. However, it
was shown in Ref. [43,44], that nonresonant inter-
action can play an important role in the formation
of chaotic states. The two-mode interaction in the
presence of an external harmonic forcing was in-
vestigated by using the following system of the
averaged equations

(5.2b)

di :
z. (a, =7, — Kb’ )a+ Rsing
du
d
ajg = (=A +pa’ +xb’)a+ Rcos@
4
db

Zi; = (o, _,thz - “haz )b

Here @ and b are the dimensionless amplitudes
of the modes which are interacting nonresonantly
with each other, @ is the phase of external force.

It was shown in Refs. [44] that nonresonant in-
teraction of two active modes as well as active and
passive ones leads to the chaos onset when the
parameters of the modes coupling go over some
critical values. The mechanism of the transition to
chaos is related with the occurrence of an induced
homoclinic loop in the phase space of this system.

In this part of the paper we shall study in more
details the dynamics of the above mentioned
autonomous system with tweo fateranting modes:
passive and active ones. This problem is consid-
ered with respect to the investigation of the com-
plicated behavior of variable stars. At first, we
outline the derivation of the equations for inter-
acting modes for this problem.

5.1. Mathematical model
of stellar pulsations

According to present-day status of research, a
number of laws of the behavior of variable stars is
explained by arising of the stellar radial oscilla-
tions which is caused by exciting of one or more
hydrodynamical eigenmodes. The development of
this conception made it feasible to reduce such the

B> \/§a1 (5.22) stellar dynamics research to the analysis of solu-
tions of the ordinary differential equations for the
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amplitudes and phases excited modes. By using
such models, the main peculiarities of the regular
stellar pulsations occurrence have been studied in
Refs. [45, 46], and later it was shown that such
models can be generalized to study the irregular
stellar pulsation [47).

Let us consider the standard hydrodynamic
method of the stellar dynamics. The hydrody-
namic equations on the assumption of spherical
symmetry of a star take the form :

R oP Gm

7 =~4ﬂRza—m“*FE-g(R,S)

s 1 oL
—=—-———=h(R 5.
=TT am A(R,s) (5.3)
oR' 3

om  4mp

with corresponding boundary conditions at inner
and outer boundaries of the pulsating envelope
[45, 46] These equations relate the Lagrange radius
R, the pressure P, the density p, the specific en-
tropy s of a spherical shell. They are the third or-
der equations with respect to time and the fourth
order ones to the mass m. Here

ac oT'
3 (p,T) om ~

where k is Rosseland mean opacity. The equation
of state should be specified in the form:
s=s(p,T), P=P(p,T).

The time independent solution (Ry, sp) of the
above set of equations can be obtained by setting

L =(4nR*)’

E =0. Further, it is assumed that the system (5.3)

performs only small vibrations in the neighbor-
hood of (R, sg) and only variations dR=R-Ry), b5
=s-sy have to be considered. Then by using the
expansion of the solution in term of the eigenfunc-
tions of the corresponding linear operator, one can
reduce this problem to the study of the dynamics
of interacting modes. In order to describe stellar
pulsations, it is reasonable to take into considera-
tion only the active eigenmodes (i.e., with positive
real part of the complex eigenvalues) and the pas-
sive ones which interact in resonance manner.

We consider the two-mode interaction when
the case of the main resonance with the frequency
relationship Q:Q2)=2:1 takes place, where | and
Q- are the imagine parts of eigenvalues. As may

be inferred from the existing data, this type of
resonance is of prime interest for the stellar pulsa-
tion in general and the irregular ones specifically.
For this case the model (5.3) can be rearranged to
the cubic approximation form

dc, , ,
. =06 +H|C2\+Q1\c1’ c +T12|C21 ¢

, 5.4
dc,

4(?1:7 =0,6* HZ‘CII + Qz\czl2 C, + Tlecl‘z ¢,

where ¢,.c, are complex amplitudes of the inter-
acting modes. 64 =iQq+8y, a=1,2are the eigen- .
values of the modes. I—Il_Z,QLz,'I]Z,.'I"2I are com-
plex coetlicients.

When studying the stellar dynamics, it was
found that the resonant interaction of active (6
(>0) and passive (87<0) modes is the simplest and
simultancoush the most typical case when chaotic
pulsations come into being. We shall focus on this
particular case.

Let us introducing the amplitudes a, b and
phases v}, wa. ¢ in the following way

o1 atny expliv(), c3=b(1) expliya(1)},
(1= o(t)-w (1)-Im(IT5-T1y).

Then. instead of the svstem (5.4), we have
da . )
= (8, — 0,a” )a— kabsing
dt
db )
— =3,b+ka sing (5.5

’C .
9 _ 2 2
=—-A+Pb’ +k(a /b-2b)cose,
T
Here 7 is the "slow" time, 8] and &7 are the real
parts of the eigenvalues,

p-22hth
20, + €,
is the detuning between eigenfrequencies Q) and
Qy; 83=Re(Q)), k= \/ie(Hl)Re(Hz) and

B=Im(Qy) are the coefficients describing nonlinear
dissipation, resonant interaction and anhar-
monism, respectively. These coefficients depend in
complicate way on stellar parameters.

Contrary to the usual practice of the stellar dy-
namics simulation (see, e.g., [45,46]), the anhar- .
monism was taken into account in the system of
equations (5.5). For simplicity sake we restrict our
consideration to only one nonisochronous term
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p=Im(Q7), As it will be shown, this type of non-
linearity plays crucial role in the arising of chaotic
pulsations.

5.2. Isochronous case

Let us consider first the main properties of
model (5.5) for isochronous case (B=0) which was
usually investigated. By solving the equations (5.5)
at zero values of the time derivatives, we obtain
the resonance curve which is the dependence of the
stationary amplitudes 4 and B upon the frequency
detuning A. All possible states of the system (4) are
described by following expressions:

k* A
A =4S, +28 28,4 | —— 7]
1.2 ( 2+ 1 3 ) 82(63A2 _81)
(5.6)
5. & —8,4%)
62

The signs "+" correspond the two independent
branches of the resonant curve.

A
0)
Fig.10. The resonance curves of the system (4) for
isochronous (a, p=0) and nonisochronous (b, B=5)
cases and: 8,=-1, 53=0.1, k=2. The letters A de-
notes the tangent bifurcation points, and the letters
B - the Hopf bifurcation ones.

fig 10a demonstrates the typical form of the reso-
nance for two values of the parameter 3. In our
calculations and analysis we used the same order

parameters as in the ones, regarded previously in
papers [45, 48] and characteristic of W Vir stars. In
the case P=0 only the stable node-focuses (solid
lines) and, when 8) is sufficiently large, saddle '
(dashed lines) stationary states may exist in the
system (5.5). The latter appears’ when the reso-
nance curve becomes multivalued. It indicates that
the behavior of the system (4) and as well as the
original hydrodynamical system (5.3) depends
upon its history the system is multistable. The re-
gion of multistability is indicate by letters A on

-fig.1. So, there are two stable stationary states in

the system, which are different in the amplitude of
regular pulsations. It should be emphasize that
any other regimes, excepting stationary equilib-
rium states that correspond to the stationary peri-
odical regimes of the original hydrodynamical sys-
tem, have not been detected for any values of the
parameters. So, we may conclude that in the iso-
chronous case the stellar dynamics is only regular.

A S A

Fig.11 The transition from regular to chaotic stellar
behavior due to the variation of the parameter B0 d
/=0'8' 52-_—-1, 83:0.1, k=2, A=S.

5.3. Chaotic stellar pulsations

There are theoretical and experimental evi-
dences that the stellar oscillations possess a finite
degree of anharmonism, which manifests itself
through the dependence of the pulsation period
versus pulsation amplitude. The decrease in star -
effective temperature results as a rule in the in-
creasing of the degree of the anharmonism. It was
common opinion that the effect of anharmonism is
limited only by the period variations. We have
found that the stellar eigenmodes anharmonism
plays much more essential role in the stellar dy-
namics and produces not only quantitative but
qualitative changes. In order to illustrate the ef-
fects of anharmonism let us refer to the results of
direct simulations of system (5.5) shown on fig.11.
This figure illustrates the typical evolution of the
star behavior when the parameter anharmonism [
is changed. Provided P is small, then the amplitude
is constant in time-that corresponds to the periodic
stellar pulsation. While B increases, the periodic
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modulation of the amplitude appears, which cor-
responds to the quasiperiodic regime in the hydro-
dynamical stellar model. Under further 8 increas-
ing the modulation becomes chaotic.

The non-zero values of stationary amplitudes 4
and B for the nonisochronous case can be found
from the following equation of the resonance
curve :

_ B(61 _63/42 )2 +

AI,Z = 5
2

- KA
+(8, +25, —283A2)\/m—l :
2\73 1

CN))]

B =—— (%, "63/42 )2
5

Its typical view is shown in fig. 10b. One can
see that for small values of the parameter &) de-
scribing the degree of the stellar nonequilibrium,
the resonance curve is slightly different from the
isochronous one. However, when 81 is increased.
one of the stationary states in some region of the A
variation becomes unstable, that is marked by dot-
ted line between the points B. The different types
of attractors (regular and irregular) can be formed
in the phase space for this case. Consequently, the
star dynamics can become extremely complicated.
Let us trace the regularities of such states arising
by plotting the bifurcation diagrams of regimes.

1.
1.1
1.0
K oo
0.8
0.7
0.6
0.3

.1

Fig.12 The two-dimensional bifurcation diagram in
the plane frequency (b, 8; ) for 8,=-1, 83=0.1,
k=2 A=8. The curve T corresponds to the tangent
bifurcation, C - to the attractor crisis, Hj - 1o the
second Hopf bifurcation, Ly - to the first doubling
of the limit cycle and L, - to the chaos boundary.

The two-dimensional diagram of regimes on
the plane of parameters (A,8}) is shown in fig.12.
It should be noted that the chaotic states exist in 2
narrow region of the parameter 8| variation and
in a sufficiently wide range of the frequency
detuning A. Now let us consider a typical transi-
tion from regular to chaotic oscillations with in-
creasing of the parameter 8; in the direction
marked off by the arrow in fig.12. The one-
dimensional bifurcation diagram is shown in fig.13
for this case. The latter diagram is the dependence
of the amplitude of the stellar pulsations versus 8.
The increase in &, as it is follow from hydrody-
namical modeling [45], can be associated with the
decreasing of the effective temperature Teff of a
star. If it is granted that the variation in Tegr leads
to relatively small variations of other parameters
of the system(5.5) then the bifurcation diagram in .
fig.13 displays the possible ways of the evolution
of variable stars . The Hopf bifurcation is the first
one which occurs when 8| amounts up to zero.
Due to it the periodic pulsations of the star arise.
Nontrivial stable solutions of the system (5.5) cor-
respond to such states ot the star. The tangent bi-
furcation is the next onc which occurs in the sys-
tem with the further 8).increasing The corre-
sponding biturcation curve is marked by T in fig.3.
Two stable stationary states arise by virtue of this
bifurcation. It means that the evolution of the star
can take one of the two different paths, as indi-
cated in fig.4. The specific way of the evolution is
determinate by the star state at the instant before
the bifurcation. It follows from the fact, that solu-
tions of the system (5.5) depend upon the initial
conditions (specific values of the mode amplitudes
and phase difference). It should e emphasized
that even small variations in initial conditions at
this moment can radically alter the star fate. One )
of the ways of the star evolution may be called as
the regular one (upper branch in fig.13) since on
this way the regular pulsations of the star are still
retained. Only quantitative variations in the am-
plitude of pulsations and their period are observed
here. .

The second way of the star evolution is more
complicated. At first the system undergoes the
second Hopf bifurcation (curve Hy in fig.12), and
the second independent frequency arises. As a re-
sult, the stellar pulsations become quasiperiodic
with two incommensurate frequencies. It is worthy
of note that from the point of view of the linear
theory of the stellar pulsations only a harmonic
pulsation can occur in the stellar behavior. Conse-
quently, the second independent frequency arises ‘
due to nonlinear properties of the system.
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The excitation of the quasiperiodic oscillations
in the origina!l physical system corresponds to the
arising of a stable limit cycle in the phase space of
the system (5.5). With the further &; increasing,
the destruction of the quasiperiodic oscillations
through a series of the doubling bifurcations is
observed. This leads to the chaotic pulsation onset.

The chaotic pulsations of the star are
changed sharply to regular ones if & is large
enough (see fig.13). This is conditioned by the fact
that strange attractor becomes unstable and only
one attracting set (stationary state on the regular
branch) exists in the system (5.5). So, under large
values of 8] the dynamics of the star is regular.

Regular path

Periodic ——am Torus doubling

pulsations

Amplitude

Tangent
bifurcstion

Quasipetiodic motion Chaotic
pulsations

° ) [
Temperature '

Fig.13. The dependence of the limit cycle amplituds
versus nonequilibrium parameter 6,

The main results of the steliar dynamics inves-
tigatic: consist in following. The chaotic pulsa-
tions of W Vir stars can be described in the
framework of the two-mode model. The simplicity
of this model enables one to study stellar dynamics
in detail. We have considered the main laws of
chaos arising for the case of 2:1 resonance between
these modes, however, there are good reasons to
believe that these laws are the same for higher or-
der resonances. The interaction between active and
passive modes is the typicdl and simplest physical
situation when chaotic instability arises. The main
factor which is responsible for the complicate
stellar dynamics is the anharmonism of the oscil-
lating modes.
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XaoTHuecKas IMHAMHNKA C1a0bIx
HeJIHHEHHBbIX CHCTEM

.M. Baspus

(600uweHbl  pesyabTaThl, HOCTHTHYThIE B
NOCIeAHee BPEMA NPH MccieqoBaHny cnabo Hemu-
HeltHbIX CHCTeM. PaccMOTpeH Kilace XaoTHYECKHX
COCTOSHHI, XapAKTEPHbIX 1A QPU3NYECKUX CHCTEM
€O CKOAb YrogHo cnaboit CTeneHbio HeJrnHeH-
Hoct. OO6CyxAaloTcs yCnoOBHS W MEXAHU3MBI
nepexoaa Kk xaocy A4 cnabo  HENHEHHBIX
OCUHAIATOPOB It MPOBEAEHO CPABHEHWE CO
CAYUACM  HEIHHEHHBIX  OCUWIAATOPOB. Ocoboe
BHIMANME VIENSeTC aHaJMTHUECKUM METONAM
NpeACKa3aHMs Hauana \aoTH3auuu. PesyneTaThbl
HAMOCTPHPYIOTCA  paccMOTpeHHEM  AWHAMMKH
NapaMeTPHUYECKHX YCHIIHTENEH, CKBHAOB M Iepe-
MEHHbIX 3BE3.

X a0THuHA JHHAMIKA c1a0kux HeiHIHHHX cUCTeM
.M. Baspis

V3aranbHeHo pE3yJbTaTH JIOC/IDKEHb cnabo
HeJliHIiHHX CHCTEM, JOCATHEHI B OCTaHHiH wac.
PO3CNSHYTO KJIAC XOATHYHHR CTaHIB, fKi Xapak-
TepHi Anf  (I3WYHMX CHCTEM 3 AK 3aBrOAHO
cnabxoto cTynminuio Heninifinocti. OGroBOpEHO
YMOBH Ta MeXaHi3mMu Mepexoly 10 Xaocy [
cnabo HemiHiMHUX OCUMIATOPIB i MpOBEIAEHO
MOpIBHAHHA 3 CHIBHO HENHIAHMMHM  OCUMIA-
topaMu. OcobnuBy yBary 3BepHEHO Ha aHaNiTHYHi
MeTOAM nepenbaveHns nouaTky xoaTmsauil. Pe-
3yNbLTATH MPOLTIOCTPOBAHO PO3IVIARAHHAM JHMHA-
MIiKH napaMeTpHYHHX NifCHNIIOBAUiB,CKBUIIB Ta
3MiHHUX 3ipOK.
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