Система управления приводом антенны локатора поиска и сопровождения

А. В. Щевченко, Р. В. Кожин, М. П. Василевский, Д. М. Ваврик

Радиоастрономический институт НАН Украины, Украина, 61002, г. Харьков, ул. Краснознаменная, 4
E-mail: shev@radar.kharkov.com

Статья поступила в редакцию 4 декабря 2003 г.

Приведены результаты разработки микропроцессорной системы управления приводами полноповоротной антенны, которая использовалась при модернизации привода установки "Щиляк". Система управления разработана на основе цифрового сигнального процессора ADSP-2189 фирмы Analog Devices и программируемой логики EP1K30-ACEX фирмы Altera. Описаны алгоритмы управления, особенности взаимодействия цифровых и аналоговых подсистем привода антенны, а также принятые меры по обеспечению высокой надежности и помехозащищенности каналов управления.

Наводятся результаты разработки микропроцессорной системы управления приводами повноповоротной антенны, в которых использовалась модернизация установки "Щиляк". Система управления разработана на основе цифрового сигнального процессора ADSP-2189 фирмы Analog Devices и программированной логики EP1K30-ACEX фирмы Altera. Описан алгоритм управления, особенности взаимодействия цифровой и аналоговой подсистем привода антенны, а также результаты по наводке, необходимые для обеспечения высокоинтенсивной и высококачественной работы каналов управления.

1. Введение

Применение современных микропроцессоров позволяет существенно улучшить эффективность различных видов радиолокационных систем, увеличить их надежность, расширить функциональные возможности, а также сделать более удобным использование радиолокационной информации. Внедрение микропроцессоров привело к существенному пересмотру структуры построения локаторов, а также их отдельных функциональных блоков. В настоящей работе описаны результаты модернизации приводов антенны установки "Щиляк" путем внедрения микропроцессорной системы управления приводами. В результате внедрения этой разработки реализована полноповоротная антенная система с высокими динамическими и точностными характеристиками. Такая система может быть использована при создании высокоэффективных локаторов поиска и сопровождения, а также других подобных устройств.

2. Устройство привода антенны

Структурная схема привода показана на рис. 1. Для перемещения антенны в азимутальной и угломестной плоскостях используются три асинхронных двигателя ДАК8, работающие от 3-фазного напряжения 220 В (частота 400 Гц). При модернизации механическая часть привода была доработана, что позволило использовать для перемещения антенны в азимутальной плоскости, а один — в угломестной. Предусмотрена возможность питания двигателей от однофазной сети (220 В, 50 Гц), для чего...
используются два инвертора OMRON ЗG3MV с мощностями 4 кВт и 2.2 кВт. Инверторы включаются по команде с контроллера привода и обеспечивают режим плавного старта двигателей. После разгона двигателей инвертор формирует сигнал готовности, анализируемый контроллером.

Управление моментом мощности, подаваемым на привод, осуществляется с помощью магнитопорошковых муфт БПМ-20. Момент, передаваемый муфтой, прямо пропорционален току, протекающему через управляющую обмотку. Для формирования линейной зависимости момента мощности, который передается на редукторы азимутального и угломестного привода антенны от управляющего напряжения, формируемого контроллером привода, используется усилитель мощности.
УММ. Усилитель производит стабилизацию тока через муты за счет применения схемы широтно-импульсной модуляции (ШИМ) постоянного напряжения 300 В. Величина тока определяется управляющим напряжением, которое создается гальванически развязанным цифро-аналоговым преобразователем (ЦАП) в контроллере привода. Гальваническая развязка применяна для исключения влияния помех, создаваемых сильноточными ключами в плате усилителей мощности, на цепи контроллера. В качестве датчиков положения антенны были использованы инкрементальные оптические датчики (кодеры) OMRON E6B2, разрешающая способность датчиков составляет 0.045°. Датчики установлены через редуктор с передаточным числом 60. Таким образом, точность определения разности координат антены составляет 0.045 угловой минуты. Поскольку датчик делает 60 оборотов на один оборот антенны, для обеспечения начальной привязки координат антены к местности необходимо выделить один момент прохождения нуль-метки кодера из 60. Для этого введен дополнительный датчик, который представляет собой неподвижную оптопару - светодиод и фотоэлектрический датчик, разделенные непрозрачным диском, вращающимся синхронно с антенной и имеющим вырезанный сектор шириной 6°. Отрыв датчика заключается в момент прохождения вырезанного сектора и установлена таким образом, что один из моментов прохождения нуль-метки кодера приходится на момент вращения.

3. Контроллер привода антены

Структурная схема контроллера привода показана на рис. 2. Контроллер привода и усилители мощности магнитопорошковых муфт размещены на двух платах размером 110×150 мм, что позволило установить их на местоведущее после удаления старых индукционных датчиков положения антены точного и грубого отсчета, без добавления дополнительных блоков.

Все входные и выходные сигналы контроллера проходят через микросхему ППВМ EP1K30-AECE. В этой микросхеме реализованы следующие функциональные блоки, написанные на языке АНДЛ:
- асинхронный приемопередатчик интерфейса RS-232, работающий со скоростью 9600 бод, с буфером в 4 байта;
- приемопередатчик интерфейса RS-485;
- блок обработки сигналов с оптических инкрементальных датчиков положения антенны (выполняется подсчет импульсов с датчиков с учетом нуль-меток и вычисления текущей координаты антены);
- блок записи требуемого значения в ЦАП AD7399 по протоколу последовательного периферийного интерфейса;
- блок ввода/вывода дискретных сигналов.

Следует указать, что такой же приемопередатчик интерфейса RS-485 выполнен в микросхеме ППВМ на плате обработки данных, входящей в состав центрального компьютера. Данные поступают в коде Манчестер 2. Передатчик автоматически генерирует, а приемник проверяет контрольную сумму передаваемого по интерфейсу пакета. Несущая частота равна 2 МГц. Пропускная способность интерфейса достигает значения, близкого к 60 кб/с.

Сигнальный процессор и микросхема ППВМ связаны шинами адреса и данных. Со стороны ЦСП функциональные блоки в микросхеме ППВМ видны как набор портов во внешнем адресном пространстве.
4. Управление контроллером привода антенны

Связь между центральным компьютером, размещённым на вращающейся платформе, и компьютером оператора локатора происходит по протоколу TCP/IP (протокол управления передачей/протокол Интернет). Центральный компьютер выступает в качестве сервера. Компьютер оператора локатора — клиент. Связь выполняется через вращающееся контактное устройство. Для обеспечения устойчивой работы в условиях повышенной вибрации, связанной с большими ускорениями движения антенны, из состава центрального компьютера был исключен жёсткий диск. При запуске сервера производится удалённая загрузка операционной системы, образ которой предоставляется клиентом. После этого сервер создает в оперативной памяти виртуальный диск, в который по сети загружаются главная программа сервера и файл конфигурации.

Компьютер оператора задаёт режим работы привода и закон изменения координат. Центральный компьютер по интерфейсу RS-485 передает в контроллер требуемую координату и возвращает компьютеру оператора текущую координату и статус контроллера привода антенны.

Для использования антенны в составе комплекса радиолокационной станции поиска и сопровождения в центральном компьютере реализованы следующие режимы работы:
- позиционирование в точку с заданными координатами;
- сканирование в заданном секторе;
— круговой обзор;
— захват цели;
— сопровождение цели.
Был разработан и реализован алгоритм сглаживания траектории движения антенны, позволяющий ограничивать ускорение в пределах величин допустимых для привода. В режиме сопровождения осуществляется предсказание траектории движения цели при помощи фильтра Кальмана.

5. Алгоритм управления приводом антенны

Контроллер привода антенны обеспечивает следующие режимы работы:
— режим поиска нуль-меток датчиков положения антенны;
— режим движения по заданному закону;
— режим движения по рассогласованию.
После включения питания контроллер приводов переходит в режим поиска нуль-
методи датчиков для обеспечения привязки антенны к местности. В режиме поиска нуль-меток датчиков антенна движется с постоянной скоростью по одной из координат до момента прохождения нуль-метки датчика.
В режиме движения по заданному закону центральный компьютер передает в контроллер координаты требуемой точки, а контроллер перемещает антенну в эту точку. Угол рассогласования Δ определяется как разность между задаваемой координатой x и текущей координатой антенны y. Структурная схема системы управления антенной в режиме движения по заданному закону приведена на рис. 3, а.
При сопровождении цели обратная связь по положению в приводе замыкается, а в качестве задающего воздействия подается рассогласование Δ между линией визирования антенны и направлением на цель, которое определяется по признаку дисперсии характеристики диаграммы направленности антенны (см. рис. 3, б).

Рис. 3. Структурная схема системы управления приводом:
C — сумматор; D — дифференцирующее звено; I — интегрирующее звено; Ф — фильтрующее звено

Радиофизика и радиоастрономия, 2004, т. 9, №3
341
Регулятор имеет четыре параметра, значения которых определяются в процессе настройки привода: \(K_p \) — коэффициент пропорциональности; \(K_i \) — коэффициент интегральный; \(K_d,d_j \) — коэффициент упреждения по скорости; \(K_d,b \) — коэффициент обратной связи по скорости.

Скорость движения по координате \(W_i \) и производная от управляющего сигнала \(W_i' \) определяются дифференцирующим звеном \(D \) (см. рис. 3).

Для устранения "шума", возникающего при вычислении скорости вследствие дискретности датчика положения, в обратную связь в конфигурации введен цифровой фильтр низких частот Ф. Скорость движения антенны после фильтра равна \(W_f \), частота среза фильтра – 20 Гц.

Операция интегрирования в интегрирующем звене \(I \) заменяется суммированием методом прямоугольников. \(\Sigma \) — сигнал с выхода интегратора.

Сигнал \(U \) с выхода регулятора преобразуется ЦАП в аналоговый сигнал напряжением 0-9 В и поступает на усилитель мощности муфты.

Алгоритм управления реализован в программном обеспечении ЦСП. Вычисления проводятся по прерыванию таймера с периодом 1 мс. При этом опрашиваются датчики, и в ЦАП записывается значение, соответствующее новому управляющему воздействию. В центральный компьютер посылаются текущая координата и скорость, и принимается новая координата управления.

Одновременно с выполнением основной программы — цикла управления приводом и связи с центральным компьютером — в фоновом режиме осуществляется связь по интерфейсу RS-232 с другим компьютером (если он подключен). Эта возможность очень удобна для отладки системы.

При отладке системы доступны следующие функции по управлению и контролю:
- включение и контроль функционирования двигателей;
- установка коэффициентов регуляторов по обеим координатам по положению и по скорости;
- включение контроллера в режимы поиска нуль-меток по обеим координатам;
- включение контроллера в режимы стабилизации по скорости;
- включение контроллера в режим стабилизации по положению;
- отображение текущей скорости и координаты по обеим плоскостям стабилизации;
- отображение аварийных режимов;
- отображение состояния конечных переключателей.

6. Заключение

На основе современных микропроцессорных устройств, средств передачи данных и алгоритмов управления разработана высокозависимая система управления приводами антены. Эта система успешно прошла испытания и использовалась для модернизации приводов установки "Шилка".

Сравнительные технические характеристики системы до и после модернизации приведены в таблице. График переходного процесса при отработке рассогласования 18° приведен на рис. 4. График ошибки отработки синусоидального управляющего воздействия с амплитудой 7° и периодом 0,5 с приведен на рис. 5.

| Таблица. Сравнительные технические характеристики системы стабилизации до и после модернизации |
|---------------------------------|-----------|-------------|
| **Параметр** | **До** | **После** |
| Скорость отработки, градус/с | не менее 12 | не менее 80 |
| Статическая точность стабилизации | 0°02′ | 0°01′ |
| Динамическая точность стабилизации при синусоидальном изменении углов с амплитудой 7° и периодом 0,5 с | 0°14′ | 0°10′ |

Радиофизика и радиоастрономия, 2004, т. 9, №3
Применение стандартных интерфейсов RS-485 и кода Манчестер-2 с проверкой контрольной суммы обеспечивает высокую надежность канала связи и позволяет легко встраивать данную систему в локационный комплекс.
Introduction

The problem of identifying the parameters of a given system from a sequence of its observations is central to many fields. The purpose of this study is to present a novel approach for parameter estimation in systems where traditional methods fail. The approach is based on a combination of statistical and computational techniques, allowing for accurate and efficient parameter estimation even in the presence of noise and uncertainty.

The proposed method involves the use of a novel algorithm that exploits the characteristics of the system under study to achieve high levels of accuracy. The algorithm is tested on a variety of systems, demonstrating its effectiveness in real-world applications.

Furthermore, the method is compared with existing techniques, showing significant improvements in terms of accuracy and computational efficiency. The results are validated through extensive simulations and experimental data, confirming the reliability and robustness of the proposed approach.

Overall, the study presents a robust and versatile method for parameter estimation in complex systems, offering a valuable tool for researchers and practitioners in various fields.

References and Further Readings

