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The objective of the work is to present the results of computer simulation of the problem of pulse scattering
on cylinder objects buried in the inhomogeneous conducting medium. The finite difference time domain method
(FD-TD) is used for solving the problem. The grid discretization in space and time is carried out taking into ac-
count the required stability of the realized method. The elementary absorbing boundary conditions (ABC), such
as the perfect matched layer, Bayliss-Turkel annihilation operators and the Mur finite-difference scheme have
been realized. Visualization of the results obtained has been carried out, and scattered field images have been
constructed.

“pictures” of fields reflected from different objects.

1. Introduction Comparing them with the available echo-response
) permits to detect a required object without solving
Ground penetrating radars (GPR) attract more and inverse problems in some cases. The direct diffrac-
more attention and are of great interest in recent tion problems are reduced to solving non-stationary
years. The theoretical works in this area are in two Maxwell’s equations with initial and boundary condi-
directions: solution of direct problems of pulse dif- tions. Up-to-date computers solve this sort of prob-
fraction on subsurface objects and inverse problems lems by direct methods. One of such methods is the
of object reshaping and relocation by the present finite-difference  time-domain method (FD-TD
echo-respor}se. o ' method), on the basis of which it is possible to solve
The direct problem solution is very important vector problems of electromagnetic pulse diffraction.
because during investigations one can obtain a set of The given work is aimed at the FD-TD method
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Fig. 1.
a) Position of the electric and magnetic field vector components about a cubic unit cell of the Yee space lattice;
b) Space-time chart of the Yee algorithm for a one-dimensional wave propagation



L.A. Varyanitza-Roshchupkina, V.O. Kovalenko

application to the problems of pulse diffraction on
cylinder objects in dispersion and absorption media
and investigation of scattered field on this basis.

2. General Characteristics of the Given
Method

The finite-difference time-domain method [1,2] is the
direct solution method for Maxwell’s time-dependent
curl equations. It employs no potentials. Rather, it is
based upon volumetric sampling of the unknown

near-field distribution (E’ and H ) within and sur-
rounding the structure of interest, and over a period
of time. The sampling in space depends on pulse du-
ration and is drawn by the user. Typically, 10 to 20
samples per wavelength are needed. The sampling in
time is selected to ensure numerical stability of the
algorithm.

FD-TD is a procedure that simulates the con-
tinuous actual electromagnetic waves in a finite spa-
tial region by sampled-data numerical analogs propa-
gating in a computer data space. For simulations
where the modeled region must extend to infinity,
absorbing boundary conditions (ABC) are employed
at the outer grid truncation planes which ideally per-
mit all outgoing wave analogs to exit the region with
negligible reflection. Phenomena such as induction of
surface currents, scattering and multiple scattering,
aperture penetration, and cavity excitation are mod-
eled time-step by time-step by the action of the nu-
merical analog to the curl equations.

Time-stepping is continued until the desired
late-time pulse response is observed at the field point
of interest.

Yee Algorithm

1. As it is shown in Fig. 1(a), the Yee algorithm [3]
centers its components £ and H in the tree-
dimensional space in such a way that each compo-
nent F is surrounded by four circulating compo-
nents H , and each component H is surrounded
by four circulating components E .
= Resulting finite-difference expressions for space
derivatives used in curl operators are central by
their nature and have the second order of accu-
racy.

= The continuity of tangential components £ and
H remains naturally the same when passing
across the boundary in case that the boundary is
parallel to one of the coordinate axes of the grid.

= The location of components £ and H in the
Yee-grid and central-difference operations with
these components implicitly realize two rela-
tions on the Gaussian law.

2. As it is shown in Fig. 1(b), the Yee algorithm cen-
ters its components F and H in time in the so-
called “leapfrog” (If) order. All calculations of F

in the interesting for us three-dimensional space
are made and stored in memory for a single time
point, using the data of H pre-stored in the com-
puter memory. Then all calculations of H in the
formed space are made and stored in memory, us-
ing recently-calculated data of F . This process is
circular and continues till finishing the time-
stepping (ts).
= This If-ts process is all-explicit and therefore
there are no problems related with solution of
combined equations and matrix inversion.
= Resulting finite-difference expressions for time
derivatives used in curl operators are central by
their nature and have the second order of accu-
racy.
The resulting ts algorithm is nondissipative; i.e.
oscillations of the numerical wave propagating in the
grid do not falsely decay.

Finite Differences
By introducing the following  designation
u(iAz, jAy,kAz,nAt) = u';;, for field compo-

nents and using finite-difference expressions for
space and time derivatives

% (iAx, jJAy, kAz, nAt) =
T

n n
Yivi/2,5k — Yim1/2,5k

(Ax)?
o +o0lar?],

%(iAI, JAy kAz,nAt) =

n+1/2 n—1/2

Ui jk Ui jk

2
A7 + O[(Az)?]

we obtain the numerical approximation of three-
dimensional numerical Maxwell's equations.

3. Computer Realization of the Method

For the two-dimensional region with a finite number
of media having different electrical properties we can
determine the MEDIA(4,5,k) structure for each
component of the vector field with information about
dielectric properties of a medium at the given point.
Maxwell’s curl equations are reduced to the follow-
ing finite-difference system by the described above
finite differences:
TM mode:

m = MEDIAy, |,
n+l1/2 __ n—1/2
i / =D, cm>H, i 12 4

Db(m)(EZ|Z]-,1/2 - Ez|2j+1/2>7

H,

436 Radio Physics and Radio Astronomy, 2002, v. 7, No. 4



Pulse Scattering on Objects in the Inhomogeneous Conducting Medium
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where updating coefficients are:
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The Source

i, -f1-

The hard source is set up simply by specifying a de-
sired time function for definite components of the

electric and magnetic fields in the spatial FD-TD
grid. For example, in the one-dimensional TM grid
the following hard source on FE, should be set up at

the source point 4, for generating a continuous sinu-
soidal wave with the frequency f; :

E.[} = Eysin(27mfynAt).

Another common hard source is the wideband
Gaussian pulse with the finite de. The pulse is cen-
tered in the time step ny and has the 1/e character-

istic decay nyge.,, of time steps:

Ez |’Z!L -y e—[(n—nm/ndu,(w]?.

There is a simple method to avoid the reflexive
action of the hard pulse source — to remove it from
the algorithm after the pulse will decrease essentially
to 0 and apply an updated field instead of the normal
Yee field. In the source context we will program an
equivalent of the following updating relation for the
electric field at 4, :

if ((n4+1—1n0)/Ngecqy < 3.0)

2
Ez |Z+1 — E()e [(n+1=n9) / Ngecay |

else
E.[I* =C,cm>E, |} +

Gy emo(H, [55 = H,1503)

Absorbing Boundary Conditions

The main problem related with the FD-TD-approach
to solving the problems of electromagnetic wave in-
teraction is the fact that many interesting geometries
are determined as open regions in which the com-
puted field spatial region is unbounded in one or
more coordinate directions. Clearly there is no com-
puter capable to store an unbounded quantity of data
and therefore the region of field calculation should be
limited in size. The calculation region should be suf-
ficiently large in order to surround the interesting
structure, and around the external perimeter it is nec-
essary to apply appropriate boundary conditions for
simulating the wave propagation to infinity — so-
called absorbing boundary conditions (ABC).

Bayliss-Turkel operators of scattered wave
annihilation

For cylindrical coordinates the Bayliss-Turkel annihi-
lation operator of n-order is defined as [4]:

" 4k —3
B, =T[[z :
i

16+6
cdt  OR’

where the operator L =
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The given differential operator systematically
“destroys” or “annihilates” arbitrary outgoing scat-
tered waves and leaves the remainder term, which is
the difference process error. At any point of the grid
external boundary the application of this differential
operator to the local field allows us to estimate the
field space derivative in the direction of outgoing
wave propagation in terms of transverse space and
time derivatives by using the data at points that are
entirely inside the grid. The knowledge of the field
space derivative in the direction of outgoing wave
propagation permits to close the calculation region.

The Finite-Difference Mur Scheme

Let W ; be the Cartesian component E or H lo-

cated on the boundary z = 0 of the Yee grid. Mur
realized the space derivatives as central differences
decomposed at the auxiliary point (1/2, j) and ob-

tained [5]:
Wit =
yp—1 , CAt— Az
Wll’j + cAt + Az

2Azx n n
cAt + Az (Wlo’j + Wll’j ) +
(cAt)?Ax
2(Ay)*(cAt + Ax)

W|(7)L,j71 + Wlﬁjﬂ - 2W|ﬁj + Wlijfl)

(WET +Wie;") +

(Wlo 41 —2Wl,; +

the ts algorithm for W components along the
boundary x = 0. Similarly it is possible to obtain
analogous finite-difference expressions for Mur ab-
sorbing boundary conditions on every other boundary
ofthegrid z =h,y=0and y = h.

Berenger Perfectly Matched Layer (PML)

Berenger obtained effective reflection coefficients for
his absorbing boundary condition constituting 1/3000
of reflection coefficients of considered above stan-
dard analytic absorbing boundary conditions of sec-
ond and third order. The approach, which he called
“the perfectly matched layer (PML) for electromag-
netic wave absorption” [6], is based on splitting the
electric and magnetic field components in the absorb-
ing boundary region into single subcomponents.

PMLI0,0,6,, 672}
[ ! |

PML(S 1,657,000 — — PMLES,, 85, 0,0)

PMLi0,0, 6, ,651)

Fig. 2. Structure of a two-dimensional FD-TD grid
having the Berenger PML ABC

The TE Case
Let’s consider two-dimensional Maxwell's equations
for the TE polarization case. After splitting H, into
two components H,, and H, we obtain four (ear-

lier we obtained three components) components for
the TE case, connected by the following equations:

€0 3;;1’ +o,E, = 8(&18—;%
so% +o0,E, = fw’
/‘0% Yo, = _%’

Ho 82[? + p; H, = a;;z ’

where o, and o, denote electric conductivity, and
p, and p, denote magnetic loss.

When o, = p; =0, the PML-medium can absorb
plain waves with field components (£,,H,,) propa-

gating along x, but it does not absorb waves with
field components (E,,H,,) propagating along y .

We have the opposite situation when o, = p, = 0.

4. The Program Grider1l. Example

The program Griderl uses the described above
method of calculation of fields scattered in dispersion
and absorbing media.

Let’s consider the spatial region with length
x =4 m and depth y = 4 m, consisting of three

dielectric layers with parameters (¢ =1, p =1,
oc=0,p'=0),(e¢=5, u=1, o =0.000001,
p'=0)(e=10, p =1, o = 0.00001, p' =0)

and a submerged in the last layer object with dielec-
tric parameters (¢ =1, p =1, o = 100000000,

p' =0).

We specify the grid 200 x 200, dz = 0.002 m,
dy = 0.002 m. To ensure solution stability the time-
step should not exceed 0.04714045 ns.

The following hard source on E, is set up at the
point (100, 100): it is a wideband Gaussian pulse
with finite dc with the central time step equal to 20,
characteristic decay of 4 time-steps and the amplitude
of 1 V/m.

Fig. 3(a) represents distribution of the field
component F, in space at the time ¢ = 150 time-

steps:
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Fig. 3. Distribution of the field component E, in space at the time

a) t = 150 time-steps;
b) t = 250 time-steps

The reflection (field F1) from the boundary be-
tween first two media is clearly seen in Fig. 3(a). But
at the present time the signal hasn’t reached yet the
third medium and the object.

Fig. 3(b) represents distribution of the field
component F, in space at the time ¢ = 150 time-
steps.

In the given figure (Fig. 3(b)) one can see reflec-
tions (field F1, field F2) from both boundaries be-
tween dielectric media and the signal (field F3) re-
flected from the conducting object.

Fig. 4 represents distribution of the field com-
ponent F, at the point (100, 110) during 300 time-

steps.

incident field FO

P reflected field F1

The echo-response of the transmitted signal is
also easily observable in the given figure (Fig. 4).

For comparison let’s consider the same spatial
region with only parameters of layers (¢ =1,
p=1, plzo)s (8:87 le,
o =0.000005, p' =0), (¢=15, pu=1,

o = 0.00005, p’ = 0) that correspond to moisture

c=20,

saturation. For this case we obtain following distribu-
tion of the field component E, at the point (100,
110) during 300 time-steps:

We can see a typical modification of pulse shape
for this case on Fig. 5.

reflected field F2

VARV IRVARY

Fig. 4. Distribution of the field component E, at the point (100, 110) during 300 time-steps
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incident field FO

reflected field F2

Fig. 5. Distribution of the field component E,, at the point (100, 110) during 300 time-steps

5. Conclusion

As it is seen from the above-said material the finite
difference time domain method is very useful for
realization on computer and gives totally valid results
at sufficiently small spatial and time domain discreti-
zation. Thus, using the given method and Griderl
program realizing it one can investigate in future
scattered fields on various objects in different media.
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PACCESIHUE UMITYJIbCOB HA
OBBEKTAX B HEOJJHOPOIHOW
MPOBOJSIIEN CPEJIE

JLA. Bapanuya-Powynxuna, B.O. Kosanenxo

Llenp HacTosiel paboThl — NPEACTaBUTE PE3YJIBTATHI
KOMITBIOTEPHOTO MOJICTUPOBAHUSI PACCESTHUSI HMITYJIbCOB
Ha IWIMHAPUYECKHX OOBEKTaX, HOTPYKCHHBIX B HEOIHO-
POAHYIO IPOBOAAIIYIO cpeny. st peryspu3aiyu 3a1aqn
HCTIONB3YETCSl METOJ] KOHEUHBIX PAa3HOCTEH BO BPEMEHHOM
obnmactu (FD-TD). luckperusanusi CETKH B IPOCTPAHCTBE
W BPEMEHHU IPOBOJUTCS C Y4eTOM obecIiedeHust TpeOoBa-
HHS YCTOWYMBOCTH pealn3yeMoro Mmerona. Peann3oBaHbl
npocTeifiue noriomarinue rpanndnasie yenosus (ABC),
Takue kak PML (uaeanbHO COTIaCOBaHHBIN CIIOi), omepa-
Topbl  aHHurwisauumu  bainucca-Typkena,  KOHEYHO-
pasHocTHas cxema Mypa. [IpoBeneHa Busyanu3anus mnoiy-
YEHHBIX PE3yJbTaTOB, MOCTPOCHBI M300paKEHUSI PACCEsTH-
HBIX MOJIEH.

PO3CISIHHSI IMITY.JILCIB HA
OB’€EKTAX B HEOJJHOPIJHOMY
MPOBIJHOMY CEPEJOBHILII

JI.A. Bapsanuysa-Powynkina, B.O. Kosanenko

Mera mi€i npari — NpeACTaBUTU Pe3yIbTaTH KOMIT'I0-
TEPHOTO MOJETIOBAHHS PO3CIIOBAHHS IMITYJILCIB Ha IHJIiH-
JOpUYHHX 00’€KTax, 3aHypeHHX Yy HEOJHOpiIHE MpOoBigHE
cepenosuiie. J{is perynspusaiii 3a1a4i BAKOPHCTOBYETHCS
METOJ| CKiHYEeHUX pi3HuIb y 4acoBiii obmacti (FD-TD).
Jluckpern3sauisi CiTKM B IPOCTOpPi i 4aci NMPOBOIUTHCS 3
ypaxyBaHHsIM 3a0e3nedyeHHss BUMOTH CTifKOCTi peasti3oBa-
HOro Merofy. PeanizoBaHo HaifrmpocTinni mOriavHawOvi rpa-
Hu4Hi ymoBu (ABC), taki sik PML (ineanbpHo moromkeHunit
map), omneparopu aHiriamii baiimicca-Typkena, ckiHYeH-
HO-pi3HHIIEBa cxema Mypa. IIpoBemeHo Bisyaumizarmito
OTPHMaHHX PE3YJbTATiB, MOOYJOBAHO 300pasKeHHS PO3Cisi-
HUX TIOJIB.
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