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Complete set of the time-domain modes is presented for a waveguide regular geometrically along its axis
Oz . The waveguide under study may have an arbitrary closed singly connected contour L of its cross section.
Waveguide surface has the perfect electric conductivity, its volume is filled with a lossy medium with constant
electromagnetic parameters €, p, o . Electromagnetic fields of the time-domain modes are products of some

functions of the transverse waveguide coordinates, which originate the modal basis, and the modal amplitudes,
which are some functions of axial coordinate z , and time ¢. Modal basis is specified in a general form. Evolu-
tion equations for the modal amplitudes are obtained and rearranged to the Klein-Gordon equation, which can be

solved easily in compliance with the causality principle.

Introduction

In the classical waveguide theory, existence of a
complete set of the time-harmonic modes has been
established long ago. From that time and hitherto, the
waveguide mode concept has become generally ac-
cepted in the Frequency Domain (#D). Recently, the
modal concept was extended over the Time Domain
(TD) within the frames of the Evolutionary Approach
to Electromagnetics (EAE) [1,2]. While one operates
with the classical waveguide modes, study of the
time-domain waveforms and signals gives rise usu-
ally to essential difficulties. Presence of the ohmic
losses in waveguides aggravates the problems. The
EAE permits either remove these difficulties com-
pletely or facilitate them essentially.

In this paper, we study a waveguide regular
geometrically along its axis Oz. Contour L of the
waveguide cross section is closed and singly con-
nected but it may have rather arbitrary form. The
surface is perfectly conducting; the waveguide vol-
ume is filled with a lossy medium specified by the
linear constitutive relations as

D = g€, B = popM, J = o0&, (1)

where ¢, g — the free space constants, D, B—
electric and magnetic flux densities, £ = £(R,t),
‘H = H(R,t) — electric and magnetic strength vec-

tors, R — position vector, ¢ — time; real constants
€, Wb, and o are permittivity, permeability, and

ohmic conductivity, respectively.

Formulation of the Problem
The system of differential Maxwell’s equations
VXH:atD+j, VXfZ@Ji

2

V-D=p V.-B =0, &
should be solved simultaneously with the algebraic
boundary conditions, which hold over the contour L as

(n-H)l, = 0,(1-&)|, = 0,(z- )], = 0, 3)

where (Ln,z) — the right-hand triple of the unit vec-
tors: among them, lis tangential to the contour L
the unit vector, n — the outward unit normal to L,
z — the unit vector oriented along the waveguide
Oz -axis.

The solution sought for should belong to the
class of quadratically integrable complex valued vec-
tor functions specified by the following condition:

Jrarf" e[ ds(eE &+ pr M) < 0. )

where  (*) means  complex

0<th <thb <00, 5 <2 <.

Appropriate initial conditions for the electro-
magnetic field sought should be added. The problem
must be solved in compliance with the causality
principle.

It is convenient to split the 3-component posi-
tion vector R and the nabla operator V as well onto
their projections on the waveguide cross-section S
and on Oz -axis as follows

conjugation,
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R=r+2zz, V=V, +20,, (5)

where r is 2-component position vector in the do-
main S ; operator V| acts on the transverse coordi-

nates (r> only. Let's do the same with the 3-
component vectors £, H and J what yields

E=E+zE., H=H+2zH,J =J+2J., (6

where E, H, J are 2-component projections on S
of appropriate three-dimensional vectors. The space-
time argument (R,#) of all the electromagnetic
quantities is equivalent now to (r,z2,t).

The curl equations from Egs. (2) should be also
projected onto the waveguide cross-section S and
Oz -axis. The results of these manipulations can be
collected with the div-equations as two simultaneous
subsystems, namely:

[V, xz|H, =¢,0,(¢E)+ 0, [H x z]+ J,
po0y (H,) =V -[z < E], @)
8z (:U/Hz) = _MVL : H;

[ZXVL]EZ = MOat<NH)+8z[ZXE]a
€0 (eE,) =V, - [Hxz]—-J, (®)
az (6Ez) = 7€VL -E + 80_1/0'

Complete Set of the Time Domain Modes

Egs. (7) and (8) have two sorts of solutions. One set
corresponds physically to the TE- time-domain
waveguide modes as

‘C/‘:l:m = i%VfE (zat)[vj_wm X Z}v
”-(:tm = %[I:{i (Zat)vj_’(/)m +

+Zhim (Z, 3 ) V?nwm]v
& = 0Hy = z25=hy (2,t);m =1,2,....

©

Another one represents TM— time-domain modes as
Een = VIV (2,1)V 16, +

+Ze:tn(zat)"<’721¢n]a (10)
Mn = i\/}TDIﬂM (z,t)[z X Vl¢n]7n = 1727"'

In Egs. (9), potentials v, = ,, (r> are solutions of

well studied scalar Neumann boundary eigenvalue
problem for Laplacian, i.e.,

(VA + v )by, oo =0, %wm(r)h:(), (11)

where v,, are nonnegative eigenvalues, and 0 /0dn

means the normal derivative over the contour L . In
turn, potentials ¢, = ¢, (r> are specified by the

scalar Dirichlet boundary eigenvalue problem for
Laplacian as

(vi + K’72L>¢)’!L(r) = 07 ¢7L(r)|L = 07 (12)

where positive x,, originate another set of the eigen-
values. All the solutions ), (r> and ¢, (r> can be

obtained from the problems (11) and (12) accurate
within some constant factors. The latters can be
specified with making use of some normalization
conditions. It is convenient to specify them as

(1/8) [ (Vitoy - Vit )ds =
(i /8) [ toneds = Sy,

(1/8) [ (V.6 V.60 )ds =
(12/8) [ éutrds = 6,

(13)

where § 6.+ are the Kronecker's delta.

Thus, one can consider all the functions v, (r>
and ¢, (r>, where r € S, as already known in the
products placed at the right-hand sides of Egs. (9)
and (10). The sets of potentials {4, r>} and
{¢, x>} are complete in a Hilbert space. It was
proved in [1,2], that the sets of functions with argu-
ment (r> in Eqs. (9) and (10) originate jointly a
waveguide modal basis. The scalar functions with
argument (z,¢) herein are unknown yet. Physically,
they are the modal amplitudes of appropriate field
components. To obtain a problem for them, one
should project Maxwell's equations (in their form of
Egs. (7) and (8) onto the same modal basis. Eqgs. (7)
and (8) include partial derivatives 0; and 0, at their
right-hand sides. Hence, equations for the modal am-
plitudes should be partial differential equations with
0; and 0,. Mathematicians call differential equa-

tions with 0, as evolution equations.

Evolution Equations for the Modal
Amplitudes

TE- Time-Domain Modes

For brevity sake, let's restrict ourselves with study-
ing waveforms, which transfer energy along Oz -
axis. In Eqs. (9), one should take upper sign in the
doublet (4). Longitudinal component of magnetic
field h,, (2,¢) must have upper sign (+4) at the
subscript as well and be solution of the following
equation:
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(8? + 270, — 9% + CQU?n)thm (2,t) =0, (14)

where c=1/Jemen , 2v =0 /g,
m = 1,2,.... Coefficients v,, > 0 herein are posi-

tive eigenvalues taken from Neumann problem (11).
Each one specifies a concrete TE-mode. Naturally, it
depends on the boundary condition in Egs. (11):
Vp =V, (L). So, a form of the waveguide cross

section L is present in Eq. (14) implicitly: via nu-
merical the coefficient 12, . Evolution equations for

the modal amplitudes of the transverse field compo-
nents are obtained as direct formulas:

I8 = 0,hsp, VIE =—(n/c)0ihip, (15)

where n = \/u /€.

The set of TE-modes (9) include a specific one
with its amplitude hg (z,t). While the contour L is
singly-connected, it satisfies the following pair of
evolution equation: 0,hg (2,t) =0, 0,hy(2,t) = 0.
Amplitude 7y (2,t) is obviously a constant in
the case.

It is convenient to present amplitude 4., (2,t) as

h+m (Z,t) = ei’ytHim (Z,t) . (16)

Then new unknown function H7,, (2,t) satisfies
well studied Klein-Gordon equation (KGE) as

(03 — 0% + & ) Hi, (1) =0, (17)

where w,, = /c*v2, —~+? is the cut-off frequency

for the time-harmonic waves, which propagate
along Oz-axis in the waveguide loaded with the
lossy medium.
TM- Time-Domain Modes

TM-like waveforms, which transfer energy along
Oz -axis, have modal amplitudes of the single trans-
verse component of magnetic field in Egs. (10) as the
solutions of equation

(07 + 270, — 02 + A2 )M (2,t) =0, (18)

where ¢ =1/ /e, 2y =0 /e, n =1,2,...;
eigenvalue k, =k, (L) 1is taken from Dirichlet
problem (12). Modal amplitudes of the longitudinal
and transverse components of electric field are ob-
tained as solutions of simple evolution differential,
namely:

8te+71, =+ 2fye+71, = _%]I{LLI (Z,t),

' (19)
8tv+en + 27Vf71 = _%8,2]1% (Z,t),

where ¢ = 1/./gyfty Solutions of Eq. (18) play role
of the force terms herein. Similar to (16) substitution as

I (z,t) = e " HE, (2,1) (20)
transforms Eq. (18) into KGE as well:
(6? _6283 +@%)H+Ln(zat) = 07 (21)

where @,, = «/c’k2, —~> has physical sense of the

cut-off frequencies for the harmonic 7M-modes of
the waveguide loaded by the lossy medium.

KGE has remarkable mathematical properties of
symmetry in the sense of the group theory. Physi-
cally, they give a wide set of new time-domain wave-
forms and signals, which are distinct essentially from
the classical time-harmonic waves. Some examples
will be exhibited at the Workshop.

Main Results

Time-domain waveguide mode problem is consid-
ered as the boundary-initial value problem for the
system of Maxwell's equations. Modal basis is speci-
fied in the general form of the scalar Dirichlet and
Neumann boundary eigenvalue problems for trans-
verse part of Laplacian. They give a complete set of
functions dependent on the waveguide transverse
coordinates. The modal amplitudes are some func-
tions of the axial coordinate z and time ¢. Problem
for them is obtained via projecting Maxwell's equa-
tions onto the modal basis. It results in the evolution
equations (partial differential equations with 0, and

0,) like Klein-Gordon equation. In the same way as

Maxwell's equations, the latter is invariant with re-
spect to the relativistic Lorentz transformation. It can
be solved easily in compliance with the causality
principle.
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IBOJIIOLIMOHHBIE YPABHEHMUSA JJI51
BPEMEHHBIX MOJ B BOJIHOBOJAX
C IOTEPAMH

O.A. Tpemsbskos

[IpencraBneH monHbIi HAOOp BPEMEHHBIX MOJ JUIS
TEOMETPUYECKH peryJsipHOro Biosib ocd Oz 3aKpHITOro
BOJHOBOJA C MPOU3BOJBHBIM OJHOCBSI3HBIM KOHTYpPOM
nonepedHoro cedenus L . IloBepXxHOCTb BONHOBOAA —
UJeaJbHO TIPOBOAAIIAs, OOBEM 3alOJHEH IPOBOJSIICH
Cpeloit ¢ MOCTOSHHBIMH 3JIEKTPOMAarHUTHBIMHU MTapaMeTpa-
MU €, [, 0. DJIEeKTPOMarHUTHbIC N0 BPEMEHHBIX MOJ

SIBJISIOTCS TIPOM3BEACHHEM HEKOTOPBIX (DYHKIMI moneped-
HBIX KOOPIMHAT, KOTOpble O0pa3yioT MOMOBBIM 0aszuc, U
MOJZIOBBIX aMIUTUTY ]I, KOTOPBIE SIBISIOTCS (YHKLIUSIMHU TIPO-
JOJIBHOW KOOPAMHATHI 2 ¥ BpeMeHH t. MoJOBBII 0a3zuc
OIlpesieJieH B OOIIEeM BHAE. DBOJIOIMOHHBIE ypPaBHCHUS
JUIS. MOJIOBBIX aMIUTHTY]] TIPHUBEICHBI K BHAY YypaBHEHHH
Kneiina-I'opgona, KOTOpbIe JIETKO MOTYT OBITH pELICHBI B
COOTBETCTBUH C MPUHIUIIOM IIPUYNHHOCTH.

EBOJIIOLIHI PIBHSTHHSI 1151
YACOBHUX MO/ Y XBUJIEBOJIAX
I3 BTPATAMU

0.0. Tpemobskos

IpencraBneno moBHUN Hadip YaCOBUX MOJ IS I€0-
METPUYHO PEryJsIpHOro B3moBX oci Oz XBMIIEBOZY 3 JIO-
BUIBHUM OJJHO3B’I3HMM KOHTYPOM HOIIEPEYHOTO IIEPETHHY
L . TloBepxHsl XBUJICBOAY € iJIGAJIHO MPOBITHOIO, 00°eM
3aMOBHEHUH NPOBIAHUM CEpPEJIOBUILIEM 31 CTAJIUMH EJIEKT-
POMAarHiTHUMH NapameTpaMu €, i, o . ElexrpomarHiTHi
MOJISI YACOBUX MOJ] € TOOYTKOM JEeSKUX (PYHKINH mormepe-
YHUX KOOPJUHAT, SIKI YTBOPIOIOTH MOJIOBHH 0asuc, Ta Mo-
JOBHX aMILTITY[, sIKi € QYHKUISIMH [OZOBKHBOI KOOPAHHA-
TH 2z Ta 4acy t.MozaoBuii 6a3uc BU3HAYECHH y 3aTalbHO-
My BUIIIAAL. EBONFOLiiiHI piBHSAHHS 1 MOJOBHX aMILTITY T
TIpUBe/eH] 10 BUMIAAY piBHAHb Kieiina-I'oproHa, ski jer-
KO MOXYTb OyTH PO3B’s3aHi y BIiITIOBITHOCTI IO IPHHIIAILY
HNPUYHHHOCTI.
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