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In the paper the possibility of acceleration of procedure of best least-squares approximation of signals by
exponentials was considered. For this purpose the analytical expressions for components of gradient vector and
Hessian matrix of the objective function were obtained. The algorithms of quasisolution searching were con-
structed. Method of conjugate gradient and modified Newton method were used. The obtained algorithms were
compared with modification of Nelder-Mead method which used information about only values of objective
function. The comparison of the novel method and Prony’s method and matrix pencil method was held.

1. Introduction

A problem of exponential model approximation
arises in different applications of radiophysics meas-
urements: antenna measurements, determination of
parameters of layered structures by results of measur-
ing frequency characteristics of reflection, non-
destructive testing, investigation of transmission lines
and so on [1-3]. The additive exponential model al-
lows ones to simulate their different properties. Ex-
ponential model is relevant to describe reflection in
transmission lines and multilayered dielectric struc-
tures. Modern frequency-domain reflectometry often
implement an inverse Fourier transform of the com-
plex frequency-domain data but its ability to separate
closely spaced reflections is limited by the instrument
sweep range. This limitation of the Fourier transform
can be avoided if one tries to fit a sum of complex
exponentials to the frequency-domain data.

2. Basic Conception

The approach is based on multifrequency reflection
coefficient measurement in free space or in transmis-
sion lines and additive exponential model of reflec-
tion coefficient with the finite number of addends.
The model for processed frequency-domain signal
can be written as:

M
R]M (F,Z,W) = Z Tm - eXp(_thm ) > (1)

m=1

where parameters of model are vector of amplitudes
r ={n,m,....,ny } and vector of time locations

E’ = {t17t27"'at]ll}‘
signal on discrete frequency grid w, =
=w+n-DAw (n =12,...,N) model (1) can
be written as

In case of representation of

Ry = E7, 2

EM = { Ry (w1), Ry (W), Ry (wy )}
and elements of matrix E are given by FE,, =
=exp(—jwyty,); n=L2,...N; m=12,.... M.

The matrix E
= {t,ty,--, tar }.
The determination of parameters of exponential
model using results of measured frequency character-
istics is inverse problem because the exponential
model can be not quite adequate. Therefore, for de-
riving the stable solution of the indicated problem the
quasisolution method based on minimization of dis-
crepancy between the model and measured data was

where

—

is a function of vector ¢ =

used. For processing measured signal R =
= {R(wl )7R(w2 )7"'7R(wN )} = {RDRZJ'“?RN }
the main idea of the quasisolution method is minimi-
zation of objective function

p(71) = |- Ryl =IR-E7F (3

with searching best values of parameter vectors 7
and ¢ .
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The amplitude vector ¥ may be excluding by
linear problem solution for optimal amplitudes

E'E 7 = EMR 4)

and substitution of the solution in the objective func-
tion (3). The linear problem (4) can be rewritten in
the form

Hi =G (5)

with Gram matrix H = E'E and vector G =
= EMR = {G(t),...,G(ty; )} which is formed by
values of time domain signal corresponding to the
time vector {{,%,...,t); } . Matrix H elements are

determined in the following manner
(k,m =1,2,....M):
Hip = sinN| N5 (0~ )|
Xexp[jwmid(tk _tm)]y (6)

where wpqg = w; + (N — 1)Aw/2 is the middle

frequency  of  the function

sin(N - z)
SN (N, ) = N -sincz

range  and

is discrete analogy of

function sinccz>. Elements of the vector G are
calculated according to the following expression
(k=12,....M):

G, =G (t ZRn exp (jw,ty ). (7)

Substituting in the objective function (3) the
optimal values of amplitudes

i = H'G ®)

provides new objective function of smaller dimen-
sion which depends on only vector {:

p(#) =R - GrE'G . )

Minimization of the objective function (9) for
searching the quasisolution is complicated nonlinear
problem with heavy computational resources. Using
of methods based on first and second derivatives
should provide acceleration of the algorithm. For this
purpose the analytical expressions for components of
gradient vector and Hessian matrix of the objective
function were obtained.

3. The First and Second Derivatives of
the Objective Function

As for the given signal its norm is a constant, mini-
mization of the objective function (9) is completely
equivalent to maximization of the objective function

§(f) = G'H'G . (10)

The derivative of the objective function with
respect to location %, is calculated as

5 a1 0G|
8t77b N 2Re[G H 8t’!ﬂ}

= OH -
Hyp—1 —1
G"H EH G. (11)
Choosing the amplitude vector 7 in optimal form
7 =Ty = H'G for the objective function (10)

calculation, the derivate of the objective function
(11) can be rewritten in the form

% _ ype [qH 8G}_FH OH _

at,, ot o
M
e O = 1| (1)
k=m

0G(ty) _ J
oL ZRnw exp (jwty, ) -

The derivative of the functlon S () 1is calculated in
the form

where G, =

a5 (b
=5
i S (1) x
Aw ( Aw ) (Aw )}
N N—t|— — .
{]wmld—i— 5 ctg 5 t ctg 5 t

The second derivative of the objective function
is equal to

0%
o4.ot,
oGH HHaH] 1[3@ OH H]
QRe{[ atk - % H atm 78tm’r *
“n 9*G }_qH O°H
0t,.0t,, 0t.0t,,

Matrix of the second derivatives of the objective
function (10) can be written in following manner:

Q =2Re{V'H 'V + U}. (13)
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In (13) V = [, 0,...,
M x M, formed by vector-column u,,, which is

equalto(m =1,....M )

Uy ] is the matrix of size

a8 (tl — tm )
i 8tm
, 08t~ t)
ot

M

m = aG tm) Z 8S(tm - :) )
e %,

m

I

<

k=m

08 (ty —t,)
Tm atm

U is the matrix of size M x M with (km )-th ele-
ment in form

G 1., O°H
__ =H _Llop = _
Uin =7 otot. 2 oot
« 0°S (t, —t
TeTm Wv k=m
* 820(tm) _ u * 825(tm - tb)

Tm Z TiTm y k= m,
ot2, ot2,

i=1

i=m
where

0°G (t,, 1
%— ——ZRnw exp (Jwyty, ) -

The second derivative of the function S (¢) is
calculated as

9%5 ()

2 S(t)<{jwmid +

) ool
e e

It is possible to simplify the calculation of the
first derivative of the objective function (11) using
the columns of the matrix V :

, } (14)

MSE
't =

ff}t.
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Fig. 1. MSE as function SNR for the different reali-
zations of the algorithms:

1 — with Nelder-Mead method;

2 — with conjugate gradient method;

3 — with modified Newton method;

4 — Cramer-Rao bound
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Fig. 2. Computational time for 2500 trials for the
different realizations of the algorithm:

1 — with Nelder-Mead method;

2 — with conjugate gradient method;

3 — with modified Newton method

4. Realisation of Accelerated Algorithm
and Results of Testing

We have compared accelerated algorithm of least-
squares approximation of signals by exponentials
based on the information about the first and second
derivatives and the algorithm of order zero, which
operation do not need information about derivatives.
The general scheme of algorithm implementation has
been presented in [3].

Algorithms were differed by a objective func-
tion minimization method and a volume of using
information. Algorithm on base of the objective func-
tion values uses the Nelder-Mead method of the
minimization. Algorithm using additional informa-
tion about values of the first derivative includes a
conjugate gradient method. Algorithm using addi-
tional information about values of the first and sec-
ond derivatives includes a modified Newton method.

The proposed algorithms have been tested using
numerical simulated data. The data used are de-
scribed by the formula (2) with adding white com-

plex Gaussian noise sequence with variance 207.
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Fig. 3. MSE as function SNR for the different algo-
rithms

1 — with Nelder-Mead method;

2 — with conjugate gradient method;

3 — with modified Newton method;

4 — matrix pencil method,

5 — Prony’s method;

6 — Cramer-Rao bound.
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The mean and variance of the locations have been
estimated over 2500 trials were calculated. The
model parameters were w; = —27 - 50, Aw = 27,
N=101,n=1,n=1,4 =03,% =0.8.
Obtained values of mean square error (MSE) of
location estimations versus SNR are presented in
Fig. 1. Time of calculation for processing by means
of different realization of algorithm as function of N
is shown in Fig. 2. Comparison of the algorithm and
traditional algorithm (matrix pencil method and
Prony’s method) has been carried out for the same
model with other parameter ¢, equals 0.31. The re-

sults of comparison are presented in Fig. 3.
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YCKOPEHHBIN AJITOPUTM
ANIITPOKCUMAILIMM CUTHAJIOB
3KCIHOHEHTAMHY METO0OM
HANMEHBIINX KBAJIPATOB JIJISI
IIUPOKOIIOJIOCHOM
PE®JIEKTOMETPUU B YACTOTHOM
OBJIACTH

M.B. Anopees, O.0. [pobaxun, K.A. [Jembanuyk

B cratbe paccMOTpeHa BO3MOMKHOCTb YCKOPEHHUs all-
MPOKCHMAIMM CHTHAJIOB JKCIIOHEHTAaMHM METOIOM HaM-
MEHBIINX KBaApaToB. J{jis 3TOro GbUTH MONyYEHBI aHATTUTH-
YeCKHE BBIPAXKEHHS JJIs1 KOMIIOHEHT BEKTOpa IpaJHeHTa U
matpunsl ['ecce ontumusupyeMoit GyHKIMU. Bt ckoHCT-
PYHpPOBaH AITOPUTM IIOWMCKa KBasupemreHus. Mcmoms3oBa-
JIMCh METOJ COIPSDKEHHBIX TI'PaJUEHTOB M MOAU(PUIMPO-
BaHHBIH MeTon Herorona. IMomydeHHBIC aNTOpUTMEI OBLIH
cpaBHEHBI ¢ Momudukanuei Mmerona Hennepa-Muna, koto-
PBIii HCTIOJIB3yeT HHOPMALIUIO TOJIBKO O 3HAYEHHSIX OITH-
Mu3upyemoi GyHkuuu. BpiTo MpoBeeHO cpaBHEHHE HOBO-
ro MeTofa ¢ MeTooM IIpoHK 1 METOIOM ITydKa MaTpHIL.

IMPUCKOPEHMI AJITOPUTM
AIMPOKCHUMAIIIl CUTHAJIIB
EKCIIOHEHTAMM 3A METOJIOM
HAMMEHIINX KBAJIPATIB JIJIS1
IMAPOKOCMYT'OBOI
PE®JIEKTOMETPIi B YACTOTHIN
OBJIACTI

M.B. Anopees, O.0. [ipobaxin, K.A. [lembsanuyx

VY cTaTTi pO3risHYTO MOXJIMBICTH MPUCKOPEHHS ari-
pOKCUMAIii CUTHAJIIB €KCIIOHEHTAMH METOZIOM HafMEHIINX
kBanpatiB. s mporo Oyino OTpUMaHO aHAJITHYHI BUPA3d
JULsL KOMIIOHEHT BEKTOpa rpajieHta ta Marpuui I'ecce dyH-
KUii, 10 ONTHUMI3Y€ThCsl. ByJIO CKOHCTPYHOBAHO aJIrOpHTM
HOLIYKY KBa3ipo3B’s3Ky. BHKOPHCTAHO METO[ CIPSHKEHHUX
rpaaieHTiB Ta MoaudikoBanuii Mmeron HeroToHa. OTpumani
anroputMu Oynu nopiBHsHI 3 Mogudikauiero meroxy Hen-
nepa-Miza, sSiKuii BUKOPHCTOBYE iH(GOPMALIO TiIBKH TPO
3Ha4eHHS (yHKUii, O0 onTuMi3yeThes. Byno mposenene
TIOPiBHSHHS HOBOTO METOJY 3 MeTonoM [IpoHi Ta MeTogoM
Iy4Ka MaTpPHLb.
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