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The work deals with the optimization problem of impulse source field minimization in the shadow region of
a convex body with variable surface impedance. The optimal impedance is searched using uniform asymptotic
methods and Ritz method for functional minimization. Numerical results are presented for the Gaussian impulse

source.

1. Introduction

The modern means of transport, such as air-
crafts, can contain several dozens transmitting and
receiving antennas aboard. Each of these antennas is
the potential source of the interference for the others.
The most difficult situation arises when the transmit-
ting and receiving signals are wideband, and espe-
cially if the signals’ spectrums are overlapped.

That is why the developers have to take appro-
priate steps to decrease the undesirable reciprocal
effects. This can be made, for example, by means of
the optimal positional relationship, or directional
patterns correction, or by means of the various cover-
ings.

This work presents a method of the body imped-
ance (or covering) distribution determination, under
which the field of the first antenna is the lowest on
the second one. It is based on the well-known asymp-
totic methods of field determination — Geometrical
Theory of Diffraction (GTD), Uniform Asymptotic
Theory (UAT) [1] and Ritz method for functional
minimization [2].

2. Problem Setting

Let us consider the following problem: The

point of observation M is situated in the shadow
region relative to point source M, (Fig. 1).
We will study the case of E-polarization. The case of
H-polarization can be considered in a similar manner,
but with the significant restriction: the impedance of
the body can’t tend to infinity.

The body is bounded by the smooth curve .
The curvature radius of [ is pcs>, where s is the

natural parameter of [. The impedance of the body
g (s> can be any smooth complex function of s with
the only restriction |g¢s>| = O(1). Enter the coor-
dinates (s,n) where n is the length of the perpen-

dicular dropped to the body from a point, and s is the
natural parameter of the meet point of the body and
the perpendicular.

The point source is supposed to emit the follow-
ing wave:

U(7,t) = UpF()6(7 — 1), M

where U, is the amplitude of the source, F'(t) — ar-
bitrary time-dependent multiplier, and §(7 — 7)) —
the two-dimensional delta function.

We are looking for the function g¢cs>, which

minimizes the field of the source at the observation
point M.
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3. Solution

The pulse radiation of the source can be pre-
sented in time domain as Fourier integral:

UoS (7

U7, = 2

f@(w)exp(—wt)dw ,(2)

—00

where w, ®cw> are the cyclic frequency and the
Fourier amplitude respectively. The field in the
shadow region can be then presented in the form:

U(#t) =
UO S . SN
gf_ocq)(w)exp(zwt)G(r,ro | w)dw , (3)

where G (7,7, | w) is the Green function of the prob-
lem, identical to the initial, but with the monochro-
matic source. We assume that the Fourier amplitude
dcw> tends to zero outside the region
|w—wy| ~N/7, where 7 is the characteristic
time of the impulse, and therefore the interval of in-
tegration in (3) can be decreased to the interval that is
not likely to exceed [wo —wpy /2,wy + wy /2] In

this case the solution is valid if aw /2¢ ~ 10 or lar-

ger (a is the characteristic dimension of the body).

The Green function G (7,7 | w) can be calcu-
lated using GTD formulas for the creeping waves if
both the point source and the observation point are
far enough from the body. If the points are close to
the body, the asymptotic formulas of V.M. Babich
and V.S. Buldyrev [1] should be used:
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where w; (2>, w,’ (x> are the Airy function of first or-
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der and its derivative w; (z> = 2e 6 TAz(ze );

&, is the p-th root of the equation w; (&,)=0;

v =nk?? and oy, T(&M) are defined by the
following formulas:

Qp (8> = 21/3512
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The represented formula is inapplicable when
|gcs>| — 0, and therefore the situations with small
impedances should be avoided during the optimiza-
tion procedures. It is also inapplicable for the low
frequencies w and, consequently, for the low fre-
quencies wy .

In order to solve the initial problem we have to
minimize one of the following functionals:

F(ges)=|U(gcs>; M, M),
By (gcs») = max|U (g<s>; M + 6M;, My, (5)
Fy (gcs>) = max|U (g cso: M, My + 8My')|-

The functionals F53 can be used if the source or the

observation point varies within the defined limits.
They also allow estimating the stability of the results
against the deviations of the initial conditions.

The problem of the functional minimization can
be reduced to the problem of function minimization
if we assume that the impedance can be expanded in
the following series:

N
gs>=> a,f, s>+ Ry s>, (6)
p

where f, (s> are members of the set of orthogonal

functions that is complete in the space of the func-
tions looked for, and Ry (s> is the remainder [2].
When we put (6) in (4), we don’t further need to find
the function gcs>, but a finite number of the coeffi-

cients a, which minimize one of the functions (5).

There is a great variety of function minimization
methods. In the present work the method of Nelder
and Mead [3] has been used, though the other meth-
ods, for example [4], are also applicable.
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4. Numerical Results

In order to test the method, it was applied to the
problems of scattering on circular, elliptic and para-
bolic cylinders. Fig. 2 shows the typical behavior of
the Green function (4) while the frequency varies and
the other parameters are constant. (p = const;
kp = 40..120 ; n=0.1p;
ng = 0.2p).

The field damps exponentially with the fre-
quency increasing and in the limit tends to zero,
which corresponds to the geometrical optics. The
amplitude of the field depends upon the impedance
of the body and the geometry of the problem.

The amplitude dependencies on the real and
imaginary parts of the impedance are shown in
Fig.34 (5o =0; s=7m; n=ny =0.1; p=1;
kp = 10, monochromatic source). Fig.3 corre-
sponds to the case Re(gc¢s>) = const = £1, and
the Fig. 4 — to the case Im(gcs>) = const = £2.
The dependencies have extremums at the small real
(imaginary) parts of the impedance, and have the
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common limit if Re(g) — +oo (Im(g) — F+o0).
This allows to solve both the problem for minimiza-
tion and maximization of the field. It is evident from
Fig. 3, 4 that the minimum of the field for the circle
can be reached only if the real part of the impedance
becomes negative, at least in a small sector, and the
maximum — only if the real part becomes positive, at
least in a small sector.

Consider then the simplest impulse source with
the following time-dependent multiplier:

Ft) = cos(wyt)exp(—(t/7)).
The Fourier amplitude of the signal is:

—(w — wy)? 72

Pcw> = T7VTexp 1

At the observation point the spectrum of the
signal shifts toward the lower frequencies as a conse-
quence of the damping of the Green function (4).
This situation is shown in Fig. 5 (the geometry of the
system is the same as in Fig. 2).
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As a result of the spectrum shift and distortion,
the signal at the observation point has lower carrier
frequency, than the initial signal, and the pulse dura-
tion increases. The waveforms of the initial signal
and the signal at the point A/ are compared in Fig. 6
(time axes are shifted).

The results of the minimization procedures for
the case with the single creeping wave are close to
each other and to the result of monochromatic source
irrespective to the method of time averaging (the
maximum of the amplitude during the pulse time or
root-mean-square sum of the amplitudes). Fig. 7
shows the impedance distribution that minimizes the
field in the vicinity of the parabolic cylinder
(kF =10...20, where F is the focal distance;
s =—F; s=F; ny=0.0F; n=01F;
Re(gcsyy = —1).
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For the cases with several creeping waves the
results of the optimization procedures differ sharply.
In these cases with the monochromatic source, the
minimization can be reached using the interference of
the creeping waves. For the impulse sources, it can
take place only if the impedance is time-dependent.

5. Conclusions

The proposed method of field minimization in the
shadow region has shown that it can be used for vari-
ous optimization procedures, provided that ka ~ 20
or larger, where a is the typical dimension of the
scatterer. It can also be generalized to the 3-
dimensional case and improved by allowing for sur-
face waves in the case Imgcs> < 0; Regcs> > 0.

As the formula (4) actually presents the Green func-
tion, the method can be easily modified to deal with
distant sources.
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UMIIYJbCHBIA UCTOYHUK BBJIN3U
I'NIAAKOT'O UMITEJAHCHOTI'O TEJIA:
MUHUMMMU3ALUA 1101 B 30HE TEHU

A.A. 3eaeunyes, A.U. Usanos, /1.B. Kamkos

B Hacrosimeit paboTe npeicTaBlIeH METOA ONpesene-
HHS ONTUMAJBbHOTO MOKPBITHS MOBEPXHOCTEH (MOBEPXHO-
CTHOTO MMIIEAAHCa), IPH KOTOPOM JOCTHIAETC MUHUMYM
T10JI1 TOYEYHOTO MMITYJILCHOTO HCTOYHHKA B TOUKE HAOII0-
JICHUSI, PACIIOJIOKEHHONH B TEHU OTHOCUTEIBHO 3TOr0 HC-
TOYHUKAa. MeToJ] OCHOBaH Ha TI€OMETPUYECKON TEOpHH
Ju(PaKIUU ¥ PaBHOMEPHBIX ACHMIITOTHIECKHX METO/ax, a
Taroke Ha METOJIe MUHUMH3AHU (QyHKIIHOHAI0B Putia.

IMITYJBbCHE JKEPEJIO BLJIsA
IIAKOI'O IMIIEJAHCHOT O TUIA:
MIHIMI3ANIA ITOJIA Y 30HI TIHI

A.O. 3ssaeinyes, O.1. Ieanos, /[.B. Kamkos

Y po0oTi mpeACTaBIEHO METOA BU3HAUCHHS OINTHMA-
JBHOTO IOKPHUTTS MOBEPXOHb (IIOBEPXHEBOIO IMIIENAHCY),
IPH SKOMY ZOCSATAETHCS MIHIMYM TIOJIS iIMITYJIbCHOTO K-
perna y TodIli CIIOCTEPEKEHHS, SKa PO3TAIllOBaHA y TiHi Bifl-
HOCHO IbOTO JKepesia. MeToJ1 3aCHOBaHO Ha TeOMETpHYHIi
Teopil mudpakiii Ta piBHOMIPHMX aCHMITOTHYHHX METO-
Jlax, a TAKOXK Ha MeToJi MiHiMizauii pyHkiionanis PiTna.
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