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The behavior of a small ellipsoidal metallic particle with non-linear (on the field) dielectric
function in external alternating field is studied. In electrostatic approach the dependence of the linear
enhancement factor of a local field on the particle’s depolarization coefficient is calculated. The
bistability conditions are found which appears under the account of a non-linearity, its nature and the

boundaries of its existence are examined.

Calculation of the local electric field in small
(compared to the wavelength of radiation) metal-
lic or semiconductive particles with nonlinear di-
electric function shows that the regimes exist
where a given value of the external electric field
may produce several different values of the local
field and the polarization. This, in its turn, re-
sults in instability of the optical properties of the
particles and of the disperse systems containing
such particles. This phenomenon was called the
intrinsic optical bistability (IOB) and has been
intensively studied theoretically, being confirmed
experimentally in connection with different ap-
plications [1-7].

The aim of the present study is a detailed the-
oretical analysis of enhancement of the local field
as well as of the bistability domain (as intensity
versus frequency of the incident electromagnetic
wave) of particular metallic or semiconductive
particle in the electrostatic approximation with
account of cubic nonlinearity of its polarization
with respect to the electric field.

In first section of the paper, we analyze the
local field enhancement inside the ellipsoidal me-
tallic particle embedded into a dielectric matrix in
the case when the incident electric field is parallel
to one of the ellipsoid axes. In second section, the
condition of bistability, the bistability limits as well
as the influence of the system parameters on these
limits are studied in detail for such a particle.

We propose a comparatively simple analysis of
roots of a cubic equation arising in a problem that
may be useful for examination of the instability
domains in the processes which are described by
S-type characteristics.

1. Enhancement of Local Field
in Small Metallic Ellipsoidal Particle

Let the electromagnetic wave falls on the
metallic particle having a shape of rotational el-
lipsoid which is embedded into a dielectric host
matrix The dielectric function (DF) of the parti-
cle depends on a frequency ® and the local elec-
tric field E (inside the particle) and may be pre-
sented in the form [1]

e(w,E)=£(a))+x(m)|E|2, (1)

where x(w) is the complex Kerr coefficient,
g(w) =€'(w) +ie”"(w) is the linear part of DF and
is taken in the Drude form
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Here ®, is the plasma frequency of electrons in
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the metal, v is their collision frequency, €_ is
a constant that may be a function of frequency ®
and depends on a particular metal.

Let the electric vector of the incident wave
E, be parallel to the large semi-axis of the ellip-
soid. It is known [8] that in the electrostatic ap-
proximation (when the wave length of electro-
magnetic radiation is much larger than the parti-
cle typical size), the local field E is uniform and
parallel to E, for arbitrary dependence of

e(m, E). It may be expressed in the form [8]

E=FE,,
(2)
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where F is the enhancement factor, L is
the depolarization factor along the field direction
which in our case coincides with the larger semi-
axis, €, is the dielectric function of a matrix,
and € and €" are real and imaginary parts in
the combination

o g,(0)(1-L)+ Le(w)
1

’

x’ and " are real and imaginary parts of (),
respectively.

Now we consider the case of such small elec-
trical fields when = 0. In this case Eq. (2) trans-
forms into the expression

+1i L.}.—’Y_
(23 z(zz+yz)] i (3)

Here we introduced dimensionless frequencies:
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It is worth noting that ®, is the resonant plasma
frequency of the metallic ellipsoid corresponding
to direction of the electric field along the large
semi-axis. :

Now we analyze the dependence of |F;)|2 ona
frequency ® and the depolarization factor L. It is
clear that the magnitude of |F0|2 considerably
increases when the dimensionless frequency z ap-

proaches z, = (2,2 -9 )]/2 =z, 1. e. the frequen-
cy of incident electromagnetic wave approaches
the surface plasmon frequency (in the limit
Y<K z,).

In particular, at z =z,, Eq. (3) gives (when

,YZ < Z?_)

&
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This function can have the extremum (maximum)
by L in the interval [0, 1]. The extremum point
L =L, can be found from the equation

|Fo| =

(u+0)?(u-20)=3, 4
where oc=e—‘;°—1, 82800__?/['2’ u=l,
€, Y(g,) L

For example, when 8§ <0 or y>|[eZ —g| the
solution of Eq. (4) reads
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For finite 8, Eq. (4) can be solved numerical-
ly. If the point L lies in the interval [0, 1], then
|F0_\,|2 has the maximum in this interval at L =L,
(Fig. 1). If L, is out of the specified interval then
the larger |F0x|2 is realized at L —1. We note
that Eq. (4) possesses only single real root.
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Fig. 1. The enhancement factor |F0s|2 as a function of
depolarization factor L:

1 — a curve IFO_V(L)[2 for a silver particle at
£,=4.5+i0.16 and €,=225 has a maximum
at L,=0.189;

2— acurve |Fo,r ( L)|2 for asilver particleat €., =4.5
and €, = 2.25 has a maximum at L,=1/2

2. Bistability in Ellipsoidal Metallic
Particle with Nonlinear Dielectric
Function

In this section we consider the local field in
the metal ellipsoidal particle with account of the
nonlinear part of £(®, E) in Eq. (1) which can be
found from Eq. (2). Introducing the notations

|x”1§"l2 =X, Y= ‘%’zlxuﬁh‘z we obtain the fol-

lowing cubic equation for the variable X

X +aX?+bX =Y, %)

where

A= EX+EX ; b=|8|2'
x|

This is the master equation for further analy-
sis. It determines the dependence of the “local
field” X on the “applied field” Y, frequency ,
and other parameters of the system that are hid-
den in coefficients a and b. The enhancement
factor is given by a simple relation
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Further, we will be interesting only in the
real and positive roots of cubic Eq. (5). If this
equation has one real positive root then the lo-
cal field in the inclusion is a single-valued func-
tion of the applied field. If Eq. (5) has three
positive roots then the local field is not a single-
valued function of the applied field, and the
system becomes unstable. Two ways of finding
the root location of the cubic equation is de-
scribed in Appendixes A and B.

Now we analyze the roots of Eq. (5) to find
the IOB domain in the plane (z, X). According to
Appendix A this equation has three real positive
roots provided that conditions (A.8) hold true. In
our case they may be written in the form

a S—x/gl;,
(6
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where
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D=a*-3b;

= (E'X;+€’X/r)2 —3(8'X,+8,X,’)
Ixf

It follows from Eq. (6) that IOB occurs pro-
vided that €”>0, x”>0 and quantities )/, €
have different signs. Below, we carry out a de-
tailed analysis of the case € <0, x'>0.

We consider an example of the non-absorbing
host medium (€] =0) and the metal inclusion
with the dielectric function (3">0 and x"=0).
In this case Eq. (5) takes the form

X3 +2ex2+ef X =Y, @)

where

> 1
g2 =—= 3
27 Z2+Y

3

8’(Z) = 8:(2) +m,

dimensionless frequencies z, z , Y are specified
in the previous section. The first condition (6)
can be written in the form

2B-z(22 - vB)+32ly<0, ®)

where B = (] + ﬁzfef\;) > 0.
To solve the inequality (8), we consider the
cubic equation

ZB-z(z - v'B)+ 3y =0. ©)

This equation according to Appendix B at
zZ-y*B>0 has two positive roots z,, z; and

one negative root provided that its discriminant
Q is negative, the coefficients of this equation
are positive and lie close to the surface plasmon
frequency z® < z2—y*. The boundary frequen-
cies of IOB domain can be found from the cu-
bic Eq. (7):

81
—(z? -7y +z-zfyz <0.

As it follows from the Appendix A, at points
2, and z,, a*~3b=0 (a=2¢; b=le["). The
critical magnitudes of electrical fields in these
points are (the formula A.10)

(yc)z‘_x = (xc )32.3.

At 0=0, z =z, =z, the critical magnitude of
field y,, according to Eq. (9), coincides with the
minimum value of the external electric field when
the bistability occurs in the system. Therefore, in
the case under consideration, the bistability in
the system takes place provided that

LSS 2

= Dx2+ﬂ SYS—Z Dx]+£é .
9 2 9 2

(10)

Roots z,>0, z;>0 can be found from Eq. (8)
which has three real roots.

We may note that from inequality (9) at
¥*B/z? <1 one can get an approximate value of
Y, at fixed B and z;

) 4 wX'*
ol [y ol
8 923( SIB]
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If the collisional damping y>vy, IOB dis-
appears. We can assume that whatever increase
in the damping of the metallic inclusion turns
to the stiffer conditions of IOB. The minimal
critical value of the external electric field of
IOB origin can be found from Eq. (9). It is giv-
en by the relation

gt Lfey i ¥
f[_J [ﬁ“—z)’ ()
€, Ve i o5 T

where z; is the larger of roots z, and z; of
Eq. (7). If €7_ and v tend to zero, the critical
electric field tends to zero as well.

Figs. 22a, 3a show the dependences of x{ES
on x'E,,| at different depolarization coefficients
L=1/5 (2a), and L=1/2 (3a) at the frequency
of electromagnetic field ®=0.2w,. Figs. 2b, 3b
show IOB domains in the plane “intensity” — di-
mensionless frequency of the electromagnetic

'X”E/z
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wave (XI Ehlz , z) (shadow area) which are deter-

mined from the relations (10) near the point z,
(the larger root of Eq. (9)). The functions f; are
given by the expressions

2
9 2. )€

The limiting values of the incident electric field
are shown in Figs. 2b, 3b by dash line at
®=0.20,. The whole bistability domain looks
like an area enclosed into a hysteresis type curve.
Its upper part gets narrowing with increasing the
external field.

We would like to note that IOB in the sphe-
rical metal particle has been studied in [1]. But in
this paper, only one root z, has been used. The
entire domain of IOB was not discussed. More-

Fig. 2. [OB in the ellipsoidal silver particle: €., =4.5, €. =0.16, @,=146-10"s", v=1.68-10"s",
€,=225 L=02 (20blong spheroid z, =0.16, z;=0.26).

- = §2 = -
a) dependence XIEI on xIE,,I at z=2,=0.16; b) IOB domain (shaded area) in the plane (xIE,,lz .z) near

the point z;=0.26 (the larger positive root of Eq. (9))
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Fig. 3. IOB in the ellipsoidal silver particle: €, =4.5, €. =0.16, ©,= 1.46-10'657!, v=1.68-10"s7",
€, =225, L=0.5 (oblate spheroid z, =0.023, z3=0.365).

a) Dependence ZlEIZ on (xIE,,r .z) at- 2=z, =0.023;

=2
b) I0B domain (shaded area) in the plane ( X IE,,I ,z) near the point z;=0.365 (the larger positive root of

Eq. (9)

over, the approximation (9) made in the paper [1]
does not allow one to specify the upper I0B
boundary in the applied field.

Conclusion

The electrostatic response on external elec-
tric field of a small metallic particle with non-
linear DF displays some characteristic features.
Even in a linear approximation () =0), under
some definite values of the system parameters
the extremum appears (at L=0.5, see Fig. 1) on

the plot of the enhancement factor |Fo|2 versus

L, for silver particles its value achieve 500. In
the case x # 0 the bistability appears in the sys-
tem caused by the possibility of existence of the
S-like region on the plot of 1=’1_5"|2 versus
A

It should be noted that the appearance of
such bistability in the problem under consider-
ation (>0 and is real) is possible only when
Reg(w) <0, i. e. in frequency range of the ex-
istence of the surface plasmons in the ellipsoi-
dal metallic particle. The bistability existence

range is determined from the relation (10), and
the minimum value of the external field E;.
at which it appears is found from Eq. (11).
When the electron damping y=0, E, =0.

When v increases, the bistability existence
range by frequency becomes smaller, and at some
value of y it disappears. So, for the case shown
in the “Fig./-2 X|E0|j =0.23. For metals
¥ ~(2+5)-10" m?/V [3]. From here, taking
x=23-10""m?/V we find the estimate
E, = 10° V/m, i. e. the value which is complete-
ly achievable in the current laser systems. In this
connection, the paper [3] should be noted where
the bistability is experimentally examined in the
composite including two-layered spherical parti-
cles (the core is a non-linear dielectric with the
cubic non-linearity, and the shell is a metal), and
its effect is studied on the composite scattering
properties. The results obtained in our paper are
of the principal interest for studying the scatter-
ing and absorption electromagnetic radiation by
small particles in the frequency range where the
bistability considered exists.

Pamnodusuka u paguoacrporomus, 2001, . 6, Ned 349



Non-Linear Bistability of a Small Metallic Particle in Alternating Electric Field

Appendix A

We consider location and motion of roots of
the following cubic equation

£ +ax® +bx+c=0. (A.1)

In the complex plane x=x"+ix" depending on
variation of the parameter c¢. In Eq. (A.1), the
parameters a, b, and ¢ are real. In our case,
b20, ¢c=-y, (y>0), and a may be both
positive and negative. In this paper, we are
interesting under which conditions imposed on
the coefficients a, b, and y this equation has three
(one) real positive roots. It is known that an answer
to this question is given by the Routh — Hurwitz
theorem [9]. The location of roots (A.1)
depending on its coefficients that follows from
the Routh — Hurwitz theorem is given in the

Table of Appendix B. In particular, Eq. (A.1)
has three real positive roots provided that

0<0, b>0, y>0, ab+y>0, (A.2)
where D is a discriminant of Eq. (A.1),
3 2
HY (4
o(5)3)
3
H=—+Db; (A.3)
3
a\oeab
O | P SN
1

One can see that these conditions are rather
complicated for the analysis. Here, we use a sim-
plest way [5]. From the graphical analysis of
Eq. (A.1) one can see that it has three (one) real roots
if extremum points (if they exist) of the function

y=x"+ax® +bx, (A.4)

are positive

X200 x;>0; (A.5)
and any positive y, lays in an interval
¥(%) < ¥y < y(x), (A.6)

where x, < x,. For Eq. (A.1) these conditions can
be written in the form

as— \/@
2 ab 2 ab |
_5[(a2 -3b)x, +7] <y s—g[(a2 -3b)x, +7}

(A.8)

Therefore, the intervals where cubic Eq. (A.1) has
three real positive roots are given by the following
expressions

A(x)=x, —x, =§(a2 —317)1/2 ;

(A.9)

4 :
AG) = (x) = y(r) === (a” = gk

We may note thatat > —3b=0, x,=x, = x, and
Y, =Y =Y, at the same time

B i HiHa
e og ¥ Gilig:

(A.10)
The magnitudes x,, y, specify the critical

values of x and y when three real positive roots
appear in Eq. (A.1).
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Appendix B

Range of parameters Location of roots in a complex plane

x*+ax’ +bx+c=0, 0=(H/3) +(G/2)’ <0, H=-a*/3+b, G=2(a/3)'-ab/3+c

In this case all roots are real

%
ab—c <0, A~
c<0, b>0 (1) —_———tl e ¥
x’
ab—-c <0, A
c>0, b>0 ?2) R e
ab—-c <0, xk
/N
c>0, b>0or (3) -
c>0, b<O
ab—c <0, f\
c<0, b>0or (4) A k- S T g
c<0, b<0

X +ax’> +bx+c=0, 0 =(H/3)' +(G/2)’ <0, H=-a*/3+b, G =2(a/3)’ —ab/3+c

In this case one root is real and two roots are complex conjugated

x
ab—-c <0, S
c<0, b>0 %) ———0—5—) %
ab—c <0, /x\
¢>0, b>0 (6) : o > x
ab—c <0, 3‘:
¢c>0, b>0 or (7) O oo
® > X
c>0, >0 .
xl
ab—c<0, N
[ ] ’
c<0, b>0 or (8) = *—> X
c<0, b<0
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HeaunnelHas OMCTA0HIBHOCTD
MAaJIbIX METAJINIHYECKHX YAaCTHI
B IIEPEeMEHHOM JJIEKTPHYECKOM I10J1e

JI. I. I'peuxo, O. A. /laBbI10BA,
B. M. Orenko, H. I'. Illxona

B pabote u3ydueHo nmoBeneHue Maaoi MeTa-
JIMYECKOM YaCTUILIBI AIITUIICOMAAIEHON (POPMBI BO
BHEIIHEM IMEPEMEHHOM 3JIEKTPUYECKOM II0JI€
C HEJIMHEHHOM (I10 MOJII0) AUAIEKTPUIECKON (yH-

kuued. B a5eKTpoCTaTHYECKOM NPHONHKEHHH
paccyMTaHa 3aBHCHMOCTH JMHEHHOro (aktopa
YCHJIEHHS JIOKAJIBHOTO IOJIS OT KodGduuueHTa
Jenojapu3anuy yactuuel. M3ydyeH xapakrep 6u-
CTaOMIBHOCTH, KOTOpasi BOBHUKAET B CHCTEME
IpH y4eTe HenuHeHHoCcTH. OnpeneneHs! yCIoBUsS
6uCTaOMIBHOCTH U HalJeHEI TPAHULBI €€ CyIIe-
CTBOBAHHUSL.

Heniniiina 6icTabiiepHiCTh MaIHX
MeTaJIeBHX YACTHHOK y 3MiHHOMY
eJIEKTPHYHOMY I10JIi

JI. I'. I'peuxo, O. A. laBuoBa,
B. M. Orenko, H. I'. IlIxoxa

VY po60Ti BUBYCHO ITOBEAIHKY MajIoi MeTaJe-
BOI YaCTHHKH eJIincoinanbHoi popMHu y 30BHIlI-
HbOMY €JIEKTPHYHOMY ITI0JIi 3 HEJIIHIHHOIO (3 Imo-
JeM) JieIeKTpUYHOI (yHKLi€w. Y eneKkTpo-
CTaTUYHOMY HaOIM)XEHHI PO3paxoBaHO 3a-
JICKHICTh JiHIHHOTO (hakTopa MmiJCHICHHS JIO-
KaJIbHOTO IT0JIA BiJ KoedimieHTa qenonspu3amii
9JacTHHKH. BuB4eHo xapakrep 6GicTabinbHOCTI,
sKa BUHUKA€E Y CHCTEMI1 BHACIIIIOK HEJIHIHHOCTI.
3HaleHo YMOBH 0iCTa6GinbHOCTI Ta BU3HAYEHO
rpaHulli i iCHyBaHHS.
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