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TOWARDS THE THEORY OF BRANCHING SPACES

P. L. Fomin ! and Yu. V. Shtanov 2

Bogolyubov Institute for Theoretical Physics,
Kiev 03143, Ukraine

We consider a spacetime of nontrivial topology formed by several pieces having common timelike boundary which plays
the role of a junction between them. We establish junction conditions for fields of various spin and derive the resulting laws of
wave propagation through the junction, which turn out to be quite similar for fields of all spins. As an application, we consider
the case of branching four-dimensional spacetime that may arise in the context of the theory of quantum creation of a closed

miniuniverse on the background of a big mother universe.

1. Introduction

In this paper, we consider the situation depicted in
Fig. 1, which symbolically shows n d-dimensional
Lorentzian manifolds Mg, s = 1,...,n, with com-
mon (d — 1)-dimensional boundary B which thus
plays the role of a junction between them. The bound-
ary B is assumed to be timelike, so that all the respec-
tive inner normal vector fields n‘(’s), sh= e
at this boundary are spacelike. Our aim is to study
the behavior of various fields in the space with the

specified topology.

Fig. 1. Multivolume junction.

Motivation of our investigation is threefold. Firstly,
it could be applied to a situation where the physical
four-dimensional spacetime has a nontrivial topology
that allows for branching of the type shown in Fig. 1.
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Secondly, it can be applied to the study of various
brane-world theories that became popular after the
seminal papers [1]. In these theories, the dimensional-
ity d of the spaces M is usually equal to five, and the
junction B, which is called brane, is four-dimensional
and is identified with the physical spacetime. Thus,
in [2], three-brane junctions of an arbitrary number
of semi-infinite four-branes were under consideration,
and the whole configuration was assumed to be em-
bedded in a six-dimensional spacetime. In this paper,
however, we do not consider the space of Fig. 1 as
embedded in a higher-dimensional manifold. Thirdly,
in the important case d = 2, our investigation may be
applicable to the superstring theory. Configurations of
boson strings of type shown in Fig. 1 with n = 3 were
under consideration in [3].

In brane theories, together with fields in the vol-
ume, one also considers fields whose dynamics is re-
stricted to the brane [1]. Moreover, the action for the
brane may involve the restrictions of some of the vol-
ume fields to the brane; for example, it typically in-
volves the induced metric. However, in this paper, we
restrict attention mainly to the case where the junction
B does not have its intrinsic dynamics and thus repre-
sents what might be called a generalization of an imag-
inary boundary separating two volumes in an ordinary
(non-branching) space to the case where the number
of volumes is greater than two.

As a concrete example of application of our theory,
we consider the case of branching four-dimensional
spacetime (Sec. 6.). The issue of such branching may
arise in the context of the theory of quantum creation
of a closed universe on the background of a big mother
universe [4]. It is conceivable that the created baby
universe does not become spatially separated from the
mother universe, but rather remains glued with it over
some common three-dimensional volume [5]. The cor-
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responding situation is depicted in Fig. 2, which shows
the mother universe M ; and the baby universe M,
glued over the volume Mga. All the three volume
regions M;, My, and M3 may evolve metrically
preserving the topological configuration as shown in
Fig. 2. One of the important physical questions in this
situation is the issue of the behavior of various physi-
cal fields in this topology, in particular, the conditions
of propagation of waves through the junction B which
is the common boundary of all three volume regions.

In approaching this issue, we first establish junc-
tion conditions for fields of various spins (Secs. 2., 3.)
and then consider the resulting laws of wave propaga-
tion through the junction B (Sec. 4.). In principle, the
junction conditions at B may be specified in many dif-
ferent ways. However, with a natural requirement that
the spaces M be treated identically, it turns out that
there are precisely two versions of junction conditions
for each spin. This is one of the reasons why we pay
attention to spaces with the topology specified above
and propose to study them in greater detail.

2. Junction conditions fo'r the metric

We start with considering junction conditions for the
metric because the actions for all other fields involve
ingredients (for example, the volume element) associ-
ated with the metric. In this paper, we consider the
metric g, with signature + — — ... —. The general
action for the metric can be written in the form [6]

S =—M3-2 </MR+2¥/BK(S)>

+/ Ly (2:1)
B

where M is the Planck mass, R is the scalar curva-
ture, and K () is the trace of the extrinsic curvature of
the junction B in the space M ;. We impose the most
natural junction conditions for the metric, namely, that
the induced metric hyp, on B is one and the same in
all the spaces M, s =1,...,n. The Lagrangian L,
in (2.1) depends only on this induced metric.

In this paper, we use the notation and conventions
of [7]. The extrinsic curvature and its trace are defined
as follows:

Kop = h%Veny, K= Kabhab s (2.2)

where hap = gab + Nanp is the metric induced on a
timelike hypersurface. The natural volume elements
are implied in all the integrations over M and B. The
cosmological-constant terms can be added to action
(2.1) for each space M g, and their contribution to the
resulting equations is obvious.

Variation of action (2.1) can be written in the form
(see the appendix of our paper [8])

85= - M?*? [ / Gabbg®
o M
+ / KY) — K©hg,) 6h%
[ (9 1)
+ / oaoh™ . 2.3)
B

Here, G, is the Einstein tensor, o, is the variation
of the last term in (2.1) with respect to ha? | and the
variation §h®® is completely determined by the varia-
tion dg® of the metric in M. Note that the Gibbons—
Hawking boundary terms [6] in action (2.1) are re-
quired to consistently obtain the Einstein equations in
the respective volume spaces without restricting varia-
tions of the metric at the junction B.

Besides the metric, we may have additional fields
& that propagate in the volume and fields ¢ whose dy-
namics is restricted to the junction. Some of the fields
(¢ may represent restrictions of some of the volume
fields @ to the junction.

The additional set of junction conditions obtained
with the account of (2.3) is then

s i
> (K,(zb) e K(s)hab) T (oab + Tap) , (24)

where 743 is the variation of the action for the men-
tioned additional fields with respect to the induced
metric h®®.

3. Junction conditions for other fields

A complex scalar field ¢ with mass m is described by
the action

5= / [VadVed — m?¢¢] G.1)
M

where the bar denotes complex conjugation, the inte-
gral is taken over the whole manifold M = U M,
shown in Fig. 1, and the natural volume element is im-
plied. The derivative V,¢ may involve contribution
from the gauge vector field.

In formulating the junction conditions at B, we
proceed from the following natural principles. Let
¢(s) denote the restriction of the scalar field ¢ to
the space M. We are going to relate the value of
¢(s) with the values of ¢y, 7 # s at the junction.
This relation must be linear (in order to respect the
superposition principle), and the spaces M s must be
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regarded as physically identical. With these require-
ments, we arrive at the following general junction
conditions at B:

¢(s)=az¢(’r)a s=1,...,n, (32)
T#S

where « is some constant to be determined. Possible
values of « are obtained from the additional require-
ment that the junction conditions (3.2) allow for non-
trivial solutions at the junction. This gives only two
possible values of the parameter «:

and a=-1. 3.3)

s

"
Notably, the condition a = 1/(n — 1) simply implies
the continuity of the scalar field in the space M =
UsMs, i.e., the condition ¢(1) = ¢2) =+ = P(n),
while the condition a = —1 leads to the single equa-
tion ) ) = 0. To obtain other conditions at the
junction, we vary the action respecting the junction
conditions (3.2) and demanding that the variation be
zero. General variation of action (3.1) is given by

88 = — / (66 (V*Va+m?) ¢
M
+6¢ (VaV, +m?) 4]
-+ Z/B (55(3)Va¢(s) T 5¢(s)m(3)) n'(zs) .3.4)

According to the value of « in (3.2), we obtain, be-
sides the Klein—Gordon equations of motion in the vol-
ume, also the additional junction conditions.

The junction conditions for the vector field are ob-
tained in quite a similar way. We summarize the junc-
tion conditions for the scalar and vector field in the two
corresponding cases as follows:

31 A.Caseof a=1/(n—1):

b)) =@,  LsnlyVade) =05 (3.5
la a
Ay = Al(lq) g b F&?ﬂﬁ” =0. (3.6

3.2. B.Caseof a = —1:

Y ) =0, nf,Vady) =n8 Vadg ; G.7)
s
fla _
> A5=0,

Here, All* denote the components of A® tangent
to B.

Pl kit~ (18)

Both sets of junction conditions (3.5) and (3.7) im-
ply the sum rule for the components of the conserved
current J, = i (Vg — V) normal to the junc-
tion surface B:

> ntsJ) =0, (3.9)

The junction conditions (3.5) also imply that the com-
ponents of the current along the junction surface B are
the same in all the volume spaces.

In the case n = 1, i.e., where there is only one vol-
ume space with boundary, the junction conditions of
type A [Egs. (3.5), (3.6)] become the Neumann bound-
ary conditions, while the junction conditions of type B
[Egs. (3.7), (3.8)] become the Dirichlet boundary con-
ditions. Thus, the junction conditions obtained above
can be regarded as respective generalizations of the
mentioned boundary conditions to the case of n > 1.

Now we turn to the Dirac field. We need to relate
the spinor fields 9(5), s = 1,...,n, as we reach one
and the same point at the junction B moving in dif-
ferent spaces M. The specific feature of the Dirac
field is that it is referred at each point to a particular
orthonormal basis (called tetrad in the case of d =
4). Thus, at each point z € B, we have to choose
n orthonormal bases, one in each space M, s =
1,...,n,torefer the corresponding values of the Dirac
field to these bases. For a convenient formulation of
the relations between these values, the n bases are to
be chosen in a coherent way. We choose d — 1 of the
basis vectors {e},e3,...,e5_,} atany point z € B
to be arbitrary orthonormal vectors tangent to B, the
same for all the spaces Mg, s = 1,...,n. Then the
d-th vector of the orthonormal basis in each space is
determined uniquely up to sign, and we choose it to be
the inner normal vector n‘(’s) s Y= A1 v Atespec-
tively, in each of these spaces.

Next, it is clear that the spinor at one side of
the junction B may be related not only to the corre-
sponding spinors themselves at the other n — 1 sides,
but also to their values in the bases reflected in the
plane tangent to the junction B expressed through
the corresponding matrix operator of reflection N =
Ya+17Y*Ma , Where 7441 is the d-dimensional analog
of the four-dimensional 5 matrix, which obeys the
relation N2 = 1.

Referring the reader to the details of the derivation
presented in our paper [8], we formulate the resulting
junction conditions for the Dirac field:

2
(lﬂ:N)lﬂ(s):EZ'l/)(r), s=1,...,n. (310)

In the particular case of n = 2, we obtain precisely the
conditions which imply continuity of the Dirac field
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all over M. As in the previous cases, we will refer to
the junction conditions (3.10) that differ in sign as to
the junction conditions of type A and B, respectively,
although in the case of the Dirac field, there is no qual-
itative difference between them.

As in the scalar case, the junction conditions (3.10)
imply the sum rule (3.9) for the components of the
conserved current J® = 15%) normal to the junction.

4. Wave propagation through the
junction

In this section, we apply the equations obtained to
the particular interesting case of wave propagation in
the space shown in Fig. 1. We shall derive the laws
of wave transmission through and reflection from the
junction B.

First, consider the simple case of a scalar field.
Let, in the region M, a wave that obeys the Klein—
Gordon equation and propagates towards the junction
B be denoted by ¢§+>. We denote its value at B
by ¢p and its derivative normal to the junction B by
P = n‘(ll)Vad)(lH. Then the wave which we call

the reflected wave and denote by ¢§‘) is constructed
by imposing the same values at the junction, ¢§_) =
¢, and by reversing the sign of the derivative nor-
mal to the junction B: n‘(‘l)Vatbg_) = —¢g. For
example, in the case of propagation in a flat space-
time M with the surface B described by the equation
21 = 0 in the natural spacetime coordinates t, z =
(z1,22,...,24-1), the plane waves of this kind will
be given, respectively, by ¢§+) = exp(—iwt + ik - z)
and ¢§-) = exp(—iwt+ik’-z), where the wave vector
k' is obtained from k by reversing its z;-component.
The waves ¢§‘), s = 2,...,n, propagating away
from the junction, respectively, in the regions M,
§ = 2,...,n, are constructed by imposing the bound-
ary conditions ¢§“) = ¢s, n‘(‘s Vaq}g_) = —¢g,
s =2,...,n, at the junction B. We will assume that
solutions with the boundary conditions imposed exist
globally in Mg, s =1,...,n, respectively.

We are looking for a solution that contains both
waves falling towards B and reflected from B in the
region M, but only waves propagating away from B

(transmitted waves) in the regions M, s =2,...,n.
Thus, we set
b1=01" +ps,
¢S=Ts¢.(s—)3 s:2,...,n, (41)

where p is the amplitude of wave reflection and 7,
are the amplitudes of wave transmission to the spaces
Ms, s =2,...,n, respectively.

To determine the amplitudes of reflection and trans-
mission, we apply the junction conditions obtained in
Sec. 3. In the case of the junction conditions (3.5), we
obtain the system

l+-p=m=173="'+ =179,

o 4.2
1-p—‘23=27’5=0’ ( )
with the solution

7'2:7'3=...=7-n:2/n,

In the case of the junction conditions (3.7), we get the
system

l+p+30 ,7 =0,

l-p=-—Tp=-Tg=::=—Tn, it

and the solution that differs from (4.3) only in the sign:

p=(n—-2)/n,
T2=T3="'=Tn=“2/n. (45)

We see that, in both cases, the same amount of energy
(the fraction (n—2)2/n?)is reflected back to the space
M and the same equal amount of energy (the fraction
4/n2) is transmitted to each of the n — 1 spaces M,
$=2; kT

The results for the case of vector fields and for
weak gravitational waves are essentially the same. For
the vector field, we introduce the wave Af,+) propa-
gating towards the junction B in the region M; and
construct the reflected wave A%~ by keeping the com-
ponent A,‘l tangent to B intact and by reversing the
sign of the value of F'%n,, at B. For a weak gravita-

tional wave, we introduce the similar field ¢ gg) and

construct the corresponding reflected wave § gl(l;) by
keeping the perturbation of the induced metric dh 41
at B intact and by reversing the sign of the pertur-
bation of the extrinsic curvature 6K, at B. Then,
proceeding in precisely the same way as we did in the
scalar case, we obtain the same amplitudes of reflec-
tion and transmission. Again, the only difference be-
tween cases A and B of Sec. 3. for the vector field is
in the relative phases (signs of the amplitudes) with
which the waves are reflected and transmitted. The re-
flection and transmission amplitudes for gravitational
waves will be given by (4.3).

The case of propagation of the Dirac field is also
considered quite similarly to the scalar case. We de-
note by ¢§+) the wave that propagates towards the
junction B in the region M, and by ¥ we denote
its value at B. Then the reflected wave 1/)§—) is con-
structed by imposing the reflection boundary condition
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1/;%“) = N at B and by subsequently solving the
Dirac equation in M. Similarly, the waves that prop-
agate away from B in the spaces M;, s = 2,...,n,
are constructed by imposing the conditions 1/),5_) =
Nt at the junction B and by subsequently solving
the Dirac equation in M . We assume that such so-
lutions exist globally in My, s = 1,...,n, as will
be the case in a flat spacetime with a flat junction hy-
persurface considered while discussing the scalar case.
With waves thus constructed, we set

=94+ 1),
Y =TT, s=2,...,n. (4.6)

Again, p is the coefficient of reflection, and 75, s =
2,...,n, are the corresponding coefficients of trans-
mission of waves. With the upper sign in (3.10), we
obtain precisely the set of equations (4.3) while, with
the lower sign in (3.10), we get precisely the system
of equations (4.5). Thus, we conclude that the laws
of wave reflection from and transmission through the
junction B are similar for all the spins considered.

5. Green functions in flat branching
spaces

In this section, we consider the simple case of flat
spaces M, with flat common timelike boundary B
(see Fig. 1). We obtain the expressions for the Green
functions in such a space.

In each space Mg, s = 1,...,n, we can choose
natural coordinates z = {z1,...,24} in such a way
that the junction B is the boundary surface z4 = 0 of
the volume z4 > 0, and the coordinates z1,...,2q_1
in the spaces M are naturally identified at the junc-
tion. Let G(z,2') = D(zy —,...,%q — z;) be any
Green function (retarded, advanced, causal, etc.) for
the scalar field in the Minkowski space. Then, the cor-
responding Green function in the space M = U M
is easily constructed by the method of images. We in-
troduce the function G(z,2') = D(zy —21,...,2q4+
;). Then the Green function G p¢(z, ') in the space
M is given by

Gum(z, ')
G(z,z')i;é(m,m’), z~z,
n
= 3 .1)
:t; G(z,z'), x4,

where the notation  ~ z’ means that z and z’ are
in one component M, and z ¢ =’ means that z and
' are in different components M ;. The upper sign in
(5.1) corresponds to the junction conditions (3.5), and

the lower sign corresponds to the junction con-
ditions (3.7).

Similar relations can be obtained for the Green
functions of the vector and Dirac fields. For exam-
ple, in the case of the Dirac field, the Green function
G(z,2') = D(z1 — 24,...,2q — ;) is a matrix
with spinor indices. Then we introduce the function
G(z,o') = ND(z, — zi,...,zq + z;), where N is
the usual matrix of reflection acting on the index cor-
responding to the argument z’, and, using the junction
conditions (3.10), we arrive at the same form (5.1) for
the Green function.

Using expressions (5.1), one easily can obtain the
renormalized vacuum stress-energy tensor. It is given
by the derivatives of the Hadamard function renor-
malized by subtracting the Hadamard function for the
Minkowski space (see [9]). We obtain

2—n

<Tab)A =g (Ta )B = (Tab>5\ =1 ) (52)
where the labels ‘A’ and ‘B’ correspond to the junc-
tion conditions of type A and B, respectively, and the
expressions for (Tab)f(t;l) are standard and can be
found, e.g., in [9] and references therein.

The stress-energy tensor (Tab)f,‘"zl) typically di-
verges as ¢4 — 0. For example, for a massless scalar
field, we have [9]

(Top) 01 = (5.3)

1672z .
If stress-energy tensor of such form must be added to
the matter side of the Einstein equation in the volume,
then its presence is inconsistent with the assumption
that the spacetime is flat. This constitutes a well-
known problem for curved spaces and spaces with
boundaries (see [9]). However, we may simply avoid
this problem in the case under consideration by requir-
ing that exactly two copies of each field are present
in the theory, one with the junction conditions A, and
another with the junction conditions B. Then their
contributions to the renormalized stress-energy tensor
will cancel each other, as is clear from Eq. (5.2). Ad-
ditionally, we must also consider quantum fluctuations
of the metric that are expected to result in an effec-
tive regularization of the stress-energy tensor in the
junction region. This will be the subject of the future
investigations.

6. Branching universe and universe with
boundary

First, let us consider a universe with spatial three-
dimensional topology as shown in Fig. 2. Here, we
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have three spaces M, My, and M3 with topology
of a three-dimensional disk bounded by the common
surface B that has topology of two-sphere.

Fig. 2. Branching universe.

We assume that the topology described may arise
in the context of the theory of quantum creation of
a closed universe on the background of a big mother
universe [4]. It is conceivable that the created baby
universe does not become spatially separated from
the mother universe, but rather remains glued with it
over some common three-dimensional volume. Then
Fig. 2 can be interpreted as showing the mother uni-
verse M and the baby universe M glued over the
volume M3j. All the three volume regions M, M,
and M3 that have common boundary B may evolve
(expand or contract) preserving the topological con-
figuration shown. One of the important physical ques-
tions in this situation is the issue of the behavior of
various physical fields, in particular, of the metric, in
this topology.

Consider the case where the metrics of the pieces
M, My, and Mgj are the usual Friedmann—Robert-
son—Walker metrics given by the line element

ds? = dt* — a®(t) [dx* + f2(x)d] , (6.1)

where
sin x foneass =il
fx) = x for k=0, (6.2)
sinh x for k=-1,

dSYy is the line element of the unit two-spherical ge-
ometry, and the discrete parameter « indicates the type
of the spatial geometry. The time coordinates ¢, the
scale factors as(ts), the angles X, and the functions
fs(xs) specified by the numbers k, are to be intro-
duced for each space M, s = 1,2, 3, separately.

We consider the junction conditions (2.4) for the
metric field in the absence of contribution to the right-
hand side. Let the position of the junction B be de-
scribed by the function x = x.(t) in the metric (6.1).
The components of the extrinsic curvature of the junc-
tion in the part of the space x < x. are given by

d ax

= e (63)
*[V1- ()

. = [ax o f((x*))] . (64
1— (ax,) aJ (X~

where ¢, j = 1,2 and overdot denotes the time deriva-
tive.

In general, possible motions of the junction in each
of the three pieces of the volume space will be deter-
mined by the junction conditions (2.4), and this is not
an easy problem even in the symmetric case that we
are considering now. One special situation can be an-
alyzed in the case where the three spaces expand in a
similar way so that their Hubble parameters H = a/a
coincide as functions of time, which can be chosen
common to all three spaces. Then solutions exist for
which x, = 0 in each of the spaces, i.e., the junction
expands together with the universe. Introducing the
radius 7 = af(x«) of the junction, we will have the
following condition:

> e\/1— 55 (r/as)? =0, (6.5)

where €, = sign fi(xs«). Note that e, = 1 for hy-
perbolic and flat spatial geometry (ks = —1,0) while,
for spherical spatial geometry (ks = 1), €5 = =+1.
Then, with the topology shown in Fig. 2, one can con-
clude from Eq. (6.5) that at least two of the spaces
M must have spherical spatial geometry. Let these
spaces be M; and M. If, moreover, we suppose
that r < aj,as and €; = €3 = —1 (the situation
actually depicted in Fig. 2) then it is necessary that
the third space M3 have hyperbolic spatial geometry
and r &~ \/§a3. To avoid confusion, we stress that
these conditions are valid only for scaling solutions
under consideration (identical Hubble parameters and
Xx« = 0 in each of the spaces). Also note that we
have not analyzed the matter content of such universes
which is necessary to produce the desired solutions.
Consider now the example of a universe whose
spatial section has an internal and/or external bound-
ary (see Fig. 3). In this case, the boundary conditions
(2.4) with vanishing right-hand side imply vanishing
of the extrinsic curvature of the boundary. Restricting
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Fig. 3. A universe with a boundary.

analysis to the simple case of spherical boundary in
a spatially flat Friedmann—Robertson—Walker space-
time, we obtain the following solution of the boundary

conditions:
q
it (i> :
to

q—1
xt) = vaa-1 (%) . ©6)

where ¢ > 1. The condition ¢ > 1 is a consequence
of the requirement that the boundary be timelike, and
it implies the power-law accelerating expansion of the
universe. As it follows from (6.6), the radius of the
boundary r = a)x in the expanding universe increases
according to the linear law r(t) = /q(q — 1) t. Note
that solution (6.6) can describe both a space with an
outer boundary (a disk) and a space with an inner
boundary (a space with a hole).

7. Discussion

Spaces with topology as that shown in Fig. 1 may nat-
urally arise in various physical contexts, namely, in
the theory of four-dimensional spacetime, in the theory
of brane worlds, and in the (super)string theory. It is
therefore important to study the possible junction con-
ditions at the hypersurface B and their physical conse-
quences. In this paper, after establishing the junction
conditions, we studied the issue of field propagation in
spaces with the specified topology. It turns out that the
laws of wave transmission through and reflection from
the junction are quite similar for fields of all physical
spins.

We considered the particular case of branching
four-dimensional spacetime and presented a partial

solution for the metric with topology shown in Fig. 2.
The aim of the subsequent investigations in this di-
rection will be to investigate the case of branching
universe in more detail and to study their physical im-
plications. One of the ideas is to identify regions of
type M3 in Fig. 2 with the observed voids (see, e.g.,
[10]) in the large-scale distribution of galaxies in the
universe.

String configurations of type shown in Fig. 1 with
n = 3 were studied in [3] with the natural junction
conditions (3.5) for the target space coordinates on the
string world sheet. It would be interesting to study
such configurations in the superstring theory with the
additional junction conditions (3.10) for spinor fields.

In the case of integer spin, one may wish to view
the junction conditions A [with @ = 1/(n — 1)] of
Sec. 3. as more physical than the junction conditions B
(with &« = —1) since, in the first case, the fields are
continuous in the manifold M while, in the second
case, they are discontinuous at the surface B. How-
ever, one should not discard the junction conditions of
type B altogether before studying them in greater de-
tail. This is supported by our example of flat branch-
ing spaces in Sec. 5., which shows that the presence of
fields with both types of junction conditions may lead
to cancellation of certain divergences in the vacuum
stress-energy tensor.
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K TEOPHUHU BETBAIINUXCsI MPOCTPAHCTB

II. A. ®omumn, 10. B. llITanos

PaccmaTpuBaeTcs npocTpaHCTBO-BPEMSi C HETPHBHAJIb-
HOH TOMOJIOrHeH, COCTOsAILEE W3 HECKOJIBKHX KYCKOB, HME-
IOLLHX OO0 BpEeMEHHNONOOHYI0 TPaHHILy, KOTOpas Urpa-
€T POJib COEIMHEHNS MEXK/LY HUMH. YCTaHABIIHBAIOTCS YCIIO-
BHS CIUMBKM JUI MOJIEH PA3JMYHBIX CIMHOB H BBIBOIAT-
€51 3aKOHbI PACTIPOCTPAHEHHUS BOIH Y€PE3 COAHHHTENBHYIO
rPaHMLly, KOTOPbIE OKA3bIBAIOTCA OJAMHAKOBBIMHU JUI MOJEH
BCEX CMHHOB. B KauecTBe MpHIOKEHUS PACCMATPHBACTCS
Pa3BETBJICHHOE YETHIPEXMEPHOE MPOCTPAHCTBO-BPEMS, KO-
TOPO€ MOKET BO3HHKATH B TEOPHH KBAHTOBOTO POXKICHHS
3aMKHYTOH MHHUBCEJICHHOH Ha (pOHe OOJbLIOH MaTepHH-
CKO¥ BCEJIEHHOI.

JIO TEOPIi PO3TAJIYKEHHAX ITIPOCTOPIB

II. I. ®omin, 1O. B. IlITtanos

Po3srnsnaeTbest 4ac-npocTip 3 HETPHBIANBHOK TOMOIO-
ri€lo, SAKMH CKJIANA€ThCA 3 KiNIbKOX IIMATKiB, 10 MAIOTh
cninbHy YaconomibHy Mexy, 3’€aHyiouy iX. 3HAXOAATHCH
YMOBH 3LIMBKH JUTS TOJNIB 3 PI3HUMM CIIHAMH Ta 3aKOHH
PO3NOBCIOKEHHS XBHIIb KPi3b MEXKY, sIKi BHABISIOTHCS O~
HAKOBHMH JUIsl yCiX CriHiB. SIk mpHKiIan 3aCTOCYBaHHS PO3-
MISAAAETBCA PO3Tady/KEHHI YOTHPHBHUMIPHHI 4ac-mpoCTip,
AKHI MOKe BHHHKATH Y TEOPii KBAHTOBOIO HAPOIKEHHS 3a-
MKHYTOTO MiHIiBCECBITy Ha (DOHI BEIHKOTO MATEPHHCHKOTO
Bceecsity.
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