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ADELIC QUANTUM COSMOLOGY
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Adelic quantum cosmology is an application of adelic quantum theory to the universe as a whole. Adelic approach takes
into account all archimedean and non-archimedean geometries based on real and p-adic numbers, respectively. Calculation of
the corresponding adelic wave function of the universe exploits Feynman’s path integral method. In this contribution we will
give a short review of p-adic numbers and adeles, as well as motivation and formulation of adelic quantum cosmology. Adelic
wave functions for a few minisuperspace models will be presented. There is some discreteness of minisuperspaces, which is a
consequence of p-adic quantum effects and depends on adelic quantum state of these models.

1. Introduction

According to classical mechanics, space and time are
continuous, and distances can be in principle mea-
sured by any accuracy. However, in quantum mechan-
ics there is the uncertainty relation AzAk > #/2 that
imposes a restriction on simultaneous measuring of
position z and momentum k. Moreover, quantum
mechanics combined with general relativity yields [2]
Az > Iy = (Gh/c®)Y? ~ 10~%5m, i.e. the Planck
length is the minimum one which can be measured.
Thus, nothing can be said about the structure of space-
time beyond the Planck scale. In fact, this result is
derived using concepts of archimedean geometry and
real numbers. Due to this reason it seems to be quite
natural at the Planck scale to take into account also
non-archimedean geometry based on p-adic numbers.
Mathematically (Ostrowski theorem), any nontrivial
norm on the field of rational numbers @ is equivalent
either to the absolute value |-|, or to the p-adic norm
| - |p (p is a prime number). Completions of @ with
respect to the absolute value and p-adic norm give the
field of real numbers R = Qo and the fields of p-
adic numbers @, respectively. Any p-adic number
[3,4] € Q, can be presented as

oo
e=pt Y op'i ts =01 p=1 ¢ ()
=0

v € Z. If we wish to take into account all possible
geometries to study our universe, then a natural math-
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ematical instrument to do that is just adelic theory. An
adele [5] a is an infinite sequence

=005 02555 0nsecs)s (1.2)

where ao, € Q is areal number and a, € Q, is a
p-adic number, with restriction |ap|, < 1 for all but
a finite number of p. The set of all adeles A is a ring
under componentwise addition and multiplication. An
additive character on A is

x(zy) = [ [ xv(@vy) = exp(—2mizooyoo)
v

x [[exp@mi{zpyp}p), =z, € A, (13)
p

where {a,}, denotes the fractional part in expansion
(1.1) of ap. In the case of map f : Q, — C (also
Qs — C) there is well defined translatory invari-
ant Haar measure dz with the property dp(az) =
|a|pdz, a # 0. We use here the Gauss integral

/ Xp(az? + bx)dx
|z|p<p”

pYQp7[blp), |dal, < p=7,

Ap(a) b2

= (L) (1.4)
xQp~5le),  |alp >p~?,

v € Z, where A\p(a) is the arithmetic function for
which holds [3] [Ap(a)lec = 1, A(a)A(—a) = 1,
Aac?®) = Aa), Ap(a)Xp(b) = Ap(a + b)Ap(a™ +
b~1). The characteristic function Q in (1.4), defined
by Q(u) =1if u <1 and Q(u) =0, if u > 1, plays
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arole of a vacuum state in p-adic quantum mechanics.
Since 1987, there has been a significant investigation
in construction of physical models with p-adic num-
bers and adeles (for a review, see [3]).

2. Adelic quantum mechanics

Since field of p-adic numbers @, is totally discon-
nected, there is no possibility to define p-adic "mo-
mentum” and “Hamiltonian” operator on appropriate
way. This operators in the real case are infinitesimal
generators of space and time translations, but in p-adic
case these infinitesimal translations become meaning-
less. In p-adic quantum mechanics [3] also multipli-
cation qip — z1 (x is a position coordinate, 7 is a
wave function) has no meaning because z € @, is
a p-adic and 9 € C'. But finite transformations are
meaningful and the corresponding Weyl and evolution
operators are p-adically well defined.

Dynamics of p-adic quantum models is described
by a unitary evolution operator U(t) in terms of its
kernel KC

Kelz", 2)0(x)dz’(2.1)
Qp

Up(t)ip(a") =

Ordinary and p-adic quantum mechanics can be
unified in the form of adelic quantum mechanics which
is a triple [6]

(L2(A),W(2),U(t)), (2.2)

where Ly (A) is the Hilbert space of complex valued
functions of adelic variables, W (z) is a unitary rep-
resentation of the Heisenberg-Weyl group on L3 (.A)
and U(t) is a unitary representation of the evolution
operator on Ly(A).

In adelic approach eigenvalue problem for U (t)
reads ;

U(t)"/’aﬂ(m) = X(Eat)waﬂ(x)’ 2.3)

where 1,3 are adelic eigenfunctions, B, = (Ex,
Ey, ...,Ep,...) is the corresponding energy, indi-
cies a and (3 denote energy levels and their degener-
ation.

Adelic eigenfunction [6] has the form

V(&) = Yoo (o) || plzp) [ Qlzsls), 24)

pEM pEgM

where z € A, Yo € La(R), ¥p € L2(Qp) and M
is a finite set of primes p.

Kernel of the evolution operator (2.1) is given by
the p-adic Feynman path integrai

K:p(m”,t";:c',t') = /

(@',t)
t,l

= / Xp (— L(q, q)dt) Dgq(t) (2.5)
tl

(with the Planck constant A = 1). For the systems
with quadratic actions (in the case of n uncoupled
degrees of freedom) this p-adic path integral has the
form [7]

(z",t")

Xp(—S[q])Dg

1 29%8
Kp(@a,t"; 2, t') = Ap (_§W>
I e
X |3maar|  Xp(=5(6,t"25,1), (26)
(e «@ P
where @ = 1,...,n. Note that expression has the

same form as in standard quantum mechanics.

3. Adelic quantum cosmology

Adelic quantum cosmology is an application of adelic
quantum theory to the universe as a whole. Adelic
quantum theory unifies both p-adic and standard quan-
tum theory [6]. In the path integral approach to stan-
dard quantum cosmology the starting point is Feyn-
man’s idea that the amplitude to go from one state
with intrinsic metric h;j , and matter configuration ¢’
on an initial hypersurface ', to another state with
metric A7, and matter configuration ¢ on a final hy-
persurface 3’| is given by a functional integral of the
form

(B

130

> / D(G) o D(®)o0Xoo (—Seolgu B]), G.1)

¢, 2" g8, o

13 ?

over all four-geometries g,,, and matter configura-
tions ®, which interpolate between the initial and fi-
nal configurations [8]. The S [g.v,®] is the usual
Einstein-Hilbert action

1
Slguv, ®] = T /M d*z/—g(R — 2A)
1

+87FG oM

—-;- / d*z/—g[9"*0,90,® + V(®)] (3.2)
M

dPazvVhK

for the gravitational field and matter fields ®. To per-
form p-adic and adelic generalization we first make
p-adic counterpart of the action (3.2) using form-inva-
riance under change of real to the p-adic number
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fields [2]. Then we generalize (3.1) and introduce
p-adic complex-valued cosmological amplitude

(h’IL;’ ¢II’ E”lh;j) ¢l7 Zl>p
= [ D), P@pxo(~Sslam ). (33

The space of all 3-metrics and matter field config-
urations on a 3-surface is called superspace, which is
the configuration space in quantum cosmology. Su-
perspace has infinite dimensions with a finite number
of coordinates (hi;(Z), #(Z)) at each point & of the
3-surface. In practice, the work with these infinite
dimensions is impossible. One useful approximation
therefore is to truncate the infinite degrees of freedom
to a finite number ¢*(t), (o = 1,2,..n). In this
way one obtains a particular minisuperspace model.
Usually, one restricts the 4-metric to be of the form
ds® = —N2%(t)dt? + hyjdz'da?, where N(t) is the
laps function. For such minisuperspaces, functional
integrals (3.1) and (3.3) are reduced to functional in-
tegration over 3-metrics, matter configurations and to
one usual integral over the laps function. If one takes
boundary condition ¢*(t") = ¢*”, q*(t') = ¢* then
integrals in (3.1) and (3.3), in the gauge N = 0, are
standard and p-adic minisuperspace propagators, re-
spectively. In this case, for the v - adic minisuperspace
propagator (unifies standard and p-adic), we have

<ﬂwm=/M&WMW%w<M>
where
&WWMW@=/bfmF&WDG$

is an ordinary quantum-mechanical propagator be-
tween fixed ¢* and N, and index v = 0, 2,3, ...,
p, ... denotes real and p-adic cases.

A necessary condition to construct an adelic model
is existence of the p-adic (vacuum) state

IT 241,

which satisfies equation

11 / Kp(g*", N|g¥,0)dg*’

a=ljger, <1
n
= [1 23¢*"I0) (3.6)
a=1

for all but a finite number of p. The corresponding
adelic eigenstates have the form (2.4).

4. Some adelic minisuperspace models

To illustrate the above approach we shall consider
some one and two dimensional minisuperspace mod-
els.

4.1. Adelic de Sitter model

The de Sitter model is in quantum cosmology the sim-
plest nontrivial exactly soluble model. This model is
given by the Einstein-Hilbert action with cosmological
term (3.2) without matter fields, and by the Robertson-
Walker metric

ds? = o?(=N2%(t)dt? + a®(t)d02) 4.1

where 0% = g and a(t) is a scale factor. Instead of

(4.1) we prefer metric in the form

» N2(t) ;
ds? = o* (—Wdtz + q(t)dﬂ§> , q(t) >0,
4.2)

which was considered in the real case [9], and in the
p-adic and adelic [10] (in the p-adic generalization of
the non-boundary Hartle-Hawking approach) case, be-
cause it leads to the quadratic actions. The correspond-
ing adelic action for this one-dimensional minisuper-
space model contains

.2

1 tll
Sulg) = 5[} dtN (—4‘1? <N 1> , (43)

2 % . .
where A = Ag—’— The classical equation of motion

(in the gauge N = 0) ¢ = 2\ with the boundary
conditions ¢(0) = ¢’,q(T) = ¢" (T = t" —t') has
solution

Tl =
a(t) = A2 + ( ‘I__Ti ATV gy (4)

and the corresponding classical action is

2 APe
" ’ =
5(¢",Tld',0) = —;
4 B H e INS
~[A¢" +4¢") - 2]Z = (qs—jﬁ) 4.5)

Since the action is quadratic, then the kernel
(3.5)is

S

’Cv(q,’leq’vO) = |4T 1/2 Xv(_sv)- (46)
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One can show, applying formula (3.6) and (1.4),
existence of a necessary p-adic vacuum state in the
form € function, which is

[ ), ITlh<lp#2,
“"’(q’T)‘{nuqm, T hpeg 7

under condition A =4-3-1,l € Z.
4.2. Model with cosmological constant in 3
dimensions
This model in the real case is considered in the paper
[11]. Its metric is
ds? = o*(—=N?(t)dt? +a®(t)(d6* +sin® 0dy?)),
(4.8)

with ¢ = G. Classical equation of motion a —

NZ2a) = 0 has the solution
1
) e tioe oo (g L =NV N
® 2sinh(Nv/X) (( )
+(@'eNVX — g"ye~N ﬁ‘) . (49)

with the boundary conditions a(0) = a’,a(1) = a”.
For the classical action it gives

- 1
S(a",Nla',0) = == [N\/X
2a"a’ a'? +a'"?
+)\<sinh(N\/X) & tanh(N\/X) )] N
Quantum-mechanical propagator has the form
Av(—2sinh N)
|A=1/2 sinh(N V) |+
xxv(=S(a”,Nla',0)). (4.11)

Ko(a”, Nla’,0) =

For this model also exists p-adic vacuum state

\Ilp(a,N) = { Q(|a|p)’ INIP S lvp# 27

4.12
Q(lal2), [Np<ip=2 @12

with conditions |A|, <1 and [A|2 < 2.

4.3. Some two dimensional models

There exists a class of two-dimensional minisuper-
space models which after some transformations have
the form of two oscillators [12, 13]. These models
are: the isotropic Friedmann model with conformally
and minimally coupled scalar field and the anisotropic
vacuum Kantowski-Sachs model. For all these three
models action may be written as

.2 .2

o 1of & Y 20 12
S-EA dtN[—m-i-m'FIE -y°|, (4.13)

i.e. this is the action for two oscillators, but one of
them has a negative energy. This expression leads to
the propagator

1

I 1" N / / 0 h
K:‘U(y » Ty |y,33', ) IN|UXU
1:/2 £ 1:"2 e y12 5 y//2 vy — 2’z
4.14
a ( 2tan N 7. sin NV 50 )

The linear harmonic oscillator is well analyzed
system from real as well as from p-adic point of view.
One can show that in the p-adic region of conver-
gence of analytic functions sin NV and tan N, which
is Gp = {N € Qp : |[N|p < |2p|p}, exists vacuum
state ©(|l,) AJyly)-

5. Conclusion

For some standard minisuperspace models, we con-
structed the corresponding p-adic and adelic min-
isuperspace models. For all these models there exist
adelic wave functions of the form

V(g ... q") = [ Yoola) [T [T 21ag1s). 6.
a=1

p a=l1

where ¥, (¢%) are the corresponding wave functions
of the universe in standard cosmology. Adopting the
usual probability interpretation of the wave function
(5.1) in rational points of g%, we have

12(g, . a2, = [T 1%eo@®) 2 [T IT 2la*15),
a=1

p a=1

because (2(|g%|p))? = 2(|g%|p). As a consequence
of Q2-function properties we have

|2(g"- . q™|%

o), 2

This result (as those in [1]) leads to the discretiza-
tion of the minisuperspace coordinates ¢©, because
probability is nonzero only in the integer points of
q*. Note that this kind of discreteness depends on
adelic quantum state of the universe. When system
is in some excited state, the sharpness of the discrete
structure dissapears and minisuperspace demonstrates
usual continues properties.
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AJIEJIBHASI KBAHTOBASI KOCMOJIOI'Usd

B. Iparosuy, JI. Hecuk

AzienbHas KBAHTOBas KOCMOJIOTHS ABIAETCSA MPHIIOKE-
HHEM aJIe/IbHOH KBAHTOBOI TeOpHH KO BeenenHoii kak K 1e-
JIOMy. AJIeNbHbIH MOAXO0J YUYHTBIBAET BCE aDXUMEIOBbI M HE
APXHMEI0BBI F€OMETPHH, OCHOBAHHBIE HA NEHCTBHTENIBHBIX
M P - aleNbHbIX YHCIAX, COOTBETCTBEHHO. Haxoknenue co-
OTBETCTBYIOLLEH BOJNHOBOH (DyHKUIHHM Bcenennoi ucnosb-
3yeT uHTerpasibHblii Mmeton Peitnmana. B 31oit paboTe MbI
J1aeM KpaTKHii 0630p p -aeNbHBIX YHCEI U azielieil, a TakKe
obocHoBanHe U (POPMYIHPOBKY aJeNbHOH KBAHTOBOH KOC-
monoruu. Haiinena anenbHas BONHOBas (DyHKUMS JUlsd He-
CKOJIbKHX MHHHIPOCTPAHCTBEHHBIX Mojenei. CylecTsyer
JIMCKPETHOCTh MUHHIIPOCTPAHCTB, ABISAIOMIAACS CIEACTBH-
eM p -afeNbHbIX KBAaHTOBBIX 3(P(DEKTOB M 3aBHCAlIAs OT
a/1e/IbHOr0 KBAHTOBOIO COCTOSIHUS 9THX MOJIENEH.

AJIEJIJbHA KBAHTOBA KOCMOJIOT'TA

B. Iparoeuy, JI. Hecik

AzienbHa KBAHTOBA KOCMOJIOT s € €KUM 3aCTOCYBaHHAM
azieNbHOI KBAHTOBOT Teopii 10 Beecsity y uninomy. Anens-
Huii miaxia Gepe 10 yBaru yci apxiMenoBi Ta HeapximMen0Bi
TeoMeTpii, 110 3aCHOBaHi Ha IiHCHUX Ta p - aEbHUX YH-
cnax, BinoBiaHo. JIs 3HAXOKEHHS BiAMOBIIHOT XBHIILOBOT
(yHKIIT BUKOPHCTOBY€EThCS iHTerpanbHuii Meton Deiinma-
Ha. Y wiit poGoTi MM 1a€MO 3arajibHUi OMIAN P -aJeTbHUX
ypcen Ta ajeniB, a TaKOK OOrpyHTyBaHHS Ta (hopmyIio-
BAHHS aJIe/IbHOT KBAHTOBOI KOCMOJIOTii. 3HajiieHa aienbHa
XBIWJIBOBA (DYHKIIIs [UTsA KiJIBKOX MiHITPOCTOPOBHX MOJEIEH.
ICHY€ QHCKPETHICTh MiHIMPOCTOPIB, 5iKA € HACHIJAKOM P -
aleIbHUX KBAaHTOBHX €(EKTIB, Ta 3aJICKHUTh BiJl A/IEILHOTO
KBaHTOBOTO CTaHy LIMX MOZIENEH.

Radio Physics and Radio Astronomy, 2001, v. 6, No. 2 S21



