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We study the propagation of null rays and massless fields in a black hole fluctuating geometry. The metric fluctuations are
induced by a small oscillating null incoming flux of energy which is described by a statistical ensemble. The stochastic variables
are the phases and the amplitudes of its Fourier modes. By integrating over these variables, we obtain that the field obeys an
effective propagation which enjoys the following properties. The amplitude of the metric fluctuations defines a critical length:
Smooth wave packets with respect to this length are not significantly affected when they are propagated forward in time.
Concomitantly, we find that the asymptotic properties of Hawking radiation are not severely modified. However, backward
propagated wave packets are strongly affected by the metric fluctuations once their blue shifted frequency reaches the inverse

critical length.

1. Introduction

In his original derivation of black hole radiance, Hawk-
ing [1] considered the propagation of a linear quan-
tized field in a classical background geometry, that of
a collapsing body. In this framework, one neglects
the fluctuations of the geometry. Besides quantum
mechanical fluctuations of the gravitational field it-
self, there exist also metric fluctuations induced by the
quantum fluctuations of other fields. The latter can be
approximatively described by introducing stochastic
noise sources in the right-hand side of the Einstein
equations [2-5].In this description, one therefore deals
with a stochastic ensemble of fluctuating geometries.
Our aim is to study the propagation of a massless field
in such an ensemble.

To describe the metric fluctuations near the black
hole horizon we use a model similar to that considered
by York [6]. It is based on the hypothesis that off-shell
fluctuations are driven by a small oscillating flux of en-
ergy of an infalling null fluid. In our model, the metric
fluctuations are represented by a linear superposition
with different frequencies. Stochasticity comes into
the picture by assuming that the amplitudes and phases
of each mode are stochastic variables. Therefore the
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expectation value of any observable is obtained aver-
aging over these variables.

In this paper?®, we consider a stochastic ensemble
of metric fluctuations. We show that light propagation
in a stochastic metric indeed leads to an effective trun-
cated theory near the event horizon. More precisely,
we obtain the following. First the critical length w_ !
is determined by the amplitude of the metric fluctu-
ations. Secondly, as far as forward in time propaga-
tion is concerned, the evolution of smooth wave pack-
ets (where smooth means that their in-frequency con-
tent is much below w. ) is affected only slightly by the
metric fluctuations. Thirdly, backward in time propa-
gation of wave packets representing Hawking quanta
is dramatically modified only when the blue shift fac-
tor brings their frequency close to w,. In this regime,
the amplitude of the wave packet is rapidly dissipated
(backward in time!).

2. Fluctuating black-hole geometry

2.1. Metric ansatz

Let us consider spherical modes of metric fluctuations
propagating in a spherically symmetric background.
The most general spherical metric can be written in

3For more details see [7, 8].
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the form
dS? = ysp da? dz® + R? dw?, @.1)

where A, B = 0,1, and y4p and R are functions of
x4 . The metric of a black hole of mass M formed by
the collapse at v = 0 of a massive null shell with mass
M is

dS? = (4M)2ds?,

ds® = —Adv? + 2dvdr + r2dwg g 2.2)
where in the absence of fluctuations
(v
A= Ay(r,v) =1—¥, 2.3)

¥(v) being the Heaviside step function equal to 1 for
positive argument. For further convenience we have
introduced the dimensionless coordinates (v,7), so
that R = AMV and 4Mv are the radius and the
advanced time in units where G = ¢ = 1.

The most general metric perturbation preserving
the form (2.1) of the metric is described by four func-
tions of z4: 07 and dy4p. The remaining coordi-
nate gauge freedom is generated by infinitesimal co-
ordinate transformations £“(z). We fix the gauge by
putting

or =0, v =0. 2.4

The perturbed metric can be written in the form
ds®* = U(—Adv? +2dvdr) + r’dw?, (2.5)
with

U=1+4§7, A=Ay +IA. (2.6)

It is evident that the 2-dimensional conformal fac-
tor ¥ does not enter the equations for the propagation
of radial null rays. In Section 3.1 we shall demon-
strate that, for s-modes, ¥ also drops out of the 4-
dimensional Dalambertian. Hence only the function
A will be relevant for us.

To further simplify the problem, we assume that
the metric fluctuation dA is composed only of in-
falling radial null modes. Thus it is of the form

1
0A = —— g ¥
A o () p(v) 2.7
so that the perturbed metric is given by (2.5) with

A=A0+5A=1~19(U—)[12':ﬂ—(v)]. 2.38)

For ¥ =1 this is a Vaidya metric. The function p(v)
encodes the light-like infalling fluctuations. As in eq.

(2.3), the step function in relation (2.8) indicates that
the black hole results from the gravitational collapse
at v = 0 of a massive null shell with mass M, and
that there are no fluctuations prior to the collapse of
the null shell. Therefore spacetime is flat to the past of
the null shell.

2.2. Stochastic variables

To introduce the stochastic variables in simple terms,
we postulate that p(v) possesses a discrete* and non-
degenerate Fourier decomposition:

pv) = Y [uf sin(wv) + pf cos(wv)]

= Z ug sin(wv + ¢y,) . 29

For further simplicity we also assume that the (real)
amplitudes p¢ and pg are independent stochastic
variables characterized by the same distribution. Thus,
there is no preferred value of the phase ¢, in the
(14, %) plane. In this case, p,,(1§), the distribution
function for the amplitude p§ = \/u2 + p3, satisfies
the normalization condition

2w o0
dbo [ dus w3 Bulus) = 1. 210)
0 0

Later we shall assume that the distribution p,,(x§) is
a Gaussian whose dispersion is equal to &,,. Our last
assumption concerns the amplitudes of the metric fluc-
tuations: we shall assume that they are much smaller
than the gravitational radius of the black hole. In our
dimensionless units, this gives 7, < 1. This should
be true for black holes of mass M much greater than
the Planck mass my, (in [6], the estimate dimension-
less amplitude scales as & ~ (my, /M), whereas in [9]
G ~ (mn/M)4/3).

In this paper, an important simplification follows
from the fact that we shall deal with observables de-
pending on the fluctuating geometry which obey the
following factorization condition

@ =110.0¢ 9. @.11)

For these observables, given our hypothesis of stochas-
tic independence, we can consider each sector labeled

4A discrete spectrum arises for example in York’s approach [6]
based on the quasi-normal modes of the black-hole metric. How-
ever, the spectrum due to other fields can be continuous. The results
of the present paper can be easily adopted to this case. It is suffi-
cient to replace the discrete sum, 3, by an integral, [ dw v(w),
where v(w) is the number density of fluctuation modes.
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by w separately. It is then useful to introduce the suc-
cessive averages:

= 1 2m
Qi) =57 [ 40 Quigi00), @12

o0
) o= O /0 it 18 Fo(us) T (),

(2.13)
<O»=T <t =0 (2.14)

w

The first equality gives @,,, the average of Q,, over
the stochastic phase ¢,,. The second one gives the re-
sult of averaging Q, over the amplitude ¢ . Finally,
the overall ensemble average of the observable @, is
given by (2.14). The order in this averaging procedure
follows from the fact that to perform the first average,
one simply has to assume that there is no preferred
direction in ¢,,. For the second instead, we need to
choose the distribution p,,. And for the third one, we
must know the whole spectrum.

Because of the factorizability of the operators and
their ensemble averages, it will be sufficient to con-
sider only a single fluctuation mode. To simplify the
notations we shall drop the index w in the amplitude
and in the phase. That is we shall work in the fluctuat-
ing geometry (2.2), (2.8) with

u(v) = po sin(wv + @) , (2.15)

with o < 1. We call the metric (2.2), (2.8) with p(v)
given by (2.15) a realization of the fluctuating geome-
try. By averaging over ¢ and po we thus assume that
we are dealing with an ensemble of such realizations.

2.3.  Null ray propagation in a fluctuating
geometry

We first study the propagation of radial null rays in the
fluctuating black hole geometry (2.1). In-going rays
are given by v = const and out-going rays obey the
equation

Adv=2dr. (2.16)

In order to solve this equation, we use a method of
perturbations and write

r=r(v) = R(v) + p(v) + w(v) +.... (2.17)

R(v) is the solution of equation (3.1) in the absence
of fluctuations, and p(v) and w((v) are respectively
the first and second order perturbation in . Higher
order corrections are denoted by dots. In what follows,

we shall also often use the dimensionless versions of
R, p and w which we mark by a tilde.

The equation for out-going rays in the unperturbed
metric, [ ( ) =d/dv ]

I0E ) H(v)

b ( & 375)
can be easily integrated. Let us choose the value of
the retarded time w and denote by r = R(v;u) the
unperturbed trajectory of a radial ray which arrives to

J+ at the chosen time w. This trajectory for v > 0
can be found by solving the equation

(2.18)

u = v — 2R, = const. (2.19)

Here

2R, =2R—1+In(2R—1) (2.20)

is the dimensionalless tortoise radial coordinate.

The equations for the perturbations p(v) and w(v)
are obtained by linearizing (2.16). Both functions
obey the same equation

: 1
= — F 2:21
e g £ @21)
for v > 0 and
f=o0, (2.22)
for v < 0. For the first order perturbation, one has
ik
= =—— 2.23
F =g, F=—1gk (2.23)
and for the second order perturbation
1 1555
= s e e 04
f=w, /3 M~ ImsP (2.24)

In these equations, the retarded time u is a fixed pa-
rameter which specifies the unperturbed ray under
consideration and R = R(v;u).

2.4. Perturbed horizon

Before discussing the general solution of the equations
for the perturbations p(v) and w(v) we discuss the
particular solution which describes the event horizon
in the fluctuating geometry.

First notice that R = 1/2 satisfies the unperturbed
equation (2.18). This degenerate solution describes an
outgoing null ray propagating along the unperturbed
event horizon. Starting with this solution we easily
obtain the following solutions for the dimensionless
perturbations

_ Ho w cos(3y) +sin(h)

: 2.25
pl:H 2 1 + UJ2 Ll ( )
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Wy = #g
2w2(2 — w?) cos(29) + w(1 — 5w?) sin(2¢))
= 201+ w2)2(1 + 4w?)

(2.26)

where 1 = wv + ¢. Itis easy to see that after averag-
ing over the phase ¢ both quantities, p and w, vanish.
It means that the average position of the fluctuating
horizon up to the second order remains unchanged.

It is also interesting to compute the modified value
of the surface area A of the event horizon. When av-
eraging over the phase ¢, we find

A=4rM?¥(r2) = 4n(R? + p?)

2
= 167 M2 [1 2 —L} :

2(1 + w?) 227

Similarly the average value of the surface gravity in
the fluctuating geometry is

24 bl easi 4 G
K—4M< r2 )_4M [1+4(3” ”“)]

EH

1 2
= f1p _F0 _|
aM 2(1+w?)
Upon computing the modifications of the Hawking

flux, we shall see that this ‘renormalized’ surface grav-
ity will determined the modified temperature.

(2.28)

2.5. Late time regime

In the late time regime, i.e. u > 1, the relation be-
tween the moment v of advanced time when the null
ray was emitted from J~ and the retarded time u
when it reaches 7 in the linear approximation can
be written as follows

w = Wy(u), (2.29)
Wy (u) = wosin(p + ¢o) +e7 . (2.30)
Here we have introduced for later convenience
Ho
w=-1-v, W =—,
. V1+ w?
¢p = arctanw . (2.31)

For a given realization of the geometry and to first
order in pg the event horizon is given by the equation

Ten, (V) = %[1 + wp sin(wv + ¢ + ¢p)] . (2.32)

It crosses the collapsing null shell, v = 0 or w = —1,
at the radius

R0 = 11 S upseialbirgll,

- (2.33)

Being traced backward in time the null geodesic giv-
ing rise to the horizon enters the flat spacetime region
inside the collapsing shell, bounces at » = 0, and fi-
nally reaches J~ with w lying in the domain

w € (—wo, wp) - (2.34)
Therefore, for all ¢, radial null rays emitted from 7 ~
at advanced time w < —wy fall into the singularity
r = 0. On the contrary, radial null rays emitted with
w > wp always reach J 1. The time of their arrival
to J1 lies in the interval

v € (u_,uy), (2.35)
where u are
ut = — In(w F wp) . (2.36)

Finally, the rays emitted in the interval —wo < w <
wo reach J+ only for some values of ¢. Since for
w in this interval there always exists a phase such that
the ray propagates along the horizon, the moment of
arrival at J+ varies from u_ = —In(w + wo) to
U4 = 00.

3. Wave propagation in a fluctuating
geometry

3.1. Wave propagation in a given realization of the
geomeltry

Let us consider propagation of s-modes of a mini-
mally coupled massless scalar field x. We introduce
as usual ¢ = ry. Then, the four-dimensional Dalam-
bertian equation Ox = 0 when computed in the fluc-
tuating metric (2.5) gives, see e.g [10],

[<2>D—¥}v=0- G.1)

Hence ¥ defined in eq. (2.5) plays no role. Moreover,
upon neglecting the centrifugal quantum potential, one
obtains the equation

oy = 28,8,¢ + 8,(A48,0) = 0. (3.2)

When adopting this equation, one works in the geo-
metrical optics approximation. Therefore, the spher-
ically symmetric perturbations of the metric affect
the global properties of the solutions of (3.2) only
through the gluing of the null characteristics encoded
in Wy (u) given in eq. (2.30).

We shall denote the value of the solutions of (3.2)
on J* by a capital letter

¥t =p|zs.
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Using the coordinate w defined in (2.31) we call
@~ (w) the initial value (or image) of the solution
@ on J~,and ®*(u) the final value (or image) of ¢
on J*. For a fixed geometry, i.e. for a fixed po and
¢, the knowledge of @~ (w) uniquely determines its
image on J*. However, for backward propagation
from J*t to J—, this is not true since J 1 is not a
complete Cauchy surface.

3.2. Scattering operator in a fluctuating black-hole
geometry

In order to simplify calculations it is convenient to in-
troduce a new coordinate on J

=T (3.3)

The reason is the following. In terms of y, relation
(2.30) is linear equation

w=Wy(y) =y + wosin(d + ¢o) . (3.4)

Therefore, the effect of the metric fluctuations is sim-
ply to shift y with respect to w. The image ®* of a
wavepacket on 7 can be considered as a function of
u or of y. In order to avoid confusion, we shall keep
the notation ®* () for the function of u and shall use
the notation ®*(y) whenever the image is considered
as a function of y. For any realization of the geometry
we have

@7 (y) = @7 (y +wosin(¢ +¢o)) @~ (y) . (3.5)
This relation can be rewritten as
®; =D, @, (36
where
Dy = e¥° sin(¢+¢0)d 3.7)
Notice that this shift operator bears some similarities
with that introduced in [11]. Here & is the operator
of differentiation with respect to the argument of the
function.
Let us first perform the average over the phase. Us-

ing the integral representation of the Bessel function of
zero index

Ho0) == [ d e, (3:8)
0
we get
e 27 d¢ :
D= -2—1FD¢ = Jo(—Z’wOa) . (39)

0

At this point it is convenient to adopt the Dirac
notations and to write the functions & and &~ as

ket-vectors |$+) and |®7), respectively. Then, in the
“coordinate” representation, we have

() = [8"), @ (z)=(2®), (3.10)

5*(1;):/_00 dz'(z|D|z'y @ ('),  (3.11)

where

(z|D]2') = %/ dpe= =P Jo(wep) . (3.12)

Calculating the integral we get
(2[Dle’) = B" (la’) = & (y}w)

_ 19}~ (y—w)?)

y 3.13
R e e

Up to now we have only been dealing with the
stochasticity connected with the phase ¢. Let us dis-
cuss what happens when we average the operator D
over the amplitude of the metric fluctuations. We again
assume that the probability distribution is Gaussian.
Using the relation

&2 2 1 2
/ dzze™* Jo(az) = Ee_a 19 (3.14)
0
we get that the average of D over the fluctuation am-
plitude is

2 52
<D>,=exp (U“’Za ) 5

The generalization of these results to a spectrum
of metric fluctuations with different frequencies is
straightforward. Indeed, since < D >, has a simple
exponential form, it enjoys the factorization property
(2.10). Thus, using (2.14), its total ensemble average

(3:15)

2 92
<D>= exp (%) : (3.16)

where
R 2
O = 2 o5
w

Eq. (3.17) shows that the effect of the whole spec-
trum of metric fluctuations is to give rise to a single
length which weights higher order derivative terms.
This shows that the details of the fluctuations spectrum
play no significant role for the operator < D>>.

The extremely simple form of the operators D in
the “p”-representation allows one to make a few gen-
eral observations. In particular, we have

(3.17)

<@t (p)>= (p| <2 >)

= e~ oaP’ /25 (p). (3.18)
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Thus only the high frequency components (i.e. of the
order of o' and greater) of the initial wave packet
®~ are strongly affected by the fluctuations of the
geometry. Therefore the forward propagation of any
smooth (i.e. of Fourier content much below a;l)
wave packet defined on J = will not be significantly
affected by the metric fluctuations. In other words, for
classical black hole physics, the metric fluctuations
are irrelevant if, as indicated in [6, 9], their “mean”
amplitude o, is of the order of the Planck length or
smaller than it.

3.3. Backward in time scattering

Eventhough eq. (3.4) is perfectly symmetric in w and
y, backward propagation is dramatically affected by
the metric fluctuations.

To settle the discussion, we first clarify the geo-
metrical meaning of negative y. To ease this analy-
sis, we start with backward propagation in the absence
of fluctuations. In this case, for positive y, eq. (3.4)
gives w = y. However, since J* is not a complete
Cauchy surface, we need to consider the union of 7+
and the whole event horizon u = oo in order to have
a complete Cauchy surface. Thus we must introduce
a coordinate along the horizon. The simplest choice
consists in considering the negative values of y de-
fined again by y = w. Indeed the negative y axis so
defined covers the horizon from r = 0,w = 0 inside
the collapsing shell till w = —oo. Thus, the real axis
y € (—00,00) forms a complete Cauchy surface and
the functions ®* (y) determine their image ®~(w) on
J~ forall w.

This procedure also applies for any given realiza-
tion of the fluctuating geometry. Indeed, the event
horizon, when continued backward for negative v in
the inside flat geometry (2.3), reaches r = 0 at ad-
vanced w time Wy(y = 0) = wo sin(¢ + ¢o). There-
fore the negative half line y € (—oo, 0) defined by eq.
(3.4) still covers the whole horizon and y € (—o0, co)
forms a complete final Cauchy surface. Since this is
valid for any realization, it is meaningful to use
the coordinate y € (—oo,00) after having averaged
over ¢.

For y > 0, ®*(y) gives the value on J*, while
for y < 0 it gives the value on the horizon. For regu-
lar ®*(y), in virtue of the symmetrical role played by
y and w in eq. (3.4), the averaged image on J ~ is
determined by the same scattering operator D which
governed forward propagation. In the case of the full
ensemble average, one has

LP " >=<D> ot. (3.19)

In Fourier transform with respect to w and y this gives

<@ (p)>=exp(—02p®/2) @ (p). (3.20)

Of special interest for studying Hawking radia-
tion are the final images such that no incoming field
emerges from the horizon for any realization of the
geometry. They are of the simple form

3. (y) =9(y)@(y).

Unless ®*(y) vanish sufficiently rapidly when y —
0, these modes are singular at y = 0.

This problem will be studied in detail in Sec-
tion 5. It reveals the important role played by the fluc-
tuating horizon geometry for backward propagation.
The asymmetry between backward and forward prop-
agation comes from the fact that the inertial time on
J* which characterizes out-frequencies is « and not
y = e~ “. Then, the so defined out-frequencies are
exponentially blue-shifted when propagated backward
near the event horizon. This purely kinematical effect
is at the origin of the trans-Planckian problem and has
here dramatic consequences since higher derivative
terms are present. Indeed, eq. (3.20) when applied
to out-functions (3.21) which vanish for negative y
gives, in the position representation,

3.21)

L O™ (w)>
= [exp (—%(ae,,e“auf) <I>+(u)] .

The dramatic consequences can now be seen: however
smooth is the final data &+ (u), the fluctuations of the
geometry will inevitably affect its backward propaga-
tion if it is centered around a sufficiently late retarded
time. Moreover if it does not vanish sufficiently fast
(i.e. faster than e~*) when one approaches the hori-
zon, the asymptotic behaviour of < D > intervenes.
We return to these points after discussion of the
properties of Hawking radiation in the fluctuating ge-
ometry.

(3.22)

u=—Inw

4. Hawking radiation

The simplest way to understand why the metric fluctu-
ations do not significantly modify the asymptotic prop-
erties of Hawking radiation is to analyse the Green
function evaluated in the initial vacuum state. Indeed,
as shown in [12], when the short distance expansion of
this function evaluated near the event horizon reduces
to the standard (Hadamard) behavior, Hawking radia-
tion obtains on J . Computation shows

G" (u,u') = G™(u,u') + wiH(u,u'), (4.1)
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since the averaged value of all first order terms in wg
vanishes. The crucial point is that H(u,u’) is finite
when u — /. This implies that the corrections to
Hawking radiation are at least of second order in wq
and non-diverging in the late time regime.

Calculations give for the (quantum mechanical
and statistical) mean energy flux of Hawking radia-
tion measured at 7+ the following expression

pes "3 159 9
(dE/du)™ = o= |1+ s pow” ¢ (w)

48T
L “2)
"~ 487 Ho exp(2mw) — 1]’ 2
where
ol I
ST [1 *taa +w2)] @3

is the “renormalized” surface gravity (2.28).
When using the Gaussian distribution p,,, the av-
erage over the amplitude wq(w) of the fluctuating

mode gives
& dE\™™ - e
du T 487w

X

1+2) ol (1 + %2 (1 +w2)q2(w)) ] .(4.4)

To perform this last summation requires the
knowledge of the spectrum, here represented by the
set of o, .

The spectral distribution of the energy density flux
gives more detailed information. We have

dE i
=L [fA) + iF(Aw)] . @S)
where A = A\/kr,
A
f(A) = Py P (4.6)
and
iy AT )
Flw)= ot 2o
X [f(A —w)+ fF(A+w) —2f(A)] . 4.7

In order to obtain the constant part of the
density of energy flux one must integrate (4.5)
over the frequency A

AB poskd e
TR dA [f(A) + pdF(Asw)] . (4.8)

It is easy to verify that after averaging over the spec-
trum (4.8) coincides with expression (4.4).

Main conclusions from these results are the fol-
lowing:

First, the averaged value of the outgoing flux of en-
ergy is modified. One part of this modification is con-
nected with the renormalization of the surface grav-
ity of the fluctuating black hole given by expression
(4.3). The other part is an additional factor given by
pénw/(exp(2mw) — 1), see eq. (4.2). Both changes
are second order in fiq.

Secondly, the asymptotic spectrum of Hawking ra-
diation is also modified. Besides the renormalization
of the surface gravity which shifts the temperature, the
modified spectrum (4.5) contains three additional cor-
rection terms. The two last terms in that equation con-
tain Bose thermal factors of the form 1/(exp(27(X =
w)/k) — 1). In these relations, the frequency of ge-
ometry fluctuations, +w, plays the role of a chemical
potential. The presence of such chemical potential is
reminiscent to superradiance.

This fact supports the general ideas proposed by
York since the appearance of these factors might be
expected from the existence of a quantum ergoshpere.
Indeed, due to quantum fluctuations, the average po-
sition of the event horizon is moved by a term pro-
portional to the second power p2 of the amplitude of
fluctuations, while the temporal position of the appar-
ent horizon is fluctuating with amplitude f1o. An alter-
native way to describe these fluctuations is to say that
there exists a blurring of the physical null cone at the
unperturbed horizon. Because of the existence of neg-
ative energy states inside the unperturbed black hole
matter can escape from the narrow region close to the
horizon. This leakage of energy is seen as Hawking ra-
diation [6]. Under the same conditions one can expect
an additional amplification of Hawking quanta while
they are propagating close to the fluctuating horizon.
The amplification factor we got in the expression for
the modified spectrum of Hawking radiation may be
considered as an indication to this effect.

5. Fluctuating geometry and
trans-Planckian problem

We now discuss an analogy between the backward
propagation in a fluctuating metric and the altered
propagations which have been recently studied and
which result from the modifications of the dispersion
relation in the high frequency regime.

For this purpose, we consider the image on v = 0
of the monochromatic wave ¢$* of out-frequency A.
The simplest way to define the action of < D > on
our out-function is to work in the momentum conju-
gated to w. Indeed, the Fourier transform of ¢ §*¢ is
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well defined in the high p regime. Using eq. (3.20)
we simply get

P202n -
< ‘b(_)\)(p) >=exp (— 2“ ) <I>(,\)(p)
2.2 .
POy P(1A+l) .\ —iA—1
=exp | —— | —=(e+ ¢
p< : ) oy (e +1ip)

2 V82

v [e"’\/zﬁ(p)p‘““l

— exp (J’zafn) (=LA +1)

—e"™29(—p)(-p) 7] . 5.1)

Since the effect of the stochastic fluctuations is to
multiply the wave function by an even function in p,
the relative weight encoding the Bogoliubov coeffi-
cients is unaffected. This guarantees that the vacuum
state with respect to p > 0 leads to the usual prop-
erties of Hawking radiation, thereby proving point 2
above. Moreover, eq. (5.1) confirms that the trans-
Planckian problem is tamed: The high frequency con-
tent, i.e. the near horizon behaviour, is suppressed by
a Gaussian factor.

For our analysis, we determine the behaviour of
< Q(_)\) > in spacetime. To this end, we inverse
Fourier transform separately the two terms (pos-
itive and negative p) which appear in eq. (5.1). The
result is

iA

< 87, (w) >= ;m Za(w/og),  (52)
where
e—a’/4
Zia(z)= emh(mR)

= [e”’\/zDi,\(e i) e_"’\/zDiA(E ay w)] 2(53)

Here D, (z) is the parabolic cylinder function.

For large negative values of z = w/o,,, Z van-
ishes. Instead, for large positive = behaves as

; AA+1 =

Zx(z) ~ 2 {1 - iw—) +O(z 4)} . (5.4)
The limit £ = w/o,, — oo corresponds to the far
from horizon region or to o, — 0. The last case cor-
responds to no metric fluctuations. In this regime (5.4)
reproduces the unperturbed out wave function z**.

This strong dissipation is only valid for tight wave
packets in A, i.e. for b > 1. Instead, in the oppo-
site regime b < 1, for tight wave packets in position
space, the dissipation is milder. Indeed, in the limit

b — 0, the Gaussian factor in eq. (5.1) can be ig-
nored in the large o limit. Then, the main contribu-
tion comes from the first pole of the I" function in the
positive imaginary A axis. In this regime the decrease
of the wave packet is given by e~ (¢o+naer)

In brief, as long as the mean position in w on
v = 0 of the wave packet is larger than Ao, its im-
age is unaffected by the metric fluctuations since 7
still behaves as w**. Instead, once it enters the near
horizon region, its amplitude rapidly decreases.

This behavior is similar to the behavior of a back-
ward in time propagation of a wavepacket in models
with modified dispersion relation. These models have
been introduced in order to show that the mutilation of
the dispersion relation for frequencies higher than w.,
which is the equivalent of ;! in our case, in no way
affect the (low energy) properties of Hawking radia-
tion, namely stationarity and thermality. Following the
original work of Unruh[13], many models have been
analysed (see e.g. [14, 15, 16]). Their common prop-
erty is that the Dalembertian is modified by the addi-
tion of higher derivative terms weighted by negative
powers of w.. In these works, the modifications have
been inspired by hydrodynamics[17], electrodynam-
ics in a dielectric medium[18], field theory on a lat-
tice theory[19], string theory[20] or by guessing what
the physics near a horizon might be [21]. In all these
models, the following properties obtain

1. Forwardly propagated wave packets are unaf-
fected by the modification of the dispersion re-
lation as long as their in-frequency content is
much below the critical frequency w,.

2. No significant modifications of the asymptotic
properties of Hawking radiation as long as the
surface gravity satisfies kK < w,.

3. Dramatic modifications of backward propagated
late-time wave packets of out-frequency A when
the blue shifted value \e™ reaches w,.

The properties of the wavepackets propagating in
a fluctuating metric possesses many similarities with
these models.

6. Conclusion

It is perhaps appropriate to list what we learn from our
analysis. When the relative width of the smeared hori-
zon is small enough, i.e. when érpy /rpg ~ 04 <
1, metric fluctuations in the near horizon geometry af-
fect the asymptotic properties of Hawking radiation
only slightly, in the second order of o.,. The reason
for this stability can be seen from the short distance
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behaviour of the in-Green function. Backward prop-
agated wave packets representing Hawking quanta of
energy A are dissipated when their Doppler shift fre-
quency 70, reaches o', i.e. when their separation in
r from the event horizon approaches Ao .

Why the high frequency behavior of the in-Green
function differs so much from that of backward scat-
tered waves? The reason is the following. Being a
function of the difference in V, the in-Green function
is hardly sensitive to the metric fluctuations in the co-
incidence point limit. On the contrary backscattered
wave functions defined on J T are sensitive to the
metric fluctuations they have encountered when evalu-
ated near the horizon. Moreover, since their frequency
is blue shifted, they are inevitably strongly affected by
the metric fluctuations.

In brief, the main outcome of the paper is to have
provided physical foundations in terms of metric fluc-
tuations to the concept of effective propagation of light
near a black hole horizon.

This allows to address in a rational scheme the
question of the domain of validity of this effective
propagation. It also provides an explanation for the
vexing question of the apparent violation of local
Lorentz invariance[14, 15, 21]. The neatest way to
characterize this violation is to focus on the near hori-
zon behavior of a monochromatic mode ¢$*t. In the
absence of modification of the dispersion relation, this
mode behaves as w** where w = 2r — 1. Hence there
is no length which allows one to distinguish low from
high momenta. This absence is a consequence of the
local Lorentz invariance of theories based on the usual
Dalembertian. On the contrary, when dealing with a
modified dispersion relation, one breaks this invari-
ance since the new dynamical equation is written in a
preferred frame. For acoustic black holes this makes
good sense since both the frame and the critical length,
which characterizes what “high” frequency means, are
given by the constituents of the fluid. On the con-
trary, it is rather unclear to see the origin of such a
preferred frame for a gravitational black hole. One
of the main virtues of the present work is to provides
a simple answer to this puzzle. Indeed the ensem-
ble of metric fluctuations unambiguously determines,
o, the constant spread in r (measured along v = 0)
of the distribution of the backward propagated rays
representing the event horizon. Because of the hy-
pothesis of stationarity metric fluctuations, the modi-
fied equation governing light propagation has a simple
and stationary expression in the v, coordinate sys-
tem. In particular, the cut-off length o appears only
through powers of ¢@;|,. In this case what might be
interpreted as the origin of a “violation of Lorentz in-

variance” originates from the ensemble of stationary
metric fluctuations.
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KBAHTOBBIE D®®EKTBI BO
®JIYKTYUPYIOIEN TEOMETPHH YEPHOM
JIBIPEI

C. bapa0ne, B. ®posos

MBI H3yyaem pacnpocTpaHeHHe CBETOBBIX JIyueii u Oe3-
MACcCOBBIX MOJiel BO (PIyKTyHpYIOLIEH reOMeTPUH YEepHO
Abipbl. OIYKTyalMn METPHKH HHIYUMPYIOTCS MajbiM OC-
UHJUIMPYIOIMM CBETOBBIM MaJalOIHM MOTOKOM 3HEPrHH,
OMHCHIBAEMbIM MMOCPEACTBOM CTATHCTHYECKOro aHcamoOns.
CTOXaCTHYECKHMHU MEPEMEHHBIMH SBIAIOTCA (asbl U aMm-
nantyasl ero @ypbe-mon. HMurterpupys mo 3Tum mepe-
MEHHBIM, Mbl HAXOIHM, 4TO 3((peKTHBHOE pacmpocTpaHe-
HHe nons obnamaer CreaylomMMH CBOHCTBAMH. AMILIH-
Tyna (uiyKTyauuii METPHKH OMNpENeNsieT HEKOTOPYIO KpH-
THYECKYIO JUIMHY: MAKeThl, ABISIOIMECS 1O CPABHEHHUIO C
Heil MaIKUMH, HE MOABEPralTCs CyLIECTBEHHOMY BO3/eH-
CTBHMIO NMPH pacnpocTpaHeHHH Brepex BO BpemeHH. Co-
OTBETCTBEHHO, Mbl HAXOJHM, YTO aCHMNTOTHYECKHE CBO¥i-
CTBa M3/yueHHss XOKHHTa H3MEHSIOTCS He3HaunTenbHo. On1-
HAKO BOJIHOBBIE MAKEThI, PACTIPOCTPAHAIONIHECS BCIATH BO
BPEMEHH, HCIIBITHIBAIOT CHIIBHOE BO3JICHCTBHE CO CTOPOHBDI
(pyKTyaumii METPUKH, KOTAA MX YaCTOTA, CMEIAsACh B TOJTy-
Oy10 CTOPOHY, 10CTHraeT OOPaTHONH KPHTHYECKOH JUTHHBI.

KBAHTOBI E®EKTH Y ®JIYKTYIOIOYIA
TEOMETPIi YOPHOI JIPH

C. Bapa6’e, B. ®poJos

My BHBYAEMO MOUIMPEHHs NPOMEHiB CBiT/a Ta 6e3maco-
BHX NOJIB Y QUIyKTyI0K04iii reoMeTpii yopHoi aipu. OiykTy-
auii METPHKH MOPOKYIOTHCS MAJIMM OCLIMIIIOIOUMM Majia-
F0YHUM CBITJIOBHM MOTOKOM €HEPrii, 1110 OMHCYEThCS AK CTa-
THCTHYHMI aHCaMOnb. CTOXaCTHUHHMH 3MIHHHUMH € (asu
Ta ammnityau ioro @yp’e-mon. [HTErpyioun no uux 3min-
HHX MH 3HaXOJMMO, IO e(heKTHBHE MOIIMPEHHS MO M€
Taki BNaCTUBOCTI. AMmuiTyna (uyKTyauii METpHKH MOpo-
JUKY€ JesIKY KPUTHYHY JOB/KHHY: AKETH, 5IKi € Y MOPiBHAH-
Hi 3 HEI0 MIAJKHMH, HE 3a3HAIOTH ICTOTHOTO BIUIMBY TpH
MOLWMpPeHH] Briepea y yaci. BiinosiaHo 10 uporo Mu 3Ha-
XOIMMO, IO ACHMNTOTHYHI BIACTHBOCTI BHIIPOMiHIOBaHHS
XokiHra 3MiHIOIOTBCS Mano. OHAK XBUJILOBI MAKETH, 110
MOLIMPIOIOTHECS HABMPOTH 4Yacy, 3a3HAIOTh 3HAYHOIO BIUIH-
By 3 60Ky (nyKTyauiii MeTPHKH, KOJH iX 4acTOTa, 3Milly-
I04HCh 10 ONMAKUTHOT YaCTHHH CHEKTPY, A0CATAE 3BOPOTHOI
KPHTHYHOI JIOBXKHHH.
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