Radio Physcics and Radio Astronomy, 2001, v. 6, No. 2, pp. S37-S41

THE MODELS OF THE ”’VOIDS” IN THE UNIVERSE
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The astronomical observations of the last years show that there are regions in the Universe with much lower density of
matter, than in the surrounding space. Theoretical studies of the regions (voids) in the model of the expanding Universe are
carried out in different directions. In this paper the voids have been built by means of matching the Tolman and Friedman
solutions. The The Lichnerovich-Darmour matching conditions are used. It is shown that in the expanding Universe with flat
space the voids cannot exist. So, we have the Friedman Universe with voids, which are described by the Tolman solution. The

models of the voids in the Friedman Universe with a negative spatial curvature are built.

1. Introduction

The astronomical observations of last years show that
there are regions in the Universe with much lower den-
sity of matter than than in the surrounding space. The-
oretical studies of these regions (voids) in the mod-
els of the expanding Universe are carried in different
directions: small perturbations of homogeneous Uni-
verse; the use of the Einstein-Straus model; the use of
the Tolman solution for a nonhomogeneous dust; con-
sideration of the boundary of the void as a thin wall
([1, 2, 3]). In this paper we use the Tolman spher-
ically symmetric dust solution for the description of
the voids space-time, and Friedman solution for the
description of the space-time of the surrounding Uni-
verse.

2. Tolman solution

The Tolman solution is following:
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for f2(R) = 1. The velocity of light ¢ = 1. The
prime denotes 8/0r. m(R), f(R) and to(R) are
the arbitrary functions of the integration, m(R) is the
mass function — the active gravitational mass of the
dust ball with radial coordinate R, the function f(R)
defines geometry of a three-dimensional part of Tol-
man solution, to(R) determines the time of the col-
lapse.
The energy density:
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The particular case of the Tolman solution is the
Friedman one for which to(R) = 0 for all types of
the space curvature at f2(R) = cosh®(R),m(R) =
mp(R) = agsinh®(R) for solutions of a hyperbolic
type, at f2(R) = cos?(R),m(R) = mp(R) =
aosin®(R) for solutions of an elliptic type and at
f3(R) = 1,m(R) = mp(R) = boR® for solutions of
a parabolic type.

As a matching surface, boundary of "void”, we
shall select a hypersurface R = R, = const. From
the Lichnerovich-Darmour matching conditions fol-
lows, that on such a hypersurface next conditions are
fulfilled:

rr(Rb,tr) = rr(Rb, tr), (2.6)
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fr(Ry) = fr(Rs), 2.7)
mr(Rp) = mp(Rp), (2.8)

where the symbols 7" and F' designate the magnitudes
relared to the Tolman and Friedman space - time, ac-
cordingly.

From conditions (2.6) — (2.8) follows, that the
space curvature of the “void” should have the same
sign, as space curvature of the external space. Without
loss of generality it is possible to consider the same
function f(R) in both metrics. From matching con-
ditions (2.6), (2.7) and (2.8) we obtain, that on the
matching surface R = Ry, ar(Rp,tr) = ar(tr),
therefore, t7 — to(Rp) = tr. Thus we can make
the conclusion, that at to(R) # 0 the substance in
the "voids” is “older”, than in the surrounding space

((4, 5D.

3. The ”Voids” in the Friedman world
with zero space curvature

The average density of matter in the "void”is given by:

gr =E(tr) = 1\;/[_:7_ (3.1
where the mass
Ry
M = /8 V=g dR d© dep, (3.2)
0
the volume of the "void”
Ry
Vo= /\/——_ng dO dep. (3.3)

0

For the Tolman solution, with (2.1) — (2.5) and
(3.2), (3.3), the expressions for a mass and volume can
be written as follows:
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By substitution of eq. (3.4) in (3.1) we obtain
= 3mr(Rp)
r3(Rp, 1)’
The eq. (3.5) for average density is valid for any

Tolman solution, including the Friedman solution. For
the homogeneous Friedman space
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Since ep(t) does not depend on R, we can substi-
tute R — Ry
3mp(Rp)
Erp=¢r(t) = =——=- (3.7)
( ) T:I’? (Rb7 tr)

We see that in the parabolic Friedman model the
voids cannot exist, because the homogeneous energy
density in the external space and the average density
in the internal space are the same.

4. Model of ”’voids” in the Friedman
Universe with negative space
curvature

For the description of the external space we choose the
Friedman solution:

rr(R,tr) = agsinh(R) sinh?(ar/2), (4.1)

tp = %(sinhap—ap). 4.2)

Let us choose the mass function for the Tolman
solution as

mr(R) = ao

sinh"*1R U(R)
(o Ty + F®-F @R},
4.3)

where U(R), ¥(R,) and F(R) are arbitrary func-
tions which are not having of singularities at 0 < R <
Ry; n, L — arbitrary numbers.

Let us consider the case:
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Thus for the chosen mass function (4.4) there are two
different kinds of solutions: for n > 2 and n <
2 (case n =2 corresponds the Friedman so-
lution (4.1), (4.2)).
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4.1. Sizes of the "voids”

The astronomical data of observable "voids” in the
Universe testify that their sizes change in the range
from 25Mpc up to 100M pe (the greatest observable
”void” has a size 124Mpc). The size of the "void”
depends of the value of R

rr(Ry, tr) =rr(Ry, tr)
=ag sinh Ry sinh?(ap/2), 4.7)

where ap is given by (4.1), 4.2), ap = 3,25 -
10®Mpc. From this fact we can arrive at the con-
clusion, that the models of the ”voids”, satisfying ob-
servational data, should be characterized by the value
of Ry, which changes in range: 0.004 < Rj < 0.02
(the greatest "void” has R = 0.023).

4.2. Models of the "voids” for the case n = 1

For our model:
mr(R) = agsinh® Rsinh Ry, (4.8

rr(R,tr) = ap sinh Ry sinhz(aT/Z), 4.9)
ag sinh Ry
2 sinhR
In the given class of this unique satisfactory solution
(for whole n), as in all solutions with n < 1, there

exists the singularities: at R — 0 r — oo. Then the
mass of a "void” is

R)/f(R)

tr —to(R) =

(sinh e — ar). (4.10)

=2ag sinh Rb(cosh Ry, —1). (4.11)
The volume of the configuration is:
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= 3/2(R) +/ g i

= a3 [A1(Ry, tr) + Bi(Rs, t1)].
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The function A;(Rp,tr) is calculated at the bound-
ary of the the void”, therefore the function & at the
boundary
tgr—to(Ry )= %(sinh&r —@r)=tp. (4.13)
Therefore, we can substitute &7 — ap, and func-
tion Ay (Rp,tr) = A1(Rp,tr). For calculation ar

in the function B(Ry,tr) it is necessary to use equa-
tion (4.10).

The Friedman solution gives the following value
of the mass and the volume of the configuration:

F(Rpy)= /mF R)
o 3ao Sll’lh 2Rb
= ( 2 Rb) ’
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0
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Rb Rb
% (R, tr) fp(R)
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= a3 [C1(Ro, tr) + D1(Rs, tr)] , (4.14)

where for the calculation of ap(tr) in the functions

C1(Rp,tr) and Dy (Rp,tr) we used the condition
tpi= %(sinhap—ap). (4.15)

Therefore, Ai(Rp,tr) = Ci(Rp,tr). The con-

structed model can be considered as a model of the
void” if the following condition are fulfilled

gr _ Mr(Ry) Vr(RB,tr)

— T << 1-
Er  Mp(Ry) Vr(Ry,tr)

(4.16)

It is necessary to note that at to(R) = const the
”voids” by definition (4.16) do not exist, since the
value £r/€p = 1. The “Voids” can exist only at
to(R) # const.

Let us consider some models with ¢o(R) = R (ta-
ble 1 and table 2). In the tables the numerical cal-
culations of the evolution of basic parameters of the
considered configurations are given. The time ¢ is
dimensionalless time of the observer in the Friedman
Universe devided by the constant quantity 3 - 1017¢
(tp = 1 - meets the present time).

Ry tr | Vo/Vr | Mp/Mp | er/cp
0.01 1.001 0.999
0.1 1.013 0.987
0.25 1.2 0.83
0.005 | 0.5 3:33 1.0 0.3
0.75 12.5 0.08
1 41.7 0.024
1.5 303.03 0.0033
Table 1.
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Ry trp | Vo/Vr | Mp/Mp | €r/cp
0.01 1.001 0.999

0.1 1.011 0.989

0.25 1513 0.882

0.01 | 0.5 2.36 1.0 0.423
0.75 7.35 0.136

1 22.22 0.045

1.5 156.25 0.0064

Table 2.

Consider the evolution of the “voids” since time
tp = 1072 x 3-10'7¢. In all surveyed models the
“voids” arise not earlier than in the time equal to 0.75-
3-10¢. On the basis of it we can state that the
“voids” generated in the near past and prolong to exist
in the future. To constructed models of the "voids”
with mass function (4.8) with grater overfull of the
density it is possible to consider to(R) as the function
of a higher order (for example, to(R) = R®). Butit
is possible only for the greatest "voids” Ry > 1. The
volumes of the configurations described by the Tolman
solution are considerably greater than the volumes de-
scribed by Friedman ones (at same Ry ). So we obtain
models of the "voids” satisfying to the necessary re-
quirements.

4.3. Models of the “voids” for the case n > 2.

Let us consider model of the voids” for a case n = 3:

sinh? R
mr(R) = a0 ——- 7 4.17)
ro(R, tr) = —n—-z—Esinh"’(a /2), (4.18)
T ,iT) = Qo =oh Rb i ) .
__ap sinhR .
tr —to(R) = b B (sinh ar — ar). (4.19)
Then the mass of "voids™:
Tmp(R) . 8
my ]
= dR — — h
Mr(Ry) J (B ag sin (Rp/2)

x tanh(Rp/2)(cosh Ry + 2). (4.20)

The volume of the configuration described by Tolman
solution is:

Ry
Y T%‘(R’ tT)T’II'(R’ tT)
Vie(Ry, tr) = 0/ 22 dR
e T i T
_ rrl&tir /TT( vtT)fT(R)dR
3fr(R) ; 3  f3(R)

= a3(A1(Ry,tr) + Ba(Ro, tr)), (4.21)

where the function A;(Rp,tr) is calculated on the
boundary of the “void”, and for the calculation a7 in
the function By (Rp,tr) it is necessary to use condi-
tion (4.19). For the calculation of the mass of the con-
figuration and volume described by Friedman solution,
we use expressions (4.14) — (4.15).

The evolution of the basic parameters of the “voids”
models at time of the Friedman observer is given in the
following tables (The investigation of models of the
given class were is carried out for 51073 < Ry <
2-1072, to(R) = R):

These models describe the “voids” which existed
only in the early Universe and to the present time all
of them were filled by substance. By to(R) = R* for
all the considered values of radiuses Ry a lifetime of
“voids” is increased, but at the present time they not
exist.

Ry tr Vr/Vr | Mr/MFp | Er/cr
0.000001 7.056 0.1417
0.00001 1.62 0.9413
0.001 1.0 0.9999
0.007 0.1 1.0 1 1.0
11075 1.0 1.0
i 1.0 1.0
1.5 1.0 1.0
Table 3.
Ry tr VT/VF MT/MF ET/EF
0.000001 412.5 0.0024
0.00001 5.13 0.193
0.001 1.0 0.9999
0.02 0.1 1.0 0.99 1.0
0.5 1.0 1.0
it 1.0 1.0
1.5 1.0 1.0
Table 4.

5. Conclusion

The models of the ”voids” are constructed. The Lichne-
rovich-Darmour matching conditions are fulfilled. The
model of the "void” is described by Tolman space-
time, with the mass function (4.8), the external space-
time is the Friedman world. It follows from the match-
ing conditions that the sign of the space curvature in
the "void” should be same as in the Friedman one. But
the size of the curvature can essentially differ.

It is shown, that in the Friedman world of a zero
space curvature the “voids” cannot exist. The mod-
els of “voids” in the Friedman world of a negative
space curvature are constructed. The matter inside the
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”void” always “older”, than in the surrounding Uni-
verse. If the ”voids” described by the Tolman solution
with the mass function (4.8), they exist no more than
one quarter from all lifetime of the Universe.

It is interesting to note, that the “voids” will be
constructed because the volumes described by Tolman
and Friedman solution are essentially various . The
”voids” described by Tolman solution with the mass
function (4.17) to the present time have do not exist.
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MOJIEJIA ITYCTOT” BO BCEJIEHHOM

M. I1. Kopkuna, A. H. Typunos

ACTpoHOMHYECKHE HAOMIONCHHUS MOCIIEHUX JIET CBU/IE-
TeNBCTBYIOT O TOM, 4TO BO BcenenHoii cymecTByror obna-
CTH, B KOTOPBIX MJIOTHOCTh MAaTE€PHH HAMHOTO HHIKE, YEM
B OKpy>KarolieM npocTpancTse. Jlanuple 001acTH nosy4u-
711 Ha3BaHus nmycToT”. TeopeTHyeckoe HCCIe0BaHHe ITUX
obnacTeii B MOeNsX paciuupstoweiics Beenennoii ocye-
CTBIAETCA MO HECKONBKHM HanpaBieHusM. B 3toit pabo-
Te mycTOThI” CTPOATCS MyTeM CIUMBKH pewienuii Tonmena
1 ®puamana. B kauecTBe ycnoBHii CIUMBKH HCMOJB3YIOTCS
ycnosus Jluxueposuya-Jlapmya. TTokasaHo, 4To B NI0OCKO#
BcenenHoii “mycToTsr” oTcyTCTBYIOT. [TocTpoensl Moaenu
“nycToT” BO ()pHAMAHOBCKOH BcenenHoit oTpuuaresbHOi
NPOCTPAHCTBEHHOH KPHBH3HBI, OMHCBHIBAEMBIX PELIEHHEM
Tonmena.

MOJIEJII ”ITYCTOT” ¥ BCECBITI

M. I1. Kopkina, A. H. Typinos

ACTPOHOMIYHI CrIOCTEPeIKeHHsI OCTAHHIX POKIB CBiYaTh
npo Te, wo y BeecsiTi icHyl0Th 00nacTi, B AKHX IyCTHHA
Matepii € HabaraTo HHKYOIO, HiXK Y OTOUYIOYOMY MPOCTOPI.
Lli obnacti onepxkanu Ha3By “myctor”. TeopeTnune n10-
cnijkeHHs unx obnactei y monensx BceciTy, mo posmm-
PIOETHCS, 3IHCHIOETHCA Y KIIBKOX HAmnpsAMKax. Y nawiii po-
60Ti “nmycTOTH” OyayI0ThCS LUIAXOM 3IUIMBKH pitens Tosn-
meHa Ta Opinmana. Sk yMOBH 3IIHBKH BUKOPHCTOBYIOThCS
ymoBu Jlixuepouua-Jlapmya. ITokazano, o ass niocko-
ro Beecsity “nycroTn” BincyThi. [Tobynosani moxeni my-
cror” y Beeciti ®@pinmana Bin’€MHOI NPOCTOPOBOI KpH-
BH3HH, 110 ONUCYIOTHCA pitieHHAM TonmeHa.
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