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T-SOLUTIONS FOR ANISOTROPIC FLUID SPHERES
IN GENERAL RELATIVITY
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A number of exact solutions of the Einstein equations for nonstatic spherically symmetric configurations of an anisotropic
fluid are derived and investigated. The metric coefficient ggo is assumed to be the function of the time coordinate only (T-
solutions). The configurations under consideration are shear-free. Equations of state for the radial and tangential components

of pressure are chosen in various forms.

1. Introduction

We consider exact solutions of the Einstein field equa-
tions for a spherically symmetric distributions of mat-
ter. The component ggp of the metric tensor is as-
sumed to be depending only on the time coordinate t.
Such solutions describe only the T-regions of space-
time and are called " T-solutions” following Novikov.
The T-solutions are also known as solutions of the
Kantovski - Sachs type. They play a significant role
for the investigation of the later stages of a gravita-
tional collapse and also for studying the early Uni-
verse. The first T-solution was derived by Novikov.
It describes the spherically symmetric empty space.
Then Kantowski and Sachs [1] obtained T-solution
for the dust matter. The T-solutions for a perfect
fluid spheres were derived later (see [2-6]). For the
configurations of spherically symmetric perfect fluid
with nonzero pressure it is known two types of the T-
solutions:

1) Parabolic type (the fluid sphere unlimited expands
or collapses);

2) Elliptic type (pulsating model that expands from
initial singularity to the maximal radius and then col-
lapses).

However, it was found that the presence of electro-
magnetic fields may significantly changes the type of
the solution. The collapse of T-regions for the Reiss-
ner - Nordstrom solution may be stopped. Thus the
bouncing solutions we will call the solutions of hyper-
bolic type. The number of works considering solutions
with equation of state of an anisotropic fluid increases
greatly in last decades. The energy-momentum ten-
sor for the spherically symmetric anisotropic matter
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T} # TZ in comoving coordinates. From physical
point of view the appearance of a local anisotropy
may be caused by scalar field, neutrino radiation,
existence of a solid core etc. Besides, the energy-
momentum tensor of two perfect fluids moving with
different velocities can be transformed into the form
of the anisotropic fluid [7].

Different solutions for spherically symmetric con-
figurations of anisotropic fluid were derived and in-
vestigated (see [7, 8] and referenced works). An as-
trophysical models based on this solutions were dis-
cussed, and it was shown that some properties of such
an anisotropic models may differ drastically from the
properties of the isotropic ones. However, as authors
know, the anisotropic T-solutions were not considered.

So, the aim of the present paper is to obtain and
investigate the exact T-solutions for spherically sym-
metric anisotropic fluid and to compare the anisotropic
models with the isotropic ones.

2. Field equations

Consider a spherically symmetric configuration of
the anisotropic fluid. We assume that the component
gee = 12 of the metric tensor depends only on time
coordinate ¢, and shear is zero. Thus the line element
in comoving frame can be written as

ds® = dt*> —r%(t)(dR? +d#? +sin? 0 dp?), (2.1)

where 7 is scale factor, R and ¢ are radial and time co-
ordinates, 6 and ¢ are spherical angles. The energy-
momentum tensor of the anisotropic fluid has diagonal
form: T = ¢, T} = —p,, T3 = T$ = —p, , where
€ is the energy density, p, and p, are “radial” and
“tangential” pressure, respectively.
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The Einstein field equations for the configurations
under consideration take the form

8me = (37"2 +1)/r2, —87p, = (2?‘+'i‘2 +1)/r2,

—8mpy = (2F +7°)/r2, (2.2)

where dots denote differentiation with respect to ¢.

The difference between tangential and radial com-
ponents of the pressure Ap = 87(p) —p,) =772 >
0. From this equation we can see that where is no
shear-free T-solution for a perfect fluid sphere. T-
solution for empty space also has nonzero shear and
don’t belong to the considered class.

Consider T-solutions with various equations of
state.

3. Models with p, ~ ¢

Assume that the radial pressure is p, = ne, n =
Const. Then from field equations (2.2) we have

. = 2
2; +(@n+1) (;) + (n+ 1)%2 =0. 3.1)

By solving this equation, for the case n # —1/3 we
find

—1/2
f (AT—Sn-l = %) dr = %(t-to), 3.2)

where A and ¢ are arbitrary constants.
In the case n = —1/3 (this is anisotropic analogue
of the Einstein’s Universe with p, = —¢/3) eq. (3.1)

gives
g i\/—gln(r/ro), 8me = Lﬁl;M,

In(r/ro) + 1

374 ?
where 79 = Const, r < ry. Integrating (3.3), we
obtain

8mpy =2 (3.3)

r=roe~®/2; +(t—to) = 3ro / e~¢/2d¢, (3.4)
0

where z = r/rg, to = Const. The configuration
expands to the maximal radius » = rq, and then col-
lapses (elliptic type). The energy density is positive,
pr < 0, and tangential pressure is negative for r <
To / e.

In the case when the constant A in eq. (3.2) is
equal to zero, the solution is

r = +a(t — tp), 87 = (3a® + 1)r2,

8mp, = —(14+a?)r~2, 8npy = —a?r~2, (3.5)
where @ = /—(n+ 1)/(3n+ 1). Such models are
possible only if —1 < n < —1/3. The radius 7 is
proportional to time coordinate ¢, and both p, and p
are negative. The model is of parabolic type.

Equation (3.2) also may be easily integrated for
casesn = —-1,n=1/3,n = —-2/3andn =0

(pr = 0).
3.1. For a model with n = —1 (anisotropic analogue
of De Sitter Universe with p,, = —¢) we find r =

ro exp(+At), where ro and A are constants (A # 0,
ro # 0). The model is of a parabolic type. The ra-
dius depends on time by exponential law, and € > 0,
pr <0, p. = —3A%2 = Const, p, < 0, ie. tan-
gential pressure is constant. On r — c0: € = —p |,
Pr—>p1.0Onr —0: e— o0, pr = —00.

The solution with n = —1 can be also written as:

r = 1o exp(t\/—8npL /3),

1
g= _p_]_+._.7, pr = —¢, p1. = Const. (3.6)

8rr
3.2. For n = 1/3 (analogue of the ultrarelativistic
equation of state for anisotropic fluid) we get:

e \/;'_,2:_:_2—15_2—/_3-, 8me = (27‘,2,1 — 34,
‘ol “al 1

Pr=36 PL= §5+ 8rr2’
where r,,, > 0 is a parameter. The time coordinate ¢
must satisfy the inequality —7,, < 1/2/3t < r,,. The
model expands from initial singularity » — 0 to the
maximal radius » = 7, (¢t = 0), and then collapses
(elliptic type). The scale factor 7 — 0 if t — =£7,,.
The energy density is positive, for 7., itis 8me = r;2,
forr — 0: € — o©. Pressures p, — 00, p; — oo if
r— 0.
3.3. Consider case n = —2/3. Integrating (3.2) obtain

3.7)

L iy 3Cr +2
S e
2 2Cr+1/3
Pr=—§5> 8mpL =_r—2/’ (3.8)

where C' # 0 is constant. For C' < 0 the solution is
of elliptic type, the maximal value of 7(t) iS 7maz =
—1/(3C), the energy density and pressures are £ =
9C?, p, = 3C2. In the case C = 0 the solution
transforms into (3.5) with n = —2/3.

4. Models with p, ~ ¢

Consider solutions with the equation of state p;, =
ve, v = Const. From the field equations (2.2) we
get:

2 + (3y + 1)7° + v = 0. @.1)
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The general solution of this equation for v #
—1/3 is of the form

-1/2
/ (DT—I—B‘Y . 57'71_1) dr = +(t—tp), (4.2)

where D # 0 and t( are constants. In case D = 0
the solution transforms into form of eq.(3.5) with

a=+/=7/y+1).

For v = —1/3 we get 7 = +./3~1In(r/ro),
ro = Const.

Equation (4.2) may be easily integrated for the
cases y=1/3,y=-2/3,y=—1and y=0.
4.1. For v = 1/3 (an anisotropic analogue of ultrarel-
ativistic equation of state) integrating (4.2) we get

6D—r2 1
T = VGD—(t—to)z/ﬁ, 8me = T‘F—

r2’

1
—€, pr=pL — 4.3)

3 8rr2’
where tg = Const, D > 0. The model expands
from the initial singularity to 7mez = V6D, and then
collapses, 7 — 0 if t — to + 6+/D (elliptic type).
The energy density and tangential pressure are posi-
tive, p, < 0 for 7 > \/6D/5 = T'mas/V5.

4.2. For the model with v = —2/3 we obtain

DI =

Bl s b 5
S A A e
2 6Dr +1
pPL = —56, 87I'p,- = —ST, (44)

where D > 0 is a parameter. The configuration con-
tracts from infinity to minimal radius r,;, = 2/(3D),
and then expands to the initial state. Hence, this solu-
tion is of a hyperbolic type.

The energy density is positive, € — 0, p, — 0
if t = 400. Radial and tangential pressures are neg-
ative, 8me — 9D?/4, 8mp, — —15D2%/4 for r —
Tmam e
4.3. In case v = —1 (anisotropic analogue of De Sitter
model with p; = —e¢) the solution of eq. (4.2) is

1 1
r= T cosh[V'D(t — to)], 87 = 3D — 55t
pL = —¢, 8np, = —3D 4.5)

s
where tg = Const, D > 0. The model is of hyper-
bolic type again: r — rmin = 1/v2D (for t — tg),
e — D/(4r), p, = —D/(27).

5. Models with p, = Const

In the case p, = Const the solution of the Einstein
equations (2.2) takes the form

fz:t\/é— e,
r 3

R pi=pt g G)
where A is an arbitrary constant.

For the models with zero radial pressure (p, = 0)
we obtain

€= —pr+

A
r = Asin? g £(t ~to) = 5 (x —sinx). (52)

Configuration expands to the maximal radius r =
A, and then collapses (elliptic type). The energy den-
sity and tangential pressure are positive.

Putting A = 0 in eq. (5.1) we get a hyperbolic
solution:

t—t /
T = 19 cosh 0,7’0 =4/— 3 3 5'3)
To 8T,

This model contracts to the minimal radius r = g,
and then expands. Both radial and tangential pressures
are negative.

6. Models with p, = Const

For models with a constant tangential pressure we get
from (2.2)

722:}:,/2_8”_1’}_,"2’
T 3

e e E ik sy
==PpL 87('7'3 WPr=DPL 871'7'2 3 .
where B = Const.

In specific case p; = 0 the solution takes the form
r = [3VB(t —t0)/2]?/3, to = Const.  (6.2)

So, the model with zero tangential pressure unlimited
expands or collapses (parabolic type). The radial pres-
sure is negative.

The solution (6.1) with B = 0 takes the form (3.6)
(solution with p, = —¢).

7. Models with p;, = kp,

Assuming the equation of state to be of the form p; =
kpr, k # 1 (a perfect fluid is not included in consid-
ered class), we find from (2.2)

: & & 3C . %+1
R Ly T e
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1
Pr= gk —nr2’
where C' = Const.
Depending on sign of C and k/(1 — k) we have
five different solutions.
7.1. For C =0 and 0 < k < 1 we have solution (3.5)
with a = /k/(1 — k).
7.2. For k = 0 we have solution (5.2) with zero tan-
gential pressure.
7.3. For C < 0 and 0 < k < 1 we get a hyperbolic
model:

(7.1)

1-k

r=|C| A

X
osh? &,
2 2

3
v '%' ( -1—;—’“) (sinhx +X). (7:2)

The pressures are negative.
7.4. For C > 0 and 0 < k < 1 we have a parabolic
model:

1-k

r =i %

. X
nh? =,
si 5

3
C 1-k a
+(t—to) = = —— ] (sinhx —x). (7.3)
2 k

The pressures are negative.

7.5. For C > 0 and k < 0 or k£ > 1 we get an elliptic
model:

ek, sin? X,

r=C o 5

3
+(t—to) = g ( %) (x —sinx). (7.4)

The pressures are positive if £ > 1. For & — oo
this solution transforms to the solution (5.2) with zero
radial pressure.

Also it can be shown that the solution with equa-
tion of state Ap ~ & has the form (3.5).

8. Conclusions

New exact T-solutions of the Einstein equations for
nonstatic spherically symmetric configurations of shear-
free anisotropic fluid are derived and investigated. It is
shown that presence of a local anisotropy of pressure
may lead to significant changes in the evolution of the
model. For perfect fluid spheres all known solutions
are either of a parabolic or of an elliptic type. For the
anisotropic fluid besides this the following types are
possible:

exp(t); 3) relatively slow dependence of scale factor
ont (r~t).

For some models the pressure is always negative.
Such a solutions in general relativity may be applied
to the classical description of the particle-production
phases in early Universe predicted by some symmetry-
breaking particle theories [4].

The obtained solutions describe -regions of space-
time. They could have cosmological application and
be used for description of processes in the early Uni-
verse.
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T-PEINEHME JIJIS JKUJIKHAX
AHM3OTPOIHBIX COEP B OBILIEN TEOPUH
OTHOCHTEJBHOCTH

B. B. Bypauxkos, M. II. Kopknna

IMonyyeH ¥ HCCNENOBaH PsA  TOYHBIX PELICHHMH
ypaBHEHHH DHHLITEHHA JUIS HECTATHYECKOH c(epHuecKu-
CHMMETPHYHOH aHH30TPONHOH JKHAKOCTH. MeTpuueckuii
KOO (HUMEHT @gpp CUMTACTCA 3aBUCALIMM TOIBKO OT
BpemeHHOH koopauHath! (T-pemenns). PaccmarpuBaembie
KOH(HIypaunH HMEIOT paBHBIH HymO caBur. [TocTpoeHs!
MOJIENIH C PAa3IHYHBIMH YPABHEHHAMH COCTOSIHMA JUIs
panHanbHOH M TAHTEHIIHAILHOH COCTABAIOLINX AABJICHHS.

T-PIINEHHA AJI5I PIAKAX AHI3OTPOITHUX
C®EP Y 3ATAJIBHIN TEOPII BIITHOCHOCTI

B. B. Bypaikos, M. II. Kopkina

Onep:kanuii Ta JOCHIUKCHHH Psil TOYHUX PillieHb PiB-
HHb EfHIITEHHA 101 HeCcTaTH4HOT CepHUHO-CHMETPHY-
HOT aHI30TPONHOT piauHH. MeTpuuHHuiH KOe(ILie€HT ggg BBA-
JKAETHCS TAKHM, L0 3aI€XKNTh TUTHKH BiJl 4aCOBOT KOOPAH-
Hatu (T-piwenns). Kondirypauii, ski po3rnsnaTscs, Ma-
10Th HyNnbOBHH 3CyB. [ToOynoBani Mozeni 3 pisHUMH PiBHSH-
HAMH CTaHy JUls PaJianbHOT Ta TAHI€HLIAMbHOI CKJIAJIOBHX
THCKY.

S56 Radio Physics and Radio Astronomy, 2001, v. 6, No. 2



