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An analysis of observation data of distant supernovae for the Universe acceleration from the viewpoint of gravitation equa-
tions proposed by one of the authors is given. The observation data are in a good accordance with the theory without introduction
of the cosmological constant. It follows from the data analysis that the deceleration parameter g is a positive for nearest ob-
jects and become negative for the sufficient remote ones. It is shown that the negative magnitude of ¢ is a consequence of a

peculiarity of the gravity force in the theory under consideration.

1. Introduction

The recent results by two teams (the Supernova Cos-
mology Project and the High-z Supernova Search
Team) [1], [2] lead to fundamental problems. (Several
of them are reviewed by S. Weinberg [3]). In partic-
ular, the results show that the deceleration parameter
qo in the standard cosmological model is negative. It
means that the acceleration of the Universe is posi-
tive. It is inconsistent with Newtonian gravitation law
and in general relativity can be explained only by a
nonzero cosmological constant [3].

First in paper [4] and after that in [5] has been con-
sidered a model of the expending dust ball from the
viewpoint of our gravitation equations [6], [7]. It fol-
lows from the results that the acceleration of the ex-
pansion of a self-gravitating dust ball can be positive
at a sufficient large its size and mass. This unexpected
from the viewpoint of the Newtonian mechanics fact
is a consequence of the peculiarity of the gravitational
force affecting a moving particle. The spherical sym-
metric solution of these equations have not an events
horizon at the Schwarzschild radius 74. At the dis-
tances from the center of an attractive mass of the or-
der of 7, or less than that gravitational force affecting
a free moving test particle are repulsive. Just it occurs
when we observe objects in the Universe at distances
R of the order of 87rR3p/3cz, where p is the matter
density and c is the speed of light.

In the present paper a detail analysis of the ob-
servation data [1] from the viewpoint of the above-
mentioned model is given. It is shown that the neg-
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ative value of g is the consequence of the peculiarity
of the gravitation force.

2. Evolution of an expanding dust-ball.
Dependence ”distance — redshift”

Our analysis of the problem is based on the spherically
symmetric solution of the vacuum metric-field equa-
tions of gravitation [6], [8], (in detail in [7]).

Consider in flat space-time the dynamics of a self -
gravitating spherically symmetric homogeneous ex-
panding dust-ball with the mass M .

In a spherical coordinates system the motion of the
specks of dust with the masses m,, in the spherically
symmetric field are described by the Lagrangian [6]

L =—mye
L\ 11/2
X [czc’ — A — 2 (c'pzsinze +6 >] 3
@.1)
where A =4 /f2(1 =¥ /), C =1-=r;/f; f=

(rd+13) 12 , rg=2GM/c*, G is the gravitation

constant, c is the speed of light and the points denote
derivatives with respect to ¢.

The differential equation of particles radial motion
of the ball surface is given by [6]

T C
R _7(1—%5), 2.2)

where R is the radius of the ball, E = E /myc? and
E is the energy of the specks of dust, C' and A are the
functions of R.
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We can apply the above model to a real local area
of the Universe if in the theory under consideration
the matter outside of the ball does not create gravita-
tional field inside the one. It indeed takes place in the
theory for the spherically symmetric solution. There-
fore, such a model can be used for the homogeneous
isotropic Universe as the first step to consideration of
the problem.

In flat space-time approximation the luminosity
distance D is the following function of the redshift
z = (w—wyg)/wo, where w and wq are frequencies of
the emitted and received light wave, correspond-

ingly, [9]:
Dy =R(2)(1+2)?, (2.3)

where R(z) is the distance to a remote supernova with
the redshift parameter z.

The magnitude R (z) is a distance r from the cen-
ter of the ball at the moment when a supernova emitted
the photon and had the redshift z. The equation of the
radial motion of a photon is given by [6]

1/2
F=—c (g) : 2.4)

Therefore, (in an analogy with [9]) R (z) can be found
by solution of the differential equation

dr O\ rd
fosgl 00 wfilhens ioes)

In this equation C' and A are the functions of 7(z).
It follows from the relation z = Rg/R — 1 that the
dz/dt is given by

dz

L

== H(1+ 2), (2.6)

where H = R/R is Hubble parameter. By using eq.
(2.2) we obtain

1/2
H= % [% (1 = %)] : @.7)

2 : =2 . :
In this equation the constant E~ is determined from
the parameters of the ball at the moment and is
given by

2 = 3
Ez = fo (fo T'g) - ; (28)
cf2 (fo— Tg) — HZR§
where fo = (R3+r )3, vy = 87GpoR3 /3¢, po is

the density, and the mdex zero denotes the magnitudes
refereed to the present moment ¢ = ¢g.

The radial photon motion is conditioned by the
matter mass contained inside the radius r(t). There-
fore, finally, by the substitution eqs.(2.6) and (2.7),
where R is replaced by r, into eq.(2.5) the following
equation is obtained

dr T

= > 2.9
dz 0 ) (1—C’/E2)1/2

In this equation E and C are given by eqgs.(2.8)
and (2.) where Ry is replaced by 7o = 7(1 + 2).
The solution of the eq.(2.9) at the initial condition
r(z = 0,Hp,Q) = 0 is the path of photon from
the supernova to the observer, which yields the func-
tion R = R(z, Hp, ), where @ = po/p. and
pe = 3HE/8nG. The parameters Hy and Q are de-
termined from observations.

3. Comparison with observation data
In paper [1] the distance modulus
p=>5log Dy, + 25, 3.1)

for 10 Type Ia supernovae (SNe Ia) in range 0.16 <
z < 0.97 and 27 nearby supernovae with z < 0.1
were presented. Value of p was determined by the
multicolored light curve shape method (MLCS) and
by the template - fitting method.

The likelihood for the cosmological parameters
Hy and Q can be determined from a x? statistic,
where

H i
Z [llz 2i, Ho, Q2 - 02 — Mo, ] . 32)
Mo i

X2 (H07

po,i and oy, , arethe distance modulus and the
dispersion in galaxy redshift (in units of the distance
modulus), respectively. We use value of o, = 200
km/s for SNe Ia with small z and o, = 2500 km/s
for SNe Ia with large z [1]. We found that the Hubble
parameter Hy = 65.741.4 km s~ Mpc~" by using
MLCS - methodand Hy = 63.341.5 km s~ Mpc~!
by using template - fitting method. Starting from
this value of Hy and following to Riess et. al. [1]
argumentation, we assume here that Hy = 65 &
Tkms~! Mpc~!.

Proceed from the data of paper [1] we found that
Q = 0.93 + 0.36 at the 93.5% (1.90) confidence
level for MLCS-method, and 2 = 0.39 &+ 0.24 at the
91.0% (1.70) confidence level for template-fitting
method. It must be noted that the value of found pa-
rameter 2 does not depend on the above found value
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Fig. 1. The function p of z. The MLCS-method. Q2 =
0.93.
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Fig. 2. The function | of z. The template -fitting
method. Q = 0.39.

of the Hubble constant. The function p = p (2) deter-
mined by the both methods are shown in figs. 1 and 2
by the continuous curves. The points denote . versus
z for SNe Ia from paper [1].

Using the above values of Hy and 2 we can find
the deceleration parameter

e (3.3)
R

where R = (dR / dR) Rand R is given by eq. (2.2).
The deceleration parameter is not a constant and ac-
cording to [5] is a function of the distance to super-
nova. The following equation is valid

=2
¢ % -F A’}
T e e i (34)
2
CaE -0) 24| .
where the prime denotes a derivative with respect
to R.

Plot of the resulting function go(Rp) for two used
methods is shown in fig. 3.
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Fig. 3. The deceleration parameter found by the
MLCS method (2 = 0.93) and by the template-fitting
method (2 = 0.39) versus Ry.

4. Conclusion

I spite of all limitation of the used model, it demon-
strate a good agreement with the observation data. The
fact that the deceleration parameter changes its sign
to a negative at the real distances to supernovae and
the last observation data [1] give confidence that we
have dealt with the peculiarity gravitation force for big
masses.
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YCKOPEHUE BCEJIEHHOM MMPUCKOPEHHS BCECBITY
M CBOMCTBA I'PABUTAIIAHA TA BJIACTUBOCTI I'PABITALIIT
JI. B. Bepo3y0, A. E. Koueros JI. B. Bepo3y®, O. €. Koueros
IMpoBenen aHanu3 JaHHBIX HAOMIONEHHH YNANCHHBIX HaseneHo anasi3 JaHHX CIOCTEPEeKEHb BIUIAJIEHUX Hal-

CBEPXHOBBIX JUIsi YCKOpeHHs BCeneHHOH ¢ TOUKM 3peHus HOBHMX /U1 MPHUCKOPEHHs BCECBITy 3 TOUKH 30Dy PiBHSHB
YPABHEHHIl TATOTEHHS, MPEUIOKEHHBIX PAHEE OTHHM M3 aB- TAKiHHS, 10 Gy/M 3aNPONOHOBAH] PaHille OJHHM 3 aBTOPiB.
TopoB. HabmonatenbHble JaHHBIE HAXOAATCA B XOPOLIEM Jlani cniocTepekeHb 100pe y3rofuKyHThCs 3 BAKOPHCTAHOIO
COOTBETCTBHMH C MCNOJIB3yeMOi Teopueii 6e3 BBeIeH s KOC- Teopi€io 6e3 BBEICHH KOCMOJIOrivHOI CTasol. 3 ananisy aa-
MOJOTHYECKOH MOCTOsHHOM. M3 aHanu3a JaHHBIX creay- HUX BHIUIMBAE, 10 MApaMETP CHOBUILHEHHS Go AONATHHH
€T, 4TO MapaMeTp 3aMEUICHHS go — MONOKHTENbHBINH UIA Juist GMU3LKHX 06’ €KTIB Ta CTA€ Bifx’€MHMM JUlsi 3HAYHO Bil-
OnmmkaiinX 00BEKTOB H CTAHOBUTCS OTPHIATEIbHBIM JUIs nanenux 00’extis. [Toka3ano, WO ueH (PaKT € HACHIAKOM
CYLIECTBEHHO yAaJeHHbIX 00bekToB. IToka3aHo, 4TO 3TOT 0COONMBOCTI CHIIM TPaBiTallii y BUKOPHCTaHii Teopii.

(akT ecTh CEACTBHE OCOOEHHOCTH CHJIbI TATOTEHHS B pac-
CMaTpUBAEMOii TEOPHH.
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