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Transition from difference to differential equation allows solving tridiagonal recurrence relations,
which appear, among other things, in analysis of the rotation of an overdamped Brownian particle
subjected to a periodic force. Replacement of the discrete integers in the Fourier series by continuum
is justified for large numbers, i. e. for small angles. For the simplest case of the sinusoidal force, our
solution, indeed, coincides with one obtained by expanding the sin in the original Fokker-Planck equation
(The Ornstein-Uhlenbeck limit). However, for slightly more complicate potential the expansion for small
angles does not transform the appropriate Fokker-Planck equation into the soluble. At the same time,
the method suggested allows solving the problem for all periodic potentials which have finite number of
terms in their Fourier series such as sin™ (8) or cos" @ ).Even and odd functions require slightly different

analysis, and are considered separately.

The current radio physics is essentially nonlin-
ear science. This is caused by using high power
generators being concerned with their arrange-
ment as well as with the effect of the radiation
produced on various objects. Nonlinear processes
occur in the natural conditions too.

Now, one can speak with assurance about the
occurence in Kharkov of the lead of nonlinear
radio physics which found the world recognition.
The first from the papers in which the complicat-
ed nonlinear problem was solved, and which can
be called the basic one, was the theory of mag-
netron built by S. Ya. Braude. He succeeded in
solving the system of nonlinear equations describ-
ing the electron motion in magnetron. This work
as is known was approved by L. D. Landau.

In present paper the new method is proposed for
solving the nonlinear problems describing the radio
physical phenomena including the behavior of the
nonlinear circuit with strong resistivity, the motion of
an electron in nonlinear resistive medium, et cetera.

The present problem is related to the same
field as the pioneer work of S. Ya. Braude.
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1. Introduction

Many ordinary and partial differential equations
used in a practice after suitable expansion reduce
to tridiagonal recurrence relation of the form

d _
d—i"=anq.1+an1+Q;q* (1)

Some examples are listed in the Risken mono-
graph [1] (master equation with nearest-neighbor
coupling, the one — dimensional Shroedinger equa-
tion with an unharmonic potential, the Fokker —
Plank equation for lasers, and for the Brownian
particle moving in a periodic potential). The un-
known quantities ¢, in Eq. (1) might be scalars or
column vectors. We restrict our analysis to the
case of scalars; the extension to vectors should
present no problems.

Overdamped Brownian motion in a periodic
potential is a typical example leading to Eq. (1). Its
equation of motion has the following form:
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£+ g(@) =a+ f(1), (2)

where g(8) and a are the periodic and con-
stant forces acting on a particle, in addition
< f(t)f(t)>=2Do(t - t,).

The Fokker-Planck equation for the distribu-
tion function P(6,t), which corresponds to the
Langevin equation (2), has the following form:

dP_ 9 _ pd’P
o ap 9@~ PEr Dogs ®

If Eq. (3) has coefficients periodic in 8, then
its solution is also periodic in 6, and, therefore,
may be expanded in the Fourier series

n=co

PO.D= Y G (Dexp(md). )

Substituting the expansion of the periodic func-
tion g(0) in the Fourier series

60)= 5 dexpliko) ®

and (4) into (3), one obtains after simple transfor-
mation

dc, =(-Dn” -ina)c, - ink:oo d, (6)
o G k:z_m Gk

If the sum in Eq. (6) contains only a finite
number of terms or if this sum converges so
rapidly that one can restrict our analysis to a
finite number of terms, then Eq. (6) takes the
form of scalar (or vector) tridiagonal recurrence

relations (1) [1].
The equation of motion of an overdamped

pendulum subject to a constant and random torque
is the simplest example of an equation of the form

(2) (with g(6) =sind):

£+bsin9:a+ f(t). (7

Eq. (7) describes many different phenomena,
such as motion of fluxons in superconductors [2],
motion of ions in superionic conductors [1] and
biological channels [3], charge density waves [4],
phase locking in electric circuits [3], mode locking
in ring laser gyroscopes [5], and the Josephson
junction [6].

The Fokker-Planck equation corresponding to
Eq. (7) has the form (3) (with g(B) =sin®):

2
Ezi(sine—a)P+ Da—P, (8)
ot 06 09

or the form (6) with the coefficients

dl=—d_1=2ii and d, =0 for kz1:

dc . bn
& =(-Dn? -ina)g, S5 (Ga= 6 O

The usual way to solve the tridiagonal recur-
rence relations of type (1) is by matrix continued
fractions (see [1] and references therein). The
aim of this note is to propose another method for
solving Egs. (1), (9), namely, the transition from
a difference to a differential equation. Of course,
this method is not new, and it has been used
successfully, for example, in continuum approx-
imation of small oscillations near the equilibrium
positions for chains of equidistant particles with
nearest-neighbor interactions. However, this
method has never been applied to the equations
of a kind (9), which would be the aim of our
considerations.

Replacing the integers n in Eq. (9) by the
continuous variable, one can make the Taylor
expansion which gives

Jc
_ 2%
(Cn+1 Cn—l) 0 an

2 0°c, O
+ O%—C'S‘D (10)
on’

Pagnodusuka u paguoactponomus, 2001, 1. 6, Nel



Analysis of tridiagonal recurrence relations in continuum approximation

The error due to retaining only the first term in
the series expansion in (10) is of order of

3 -1
20 03" 96, 0 = iz, which strongly decreas-
3 on on H 3n
es with n.

Substituting (10) into (9), one gets

oc, ¢, .
N ppn—/—n =[- - ) 11
5 + oo [-Drf - ind ¢, (11

Let us now turn to the general Eq. (6), assuming
that summation in this equation is restricted to some
K. <. Then, for >k, onecanexpand c,_,
: ac, . k? d°c,
in Eq. (6), ¢, =¢c,— k—t+——"1

GO 0 T 2 o
reduces Eq. (6) to the following form

+ ..., which

0 Kinax 0
oc, =#Dn”-ina-in % d 0g, -
o g T B

Kmax C H Kmax az

i oc, ,in Gy
mk=%ax(kdk) o ZK:ZW(kZdK) e (12)

Three combination of the Fourier coeffi-
cients d, defined by (5), enter Eq. (12),

kmax

kmaX

Ko = % d.. K,= % kd, , and
k=— ax k=- ax
Kmax

K, = Z k?d,. The calculations are slightly
k:_kmax

different for the odd and even function g(0).
For odd functions g(B), d_, =-d, so that

kmax
K,=0 and K1=2z kd,, whereas for even

kmax
functions g(0), K(,=2;‘)dk and K, =0.

Therefore, for odd g(6), one can neglect the
last term in Eq. (12), and rewrite it as

aac;” =H-Dn’ -inag, - inKl(?)—?]”. (13)

Whereas for the even function g(6)

0°c,
(14
Py (14)

a;” =H-Dn’ - ina- inK, Hg, +g K,

Analogous to Eq. (10), one concludes that the
relative error due to neglecting the next term in
the expansion in Eq. (14) is of the order

1
2

1 d%c, 10°c,
24 on* "2 9n?

L
) =1

We consider in Sections 2 and 3 the simple
cases of purely deterministic and steady-state
overdamped pendulum, and compare our result
with the exact solutions, leaving to Section 4 the
analysis of (11). The general analysis of even
and odd functions f(0) described by Egs. (13)
and (14) is performed in Sections 5 and 6. Final-
ly, some discussion and conclusions complete the
analysis.

2. Non-biased pendulum

Let us start with the simplest case, without
deterministic (a) or random (f(t)) forces in
Eq. (7). Then, Eq. (7) takes the simple form,

@ +bsin® = 0, which allows the exact solution

tangz tan%O exptbt ), (15)

where 6(t =0)=6,.

Eq. (8) with a=D=0 transforms after in-
serting G = Psin® to a first order partial differ-
ential equation with constant coefficients and
characteristic equations of the form
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a__w@ _& (16)

The latter equations show that 7 and 0 enter

the solution only in the combination

bt +log ﬁang ﬁ, so that the solution of Eq. (8)

with @ = D = 0 has the following form:

0. 6
f ﬁ)tﬂog tan—
H 2% (17)

P= - )
sin®

where f (z) is an arbitrary function which is found
from the initial conditions.
If P(6,t=0)=0(0-6,), then Eq. (17) gives

0
f tham
o-so- FET2

which means that

f(2) =sinRtan” (exp @EZtaﬁ% expﬁ—eoa .

(19)

Substituting now (19) at wvalue

80
z= bt=log HtanE Emto (17), one finds the coef-

ficients ¢, in the Fourier series (4),

sin%taﬁlﬁtarg exjit ﬁ:
c, :J’deexp(—ine) =5 L
10,0 O
dR2tan™ [t t 06,77 -
%an Hané exg %— OH (20)

Using the well-known relation,

o{u0)-6,] = 0= &(6-0)

with () =6, one can perform integration in
Eq. (20) which finally gives

P(6,1) = DS'"eeo >
sinfRtan’ [tan? expfbt
ey e
[P, [
%+ tar? BE %expébt )><

1+ tarf E%ﬁexpé pt )

Zexpinﬁ— 2taﬁ1§ta§2£ expt % .21)

The sum over n in the exponent of the latter
formula defines the delta-function which gives the
solution (15) while the pre-sum normalization fac-
tor equals to unity both for t =0 and t = c0. Hence,
using the more complicated calculation, we ob-
tained the same solution, which follows immedi-
ately from the equation of motion, as it should be
since our calculation is exact.

Let us now solve the approximate Eq. (11)
and, then, compare the result obtained with the
exact one found both from the equation of motion
and from the Fokker-Planck equation.

The first-order partial differential Eq. (11) with
constant coefficients has the characteristic equa-
tions of the form

dc
n. 22
0 (22)

=}

:—E:
bn

The latter equation is similar to Eq. (16), and
its solution can be found analogously to Egs. (16)-
(21), which gives
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P(6,t) = Z explin® -6, exptbt ))] (23)

with the deterministic solution 6= 0,exp(-bt)
which is the limiting case of the exact solution
(15) for small 6.

3. Steady-state case

=0, Eq. (9) re-

duces to an ordinary equation in finite differences

(-Dr = ind) =2 (G = G.)=0, (24

which can be solved rigorously. The continued-
fraction method was used for the solution of
Eq. (24) by Cresser et al. [7], while Ivanchenko
and Zilberman [8] noticed that Eq. (24) bears a
resemblance to the recurrence relation for the
Bessel functions of the imaginary argument [9],
2l, (2)+41,,,(2 - |,_,(2]=0. Comparing the
latter equation with Eq. (24), one concludes that
(up to a normalized factor),

Ob O

2B h (25)

For the following discussion, we need the as-
ymptotic form of Eq. (25) for large numbers
n+ia/D. The latter can be obtained from the
integral representation of this function [9],

1,(2) = %}exp(z co®H )cos(d6 -
0

Sln(\”T)Iexp( zcosh—-vt )d . (26)

For large v one can neglect the second inte-
gral in (26), and the main contribution to the first
integral comes from small 0 since for large 6
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the kernel of this integral oscillates rapidly. In
line with this, one can extend the range of in-
tegration to infinity and expand the argument
cos@ )= 1-0?/ 2.Then,

l,(2) = ex p(z) Ecos(ze )& =

H
jeXDD- 2 0

—— ~‘ex i
e VH 2zF @7

0 ..
Dmn+i—n00O
M% (28)

Let us solve now Eq. (24) by the transition
from a difference to a differential equation,
which gives

oc

b at" =-(Dn+ia)g,. (29)

As is easy to see, the solution of Eq. (29)
coincides with the asymptotic (for large n) form
(28) of exact solution.

After checking the applicability of our approx-
imation by comparing with the known exact solu-
tions for the field-free and steady-state cases, we
proceed in the next Section to the analysis of the
general Eq. (11), for which the exact solution is
unknown.

4. Overdamped pendulum

The calculations to be described here are sim-
ilar to those performed in Section 2. Consider
Eq. (11), where @ and b might be arbitrary func-
tions of ¢

ac, ac, _ :
E+b(t)n%— FDrf -ina §He.  (30)
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The characteristic equations associated with
Eq. (30) have the following form

d_ .
1 nb(t) Dn’+ina(t)’ G

The first equation in (31) defines the first con-
stant of integration

Ot O
C, = nexpLr [b(t)d D (32)
B B
while from the second equation, one gets
|:| t
¢ =G %ﬂexpﬁ' | b )dr%><
g B9 N
expS—DCl2t dz ex 7 bt .
g Pl renttty
iC td a( 2) ex . b(r)ctED (33)
[ za(Z .
retmen PO

Taking Eq. (33) into account, according to the
theory of partial differential equations, the second
constant of integration

E}-' Dtb(r)CI‘D EIX
C, = expFin ex
§ ﬁf ée"@

0

expS-DnzexD tbt)(limFdebeT( i
20T S PO 4 RO

in exp%—jb T)a % za(2) exﬁ bt )d % .
0

(34)

For the special case of time-independent a
and b, Eq. (34) reduces to

¢, =exp[-inB, expfbt ] x

) .
expEI-Dz—T)[h expt bt }—%‘[ T expfbt ]g .
(35)

It is a matter of direct verification to confirm
that Egs. (34) and (35) are solutions of Eq. (30)
with a=a(t), b=Db(t) and a=const, b =const,
respectively.

Substituting Eq. (35) into Eq. (4), one obtains
the full solution of the Fokker —Planck equation (8)
corresponding to the Langevin equation (7), while
Eq. (34) relates to the Langevin equation (7) with
the time-dependent coefficient. Recall that all these
solutions have been obtained on the assumption
that one can replace the difference in # tridiagonal
recurrence relations by differential equations. Now
we are in a position to understand the final results
of this assumption. It turns out that our final result
(35) coincides with the solution of the Ornstein-
Uhlenbeck process (Sin@®) — 0 in the original
equation) which can be found in the book by Gar-
diner [10] for a = 0. Therefore, our approximation
describes the limiting case of small angles, as we
have already seen in the field-free case described
in Section 2.

Provided the distribution function P(6,t) is
known, one can find all the correlation functions.
For our case, which reduces to the Ornstein-Uhlen-
beck approximation, the correlation functions are:
<0(t)6(t,) > and <cosP ¢ )]cosp ¢, )]>, which
have been calculated in [10] and [7], respectively.

5. Odd potential

In two previous sections, we considered the
specific form of the periodic function g(6) =sin@,
which is important for many applications. The
general case of the odd function g(8) is described
by Eq. (13) which looks exactly like Eq. (30) upon
replacing b by ibK; and a by a+ K,. Of course,
although these equations look similar, the accura-
cy of our approximation strongly depends on the
form of g(6) since one assumes N>K ..

As an example, let us consider the special
case of g(@)=sin®(@), which, in contrast to
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g(8) =sin(®), does not reduce to Ornstein-
Uhlenbeck equation, and cannot be solved by
expansion in 6. Since this function is odd, K, =0.
Using the well-known relation [9]

sin® (e)=%[— sin(® )+ 3sird] (36)

1
one concludes that d3=—d_3=—§ and
i

1 .
d=-d, =§, so that K; =—. Since iK; =1, the
i i
final Egs. (34) and (35) obtained in the previous
Section for g(B) =sin(®) and n> 1 also apply for
g(8) =sin*®) for n > 3.

6. Even potential

The case of an even potential is described by
Eq. (14), which can be rewritten, after the sepa-
ration of variables ¢, (n,t) =expAt)q, (n) as

2 d2q N . O
+i(@a+nkK,)+D =0. 37
sz g; i@@+nkKo) nHCh (37)

The solution of Eq. (37) for the steady-state
case, A =0, presents no problem since Eq. (37)
reduces to the differential equation for the Airy
function [11].

In the general case A #0, one has to per-

form substitution r(n) = diln[q( n] which trans-
n

forms Eq. (37) into the Ricatti equation for r(n)
of the form

i 2——%;+|(a+nK)+Dn§ (38)

after which one obtains the required solution
of Eq. (37),

dq _
o r(n) = exp(—Ir h )m) : (39)
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In general, the solutions of Egs. (38) and (39)
cannot be obtained by quadratures, and one has to
use the approximate or numeral methods.

For g(6)=cos'0,d,=-d,=2d,=Y4, so
that in this case, K, =1/2 and K, =2. To find
the approximate solution of Fokker-Planck equa-
tion (3) for arbitrary even periodic function g(6)
with a finite numbers of terms d, in its Fourier
series (5) (till some K., ), one has to find these

Kmax
d,, and calculate two numbers K, = % d.

kmax

and K, = k2dk in Eq. (37). The latter equa-

K="Rpax
tion is justified for n>k__ .

7. Conclusions

We have used the transition from difference to
differential equations as an approximate method of
solving tridiagonal recurrence equations. This well-
known method of replacing a discrete integer vari-
able n by a continuous variable has a relative error
of order of N7, i. . this approximation is justified
for large n, and the error is decreased with n.
According to expansion (4) in the Fourier series,
only small 8 make an essential contribution to this
series for large n, compared with rapidly oscillating
large terms. It is no wonder, therefore, that for the
overdamped pendulum without periodic and ran-
dom forces (Section 2), and in the presence of
these forces in the steady-state (Section 3) and in
the general time-dependent case (Section 4), our
method coincides with the exact solution in the limit
of small 0. The periodic force acting on the pendu-
lum has a simple form g(0)=bsin®, and after
replacing sin® by 0 in the Fokker-Planck equation,
the latter takes the Ornstein-Uhlenbeck form which
allows an exact solution. However, for a slightly
different form of a periodic force, say

g(8) =sin®™* (@), the expansion for small 8 has
the form sin®™*(@)=0%™", and the appropriate
Fokker-Planck equation cannot be solved. Howev-
er, our method can be applied for arbitrary function

g(0), leading to the first-order partial differential
Eq.(13) for odd functions g(0) and to the second-
order partial differential Eq. (14) for even functions

g(8). The coefficients in these equations contain
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a few simple combinations of the coefficients in
the Fourier expansions of g(0) under the assump-
tion that these expansions contain a finite number
K., Of terms, and the equations can easily be
solved, as we illustrated by a few simple examples
in Sections 5 and 6. Strictly speaking, our proce-
dure is applicable for n> Kk _ , and it has arelative
error of order n2. There are different ways to
improve the accuracy of our method. One way is
to restrict this procedure to the values of 7 that
are too small, n= n;,, where the accuracy is high
(=n:2), and the coefficients ¢,... ¢, with n<n__
will be found from the appropriate tridiagonal re-
currence relations with the previously found ¢, .
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AHAJIN3 TPUAMATOHAJILHBIX
PEKYPPEHTHBIX COOTHOIIIEHH A
B KOHTMHYAJIbHOM NPUOJIMKEHUN

®. bacc, M. I'urrepman

[Tepexon oT pazHocTHOTO K AH(epeHIH-
aJbHOMY YPaBHEHHIO MO3BOJISIET PEUIUTH TPH-
JAUaroHaJbHbIC PCKYPPCHTHLIEC COOTHOLICHUS,

KOTOpbI€ BO3HHUKAIOT, B YaCTHOCTH, IIPU aHAIH-
3¢ BpalleHusi OPOYHOBCKOW YaCTHIIBI C TPEHH-
€M MpU HAIMYUK NEePUOIUUECKOH CUiIbl. 3ame-
Ha JJUCKPETHBIX HHJIEKCOB B pa3iokeHusx dy-
pbe HEMpepHIBHBIMHU ONpaBlaH s OONbIINX
HOMEPOB, T. €. JUIs MajblX YIIoB. B nmpocreit-
HIeM CJ1y4yae CUHYCOUJAJIIbHON CHUJIbI Hallle pe-
HIeHUE JIeHCTBUTENBHO COBIMAAaeT C PelleHH-
€M, MTOJIYUYEeHHBIM ITyTEM pa3lIokKEeHUs CUHYca B
IepBOHAYAILHOM ypaBHeHUN Dokkepa-Ilnanka
(npenen OpHuteitHa-Ynen6eka). OnHako yxe
B Cllyuae HECKOJIbKO 0oJiee CIIOKHOTO NOTEH-
uaja pa3jiokKeHHe IPU MajblX yrilax He jAella-
€T COOTBETCTBylOllee ypaBHeHHEe Dokkepa-
ITnanka paspemumMsiM. B To xe Bpems mpeaiia-
raeMblii METO/ IO3BOJISIET PEIINTh 3ajady JUIs
BCEX MEePUOINYECKHUX TOTEHIIMAIIOB, [T KOTOPBIX
psaasl Oypbe copepikaT KOHEUHOE YMCIIO0 ciara-
eMbix tuna Sin™ () wiu cos" @ ). YerHsie 1160
HeuyeTHbIe PyHKINHU TPeOy 0T HECKOIBKO pa3iiny-
HOI'0 II0JXO0Ja M PacCMaTPUBAIOTCS OTAEIBHO.

AHaJIi3 TPHAIarOHATbHUX PEKYPEHTHUX
CHiBBIIHOIIEHb Y KOHTUHYAJILHOMY
Ha0IMKEeHHI

®. bace, M. I'itrepman

[epexin Bij pi3HUIIEBOTO 710 MU(EpeHITiaIbHO-
T'O PiBHSHHS JJO3BOJISIE BUPIINTH TPHUliarOHAIBHI
PEKYpPEHTHI CITiBBiJIHOIICHHSI, SIKI BAHUKAKOTh, 30K-
pema, mpu aHalizi obepTaHHsI OpOYHIBCHKOI dac-
THUHKH 3 TEPTSIM y IPUCYTHOCTI IePi0IUYHOT CHIIH.
3amiHa TUCKPETHUX 1HIEKCIB y po3kianaHHi Dyp’e
HeTlepepBHUMH BHIIPaBIaHa JUisl BETMKUX HOMEPIB,
TOOTO AJsI ManuX KyTiB. Y HaWOpOCTIIIOMY BHU-
MajKy CHHYCOIIaIbHOI CHIIM Hallle PillleHHSI CITiBIa-
Ja€ 13 pillIeHHsIM, OTPUMaHHM HIIIXOM PO3KIIaIaH-
HSl CHHYCa y NOYaTkoBoMy piBHsHHI Dokkepa-
[Tnanka (rpanuus OpHiuTeiina- Ynenoeka). OqHak
YK€ y BUMAAKY JEII0 CKIAJHIIIOr0 MOTeHIiamy
PO3KJIaJaHHs IPU MAJIKUX KyTax He pOOUTh BiIMO-
BifHe piBHsHHS Dokkepa-Ilnanka BUpinryBaHuM.
BonHouac 3ampornoHoBaHmii METOJT JO3BOJISIE BUP-
IIIMTY 33/1a9y JUISL BCIX TIEPIOIMYHUX [TOTSHITIAIB,
st SIKUX pagu yp’e MiCTATH KiHIIEBY KiTBKICTb
noxankis, tumy Sin™ (0)abo cos" @).Ilapui un
HernapHi QyHKI[IT BUMAraroTh JICIIO HIIIOTO iIX0Ly
1 PO3MIAIAIOTECS OKPEMO.
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