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Wave scattering in irregular waveguides is investigated. The cross-section method is considered as a method

for calculation of the field in a waveguide consisting of two regular waveguides with different cross-sections

joined by an irregular domain. In the paper, a mathematically justified derivation of the basic equations of the

method is given. An iterative procedure for their numerical solution is proposed. The algorithm is applied to the

problems with the smooth and nonsmooth irregularities. In particular, numerical results for a test problem having

analytical solution, are presented.

Index Terms: wave scattering, irregular waveguide, cross section method, iterative method

1. Introduction

The idea of the cross-section method (CSM) was

proposed several decades ago [1, 2]. The method

was developed and investigated by different authors.

The most essential contribution to its foundation is

given in [3-5].

CSM is suitable for investigation of the waveguides

with different kinds of small and smoothly varying

irregularities such as smooth and slow change of the

cross-section shape, jog and shift of the axis line, al-

teration of the optical density of the filling etc. It is a

useful technique for studying the wave scattering in

closed and open irregular metallic, dielectric and im-

pedance waveguides [6-10], field converters, cavity

antennae [11-16], and other practically important prob-

lems. An attempt to justify the above method for the

3D vector problem was undertaken in [17]. However,

the range of the practical applicability of the method

is still not examined theoretically and numerically.

The purpose of this paper is to demonstrate the

mathematical equivalence of the main equations of the

method in the form presented in [3, 5] and in [1, 2], to

suggest an iterative procedure for solving the main

equations of CSM, and to investigate numerically the

applicability of the method for the case of large enough

irregularities. Application of the method is presented

in the framework of the new general scheme for the

investigation of the wave scattering in irregular

waveguides proposed in [18]. Scattering problems in

the domains with infinite boundaries were studied

in [19]. A detailed analysis of the scattering by obsta-

cles in regular waveguides is given in [20]. In [21] the

waveguide theory is developed in application to opti-

cal waveguides.

Here we present the method for acoustical

waveguides with soft walls; the pressure u on such

walls is equal to zero. The waveguides with the con-

tinuously varying cross-section shape are considered.

The two-dimensional case is equivalent to the electro-

magnetic problem for the E-polarization (u = E
y
).

Derivations of the main equations are made in the way

similar to [1, 2]. The scattering problem is put in two

forms: as a boundary value problem with inhomoge-

neous equation and homogeneous conditions at infin-
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ity, as well as such a problem for homogeneous equa-

tion with inhomogeneous conditions at infinity.

The idea of CSM as a method for solving the prob-

lems of wave propagation in irregular waveguides is not

new, but in this paper a self-contained and rigorous der-

ivation of its basic equations is given. The novel idea

and novel result in the paper is the numerical implemen-

tation of the method based on an iterative procedure.

Numerical results are presented for two problems:

for a test one  having an exact solution and for a prob-

lem with the geometrical parameters varying in a wide

range. The results obtained for the test problem show

the character of changing the errors of the computed

solution versus geometry of irregularity as well as

versus number of the normal modes taken into account.

It is known that CSM is suitable for investigation

of the waveguides with slowly varying irregularities

(in the case considered in our test-problem the slow-

ly varying waveguide means that the angle between

the waveguide boundary and axis is not large). This

limitation is necessary in order that the rate of con-

vergence of the series representing the solution be

satisfactory from the practical point of view. The nu-

merical results obtained in the paper show that the

method we use can be successfully applied for a wide

range of the slopes of the waveguide irregular part

(up to angles  π/3 in our case). The results demon-

strate also the efficiency of the proposed implemen-

tation of the method.

The time dependence of the form ( )tjω−exp  is

assumed.

2. Problem Statement

Let us consider a waveguide which is a union of

two regular waveguides, W
1
 and W

2
, with the bound-

aries S
1
 and S

2
, respectively, joined by an irregular

domain W
0
 with the boundary S

0
 (see Fig. 1). We as-

sume that the cross-section D(z) of W
0
 varies smooth-

ly as a function of z, 0 ,z d≤ ≤  where z is directed

along the waveguide. By x we denote the transversal

to the z-axis coordinate in the cross-section D(z). In

the 3D case the  x-coordinate is two-dimensional,

x = {x
1
,x

2
}. We also assume that the boundary of the

waveguide is such that there are no trapped modes in

the waveguide, that is, there are no non-trivial qua-

dratically integrable solutions to the homogeneous

boundary value problem describing the waves in the

waveguide. According to Theorem 2.1 in [20], p. 92,

this is the case if the boundary is described by a mono-

tone function of z. In the 3D case the geometrical

condition on the boundary in [20], p. 92, is as follows:

the exterior normal to the boundary forms an obtuse

angle with the positive direction of the  z-axis.

The Helmholtz equation,

,)( 2
2

2

fuku
z

x =+
∂
∂+∆ (1)

with a real wavenumber k  holds in 1 0 2,W W W W= ∪ ∪
∆

x
 is the Laplacian with respect to the x-variable,

( )zxff ,=  is a compactly supported function, that is,

the function vanishing outside a bounded region. We

assume that the support of  f  is localized between

some sections, 1z z=  and 2zz =  in 1W , 021 << zz :

( ) 0, =zxf  if 1 2[ , ]z z z∉ . Here z
1
 and z

2
 are arbitrary

negative numbers, so that the support of the source

function f is located in W
1
. The support of f is the

complement of the largest open set on which  f  van-

ishes almost everywhere. The boundary condition

0=u        at      201 SSSS ∪∪= (2)

holds, and the radiation conditions at infinity are

imposed:

∑ β−
−−∞→ ≅

n

n
zj

nz
xvepu n ),()1()1( )1(

(3)

Fig. 1. Geometry of the problems
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∑ −β
∞→ ≅

n

n
dzj

nz
xvepu n ),()2()()2( )2(

(4)

where the coefficients )1(
np−  and )2(

np  are unknown.

Here (and below) the summation is from n = 1 to ∞,

2/12)(2)( )( i
n

i
n kk −=β , i = 1, 2; for driving modes ( )i

nβ
are the real positive constants and for damped modes

they are imaginary ones )0( )( <β i
nj ; 2)(i

nk , )(i
nv  are

the eigenvalues and eigenfunctions of the boundary

value problem for the transversal Helmholtz equation

0)(2)()( =+∆ i
n

i
n

i
nx vkv (5)

with the boundary condition 0)( =i
nv  at the contours

iD∂  of the cross-sections D
i
. The functions )(i

nv  are

orthonormal in 2 ( ):iL D

,)()( )()(
nm

i
m

D

i
n dxxvxv

i

δ=∫

where the overbar stands for complex-conjugate (we

assume that in general case mv  are complex).

Let us call the problem (1)-(4) Problem A. In prac-

tice, instead of the force term ( )xf  in (1), the excita-

tion is often given in the form of the incident normal

modes coming from .−∞  In this case f = 0, but the

total field at −∞  is the sum of the incident and reflect-

ed fields, while at +∞ the total field is the transmitted

field. Problem A can be easily reduced to this form.

One can present the solution of (1) in W
1
 as

0 ,su U U= +  where 0U  is any partial solution of the

problem (1)-(3) in W
1
 and sU  satisfies the homoge-

neous Helmholtz equation in W
1
 with the conditions

(2), (3). The function 0U  may be found as the solu-

tion of the inhomogeneous problem in the regular

waveguide W
1
 extended to ∞ with the condition (3) at

−∞  and the condition of type of (4) at ∞. This prob-

lem can be easily solved through the separation of

variables. Here z
2
 has the same meaning as on the line

above formula (2). Since f = 0 at ,02 << zz  the func-

tion 0U  satisfies the homogeneous Helmholtz equa-

tion in this region and  has the form

∑ β=
n

n
zj

n xvepU n )()1()1(0 )1(

(6)

with the known coefficients )1(
np . This function de-

scribes the incident field, it represents the waves prop-

agating in the positive direction of the z-axis.

The general solution of homogeneous Eq. (1) in

W
1
 satisfying (2), (3) in W

1
 is as follows:

.)()1()1( )1(∑ β−
−=

n

n
zj

n
s xvepU n (7)

So the solution of (1)-(3) in W
1
 is

.)(][ )1()1()1(
0

)1()1(

2
∑ β−

−
β

≤< +=
n

n
zj

n
zj

nzz
xvepepu nn (8)

Since k = const, the general solution of the prob-

lem in W
2
 follows from (4):

.)()2()()2( )2(∑ −β
≥ =

n

n
dzj

ndz
xvepu n (9)

Putting z = 0 in (8) and z = d in (9) yields the

conditions for u(x,z) at the vertical sides of W
0
 (that is,

on the sections z = 0 and z = d):

,)(][ )1()1()1(
0 ∑ −= +=

n
nnnz

xvppu (10)

.)()2()2(∑==
n

nndz
xvpu (11)

In a similar way, differentiating (8), (9) with respect

to z and putting z = 0 and z = d, respectively, yields two

more conditions for zu ∂∂  at these boundaries:

∑ −
=

−β=
∂
∂

n
nnnn

z

xvppj
z

u
),(][ )1()1()1()1(

0
(12)



Ðàäèîôèçèêà è ðàäèîàñòðîíîìèÿ, 2000, ò. 5, ¹3

Numerical Implementation of the Cross-section Method for Irregular Waveguides

277

∑β=
∂
∂

= n
nnn

dz

xvpj
z

u
).()2()2()2(

(13)

Thus, the problem A is reduced to the non-stan-

dard interior boundary problem (1), (2), (10)-(13) for

the irregular domain W
0
.

Let us call this problem Problem B. Here 
)1(

np  are

the given magnitudes of the excitation modes calcu-

lated in (6) and )1(
np− , )2(

np  are the reflection and trans-

mission factors, which are to be found.

Often a statement of the problem, alternative to

(1)-(4) is used based on the concept of the scatter-

ing matrix. Namely, the source in the Eq. (1) can

be taken in the form of one normal mode of the

left waveguide W
1
 coming from −∞. Then the prob-

lem lies in finding the set of functions u
m
, m = 1, 2, ...

satisfying the homogeneous Eq. (1) in W with the con-

dition (2) and the following conditions at infinity:

(1) (1)(1) (1)( ) ( )m nj z j z
m m mn nz

n

u e v x r e v xβ − β
→−∞

≅ +∑ (14)

∑ −β
→∞ ≅

n
n

dzj
mnzm xvetu n )()2()()2(

(15)

Here { }mnr , { }mnt  are the unknown reflection and

transmission matrices, respectively.

Let us call this problem Problem C. If this prob-

lem is solved for all m = 1, 2, ..., then the solution of

Problem A is given as

,)1(∑=
m

mm upu (16)

where 
)1(

mp  are the same as in (6).

If  f(x,z) = 0, then the right-hand sides of (14), (15)

give the solution of Problem C in W
i
, and the scatter-

ing problem in W is reduced to the boundary value

problem (1), (2), (10)-(13) in W
0
 with u = u

m
,

,)1(
mnnp δ=  ,)1(

mnn rp =−  .)2(
mnn tp =  Thus, Problem C

is reduced to Problem B.

Hereafter we study Problem B. From the above

arguments it follows that in general the scattering

problems in irregular waveguides can be reduced to

Problem B.

3. Mathematical Description of the Cross-

Section Method

The solution of Problem B can be found in the form

,),()(),( ∑=
n

nn xzvzczxu (17)

where ),,( nn vuc =  ∫=
)(

d),(),(),(
zD

nn xzxvzxuvu  is

the inner product in ( )( ),2 zDL  ( )zxvn ,  are the eigen-

functions of the equation of type of (5) in the cross-

section ( )zD  with the eigenvalues )(2 zkn  and bound-

ary condition 0=nv  at )(zD∂ . The functions ( )zxvn ,

are orthonormal in ( )( )zDL2 :

.),( nmnm vv δ= (18)

The above formulation is valid in 2D and 3D cas-

es. We assume that the eigenfunctions ( )zxvn ,  can be

easily calculated for each cross-section ( )zD . Other-

wise  the practical application of the cross-section

method is difficult.

To obtain a set of ordinary differential equations

for nc  let us multiply (1) by nv  and integrate over

D(z) to get

,0),()(2 =′′+β nnn vucz (19)

where    ),()( 222 zkkz nn −=β    ./ 22 zuu ∂∂=′′

Differentiating ( )zcn  with respect to z yields:

).,(),(2),( nn vuvuvuc ′′+′′+′′=′′ (20)

From (19), (20) one can obtain:

.0),(),(22 =′′−′′−′′+β nnnnn vuvucc (21)
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According to (17), the last term in (21) takes

the form:

,),( ∑=′′
m

mnmn cbvu (22)

where

).,( nmnm vvb ′′= (23)

If the boundary )(zD∂  is varied smoothly with

respect to z, then the series (17) can be once differen-

tiated termwise:

.][∑ ′+′=′
m

mmmm vccvu (24)

Using (24) one writes the term ),( nvu ′′  as

,][),( ∑ ′+=′′
m

nmmmnmn accdvu (25)

where

),,( nmnm vvd ′′=     ).,( nmnm vva ′= (26)

From (21)-(25) one gets

.0)2(22 ∑ ∑ =+−′−β+′′
m m

mnmnmmnmnnn cdbcacc

(27)

Note that

,mnnm aa −= (28)

as follows from differentiating the identity (18)  with

respect to z. Similarly, differentiating (18) twice,

one gets:

)(2 mnnmnm bbd +−= (29)

and (27) takes the form

.022 ∑ ∑ =+′−β+′′
m m

mmnmnmnnn cbcacc (30)

Eq. (30) must be satisfied for n = 1, 2, ... .

It is useful to rewrite (30) in the matrix form:

,02 *2 =+′−+′′ CBCACKC (31)

where { },ncC =  ( ),diag nK β=  { },nmaA=  }{*
mnbB =

is the matrix adjoint to B.

Let us now eliminate the matrix B* from (31). For

this purpose we differentiate the second equation in

(26) and get nmnmnm dba +=′  or

.DAB −′= (32)

To eliminate the matrix D note that

.∑=′
m

mnmn vav (33)

Then  ∑ ∑=′=′′=
p p

mpnppmnpnmnm aavvavvd ,),(),(

 so that

.*AAD = (34)

From (28) one gets A = �A*. Therefore

2* AAB +′−= (35)

and Eq. (31) can be written as

.0)(2 22 =+′−+′−′′ CAAKCAC (36)

Let us introduce a new pair of unknown vectors,

C and G, in place of C; ( )zcn  and ( )zgn  are the

components of the vectors C and G, respectively.

Namely, let
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.ACCG −′= (37)

Then

=++′+′=′+′+′=′′ )( ACGACAGCACAGC

CAAAGG )( 2+′++′=

and (36) yields:

=+−+′+−′ CBAKAAGG )( *22

.02 =+−′= CKAGG

Thus we have the following set of equations for C, G:

,GACC +=′                 .2CKAGG −=′ (38)

The boundary conditions for Eqs. (38) can be ob-

tained from (10)-(13) with account that ,)0,( )1(
nn vxv =

.),( )2(
nn vdxv =

From (10), (12) one gets

,)0( )1()1(
nnn ppc −+= (39)

],[)0()0()0( )1()1()1(
nnnn

m
mnmn ppjgcac −−β==−′ ∑

(40)

where ( )0ng  is the component of the vector ( )0G , G is

defined in (37). One can eliminate the unknown np−
from (39), (40) to obtain the following condition:

,2)0()0()0( )1(1
+

− =− PGjKC (41)

where }{ )1()1(
npP =+ .

Similarly, from (11), (13) we have

.0)()()( 1 =+ − dGdjKdC (42)

Eqs. (38) together with (41), (42) state the interior

boundary value problem for the functions C, G in W
0
.

We assume that  0)( ≠β i
n  for any n.

The set of Eqs. (38) is stiff [22], because the func-

tions ,nc ng  contain both exponentially increasing and

exponentially decreasing components (if ( ) 0Im ≠β j ).

The computational methods developed for solving

these equations are rather expensive.

To eliminate this difficulty, let us introduce the new

unknown functions { ( )}nP p z+ =  and { ( )}nP p z− −=
describing the magnitudes of the forward and back-

ward normal modes in the irregular domain:

,−+ += PPC             ).( −+ −= PPjKG (43)

Then one has the new set of equations from (38):

,)( 21 −++ ++=′ PZPjKZP (44)

,)( 21 +−− +−=′ PZPjKZP (45)

where

,2/)( 11
1 AKKKKAZ −− +′−= (46)

.2/)( 11
2 AKKKKAZ −− −′+= (47)

The boundary conditions for +P
 
and −P

 
can be

easily obtained from (41), (42):

,)0( )1(
++ = PP (48)

.0)( =− dP (49)

Eqs. (44), (45) are equivalent to Eqs. (2.46) from [5].

Theoretical problems concerning the numerical

solution of the problem (44)-(49) need further inves-

tigation. Note that the functions +P  do not contain

exponentially increasing component, whereas −P  do

not contain exponentially decreasing component. This

fact allows one to apply an iterative method for solv-

ing this problem: at each iteration a Cauchy problem

is solved for one subset of Eqs. (44), (45) in the for-

ward or  backward directions, respectively. Namely,

the equation
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( )[2 1] [2 1] [2 ]
1 2( )q q qP Z jK P Z P+ +

+ + −
′ = + + (50)

(the value in the square brackets denotes the serial

number of iteration) with the initial condition of the

type of (48) is solved with respect to 
]12[ +

+
qP  for

dz ≤≤0  in the forward direction at each odd

(2q + 1)-th iteration (q = 0, 1, 2, ...) with 
]2[ qP−  taken

from the previous iteration. At the first iteration one

takes 0]0[ ≡−P . Similarly, the equation

( )[2 2] [2 2] [2 1]
1 2( )q q qP Z jK P Z P+ + +

− − +
′ = − + (51)

with the initial condition of the type of (49) is solved

with respect to ]22[
1

+qP  for dz ≤≤0  in the backward

direction at each even (2q + 2)-th iteration with ]12[ +
+

qP

taken from the previous iteration.

Such a technique can be interpreted as taking into

account successive transformations of the normal

waveguide modes at the irregularities.

The definition of the functions ( ),zpn  ( )zp z−  (43)

is unique everywhere except the �critical sections�

nzz =  where 0)( =β zn . At these points the compo-

nents of 
1−K  in Eqs. (44), (45) are not defined. In

this paper we do not investigate the properties of the

solution in the neighborhoods of  �critical sections�.

Let us note that the functions ( ),zpn  ( )zp z−  are in-

troduced by (43) only for ( )δ+δ−∉ nn zzz ,  with

some small δ. In the intervals ( )δ+δ− nn zz ,  Eqs.

(38) should be used. The matching conditions at

δ±= nzz  for these equations follow from Eqs. (43)

used at these points.

Then the n-th Eq. (50) or (51) is solved at each

iteration only for ,nn hzz >−  where zh
 
is a step size

of the variable z in the numerical method for the Cauchy

problem, and the equation is substituted by the n-th

pair of Eqs. (38) at the last discretization point pre-

ceding .nz  At the first discretization point after nz

the above pair of Eqs. (38) is substituted by the n-th

Eq. of (50) or (51). At the points of substitution the

functions ,nc  ng  and ,np  np−  are matched by for-

mula (43). This technique for dealing with critical

cross-sections was used in [3].

4. Numerical Results

The applicability of the CSM is defined by the rate

of convergence of the series (17). There are no theo-

retical estimates of this rate. Numerical results sug-

gest that this rate decreases as the slope of the bound-

ary of the waveguide irregular part increases. The

numerical experiments were  carried out to find out

the above dependence and the practical limitation of

the method.

The numerical results presented refer to the 2D

problems with the same regular waveguides ,1W 2W

but different shapes of the irregular domain 0W

(Fig. 1 (a), (b)). To demonstrate the dependence of the

errors on the number of the terms kept in series (17)

we show the numerical results for the test problem

concerning the waveguide shown in Fig. 1 (a). In this

case such errors are expected to be greater than in the

second problem because of the nonsmoothness of the

waveguide upper boundary. Next, the results of the

numerical solution of both problems are presented for

the case when the incident field is the first normal

mode of the left waveguide.

The first problem is a problem for the waveguide

with iW  of the height ,ih  i=1,2, and the height of 0W

given by the formula:

dhhzhzh /)()( 121 −+=

(see Fig. 1 (a)). As a test problem for the method, we

choose the above one with the initial data allowing an

exact analytical solution. These data are taken in the

following way. First, an exact solution of the homoge-

neous Eq. (1) with conditions (2) in 0W  is analytically

constructed. Then the magnitudes )1(
np , )2(

np−  of inci-

dent waves in ,1W  ,2W  respectively, are calculated,

which excite jointly the field in 0W  described by this

exact solution. Next, these magnitudes are used as

initial data in the Problem B, which is solved numer-

ically. Finally, the obtained solution is compared with

the exact one.

Let us choose the solution of (1), (2) in 0W  in the

form of standing field:

),/sin()(),( / απϕ= απ krJzxu (52)

where απ /J  is the Bessel function of the first kind,
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),/)arctan(( 12 dhh −=α  )),/(arctan( 0zzx +=ϕ

.))(( 2/12
0

2 zzxr ++=  The function (52) satisfies

homogeneous Eq. (1) in 0W  as any function of the

form )sin()( νϕν krJ  does, and conditions (2) at ,0=ϕ

α=ϕ  in 0W . Denote ,)(
)(

izz
i uu

==  i = 1, 2, ( ) ,01 =z

( ) .2 dz =  Expand these functions and their derivatives

with respect to z as the Fourier series with respect to

the basis functions :)/sin()/2()( 2/1)(
ii

i
n hxnhxv π=

,)()( )()()( ∑=
n

i
n

i
n

i xvcxu (53)

,)(
),( )()(

)(
∑=

∂
∂

= n

i
n

i
n

zz

xvg
z

zxu

i

(54)

and calculate ( )0np  and ( )dp n−  by the formulas:

,2/)/()0( )1()1(
nnnn jgcp β−= (55)

,2/)/()( )2()2(
nnnn jgcdp β+=− (56)

where 
2/122)( ))/(( i

i
n hnk π−=β . Eqs. (55), (56) are

the boundary conditions for Eqs. (44), (45). To reduce

them to the form (48), (49) one should consider two

problems with the incident wave coming from −∞ with

the magnitudes of incident modes (55) and from ∞
with the magnitudes of incident modes (56), respec-

tively, and add the solutions of these problems. But

the numerical implementation of the above iterative

procedure shows that it converges not only for the

problem with the boundary conditions (48), (49), but

also for the more complete conditions (55), (56). This

fact allows one to apply the above procedure for solv-

ing the problem (44), (45), (55), (56).

To investigate the dependence of the calculating

errors on the wall inclination in W
0
 and the number of

normal modes taken into account, the problem has been

numerically solved at the different values of these

parameters. In Fig. 2 the values

)()()()( /)( iii
N

i
N uuu −=ε (57)

are given as functions of d and N for the waveguide

with ,5.11 π=kd  ,5.42 π=kd  where 
( )i
Nu  are the ap-

proximate values of 
( )iu  calculated using the series

(17) in which N first terms are kept. There are one

driving mode (with 0Im )1( =βn ) in the left section and

four such modes (with 0Im )2( =βn ) in the right one.

One can see that a high accuracy (the error is less

than 1 per cent) is achieved for 2 1tan ( ) / 0.5h h dα = − <

(α < 25°) with ,6=N  that is by taking into account

only two decreasing modes (with 0Im )2( >βn ) in .2W

With N = 25 this accuracy is achieved for the values of

α up to tan 2α =  (α < 60°).

In all the variants of the input data the iterative

procedure yielded the solution with the accuracy

0.01 per cent in 20÷30 iterations.

In the second problem the height of 0W  is taken in

the form of a cubic spline:

2
1 2 1( ) ( / ) (3 2 / )( )h z h z d z d h h= + − −

(see Fig. 1 (b)). Both problems are solved numerically

by the above method with the same geometry of the

regular waveguides: 1 1.5 ,kh = π  2 4.5 .kh = π  In this

case only one driving mode exists in the left waveguide,

and four ones exist in  the right waveguide. The length

of irregular domain W
0
 varies in the range .305÷=kd

The number of retained normal modes in series (17) is

taken in the inverse dependence of kd in the range

Fig. 2. Relative computation accuracy of the field at z = 0

(solid lines) and z = d (dashed lines) keeping N terms

in (17) for the waveguide shown in Fig. 1 (a)
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.625÷=N  The excitation is assumed to be of the

form of the driving mode of W
1
 coming from −∞.

The magnitudes of the reflection and transmis-

sion factors of driving modes in W
1
 and W

2
 for the

both problems are shown in Fig. 3. As it was expect-

ed, the reflection factor 
(1)
1p−  is negligibly small in

the second problem where the shape of the regular

domain is smooth. But this factor is also not large in

the first problem, even in the case of a large angle of

the wall break. The difference between transmission

factors 
(2) ,np  n = 1, ..., 4, in the problems is visible

and it varies not too strongly with the length of the

irregular domain.

5. Conclusion

The problem on wave scattering in irregular

waveguide with different asymptotics of the bound-

ary at −∞ and ∞ and the irregular domain with the

continuously varied cross-section has been investi-

gated by the cross-section method. Derivation of the

main equations of the method has been applied, which

does not use the differentiation of the non-uniformly

converging series. The problem is reduced to a bound-

ary value problem for a countable set of ordinary

differential equations in the irregular part of the

waveguide.

An iterative procedure has been proposed for solv-

ing these equations. It allows one to avoid the expo-

nentially increasing errors in the stiff set of the dif-

ferential equations to which the problem is reduced

originally.

Numerical results have been obtained for two 2D

problems with smoothly and nonsmoothly varied cross-

section of the irregular domain. In particular, a test

problem with the two-side excitation forming a stand-

ing field in the irregular part of the waveguide has

been considered. The numerical results demonstrate

high efficiency and stability of the method. For both

problems the dependences of the reflection and trans-

mission factors on the geometry are calculated and

compared with each other.
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×èñëåííàÿ ðåàëèçàöèÿ ìåòîäà ïîïåðå÷íûõ

ñå÷åíèé äëÿ íåðåãóëÿðíûõ âîëíîâîäîâ

A. Ã.  Ðàìì, Í. Í. Âîéòîâè÷,

Î. Ô. Çàìîðñêàÿ

Èññëåäóåòñÿ ðàññåÿíèå âîëí â íåðåãóëÿðíûõ

âîëíîâîäàõ.  Ðàññìàòðèâàåòñÿ ìåòîä ïîïåðå÷íûõ

ñå÷åíèé äëÿ âû÷èñëåíèÿ ïîëÿ â âîëíîâîäíîé ñèñ-

òåìå, ñîñòîÿùåé èç äâóõ ðåãóëÿðíûõ âîëíîâîäîâ,

ñîåäèíåííûõ íåðåãóëÿðíîé îáëàñòüþ. Â ñòàòüå

äàåòñÿ ìàòåìàòè÷åñêè ñòðîãèé âûâîä îñíîâíûõ

óðàâíåíèé ìåòîäà è ïðåäëàãàåòñÿ èòåðàöèîííàÿ

ïðîöåäóðà èõ ðåøåíèÿ. Àëãîðèòì ïðèìåíÿåòñÿ ê

çàäà÷àì ñ ãëàäêèìè è íåãëàäêèìè íåîäíîðîäíîñ-

òÿìè. Íà ïðèìåðå ìîäåëüíîé çàäà÷è, èìåþùåé

àíàëèòè÷åñêîå ðåøåíèå, óñòàíàâëèâàþòñÿ ãðàíè-

öû ïðèìåíèìîñòè ìåòîäà.

×èñëîâà ðåàë³çàö³ÿ ìåòîäó ïîïåðå÷íèõ

ïåðåð³ç³â äëÿ íåðåãóëÿðíèõ õâèëåâîä³â

Î. Ã. Ðàìì, Ì. Ì. Âîéòîâè÷,

Î. Ô. Çàìîðñüêà

Äîñë³äæóºòüñÿ ðîçñ³þâàííÿ õâèëü â íåðåãóëÿð-

íèõ õâèëåâîäàõ. Ðîçãëÿäàºòüñÿ ìåòîä ïîïåðå÷íèõ

ïåðåð³ç³â äëÿ îá÷èñëåííÿ ïîëÿ â õâèëåâîäí³é ñè-

ñòåì³, ùî ñêëàäàºòüñÿ ³ç äâîõ ðåãóëÿðíèõ õâèëå-

âîä³â, ç�ºäíàíèõ íåðåãóëÿðíîþ îáëàñòþ. Â ñòàòò³

äàºòüñÿ ìàòåìàòè÷íî ñòðîãå âèâåäåííÿ îñíîâíèõ

ð³âíÿíü ìåòîäó ³ ïðîïîíóºòüñÿ ³òåðàö³éíà ïðîöå-

äóðà äëÿ ¿õ ðîçâ�ÿçóâàííÿ. Àëãîðèòì çàñòîñîâóºòü-

ñÿ äî çàäà÷ ç ãëàäêèìè òà íåãëàäêèìè íåðåãóëÿð-

íîñòÿìè. Íà ïðèêëàä³ ìîäåëüíî¿ çàäà÷³, ùî ìàº

àíàë³òè÷íèé ðîçâ�ÿçîê, âñòàíîâëþþòüñÿ ãðàíèö³

çàñòîñîâíîñò³ ìåòîäó.


