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Wave scattering in irregular waveguides is investigated. The cross-section method is considered as a method
for calculation of the field in a waveguide consisting of two regular waveguides with different cross-sections
joined by an irregular domain. In the paper, a mathematically justified derivation of the basic equations of the
method is given. An iterative procedure for their numerical solution is proposed. The algorithm is applied to the
problems with the smooth and nonsmooth irregularities. In particular, numerical results for a test problem having

analytical solution, are presented.

Index Terms: wave scattering, irregular waveguide, cross section method, iterative method

1. Introduction

The idea of the cross-section method (CSM) was
proposed several decades ago [1, 2]. The method
was developed and investigated by different authors.
The most essential contribution to its foundation is
given in [3-5].

CSM is suitable for investigation of the waveguides
with different kinds of small and smoothly varying
irregularities such as smooth and slow change of the
cross-section shape, jog and shift of the axis line, al-
teration of the optical density of the filling etc. It is a
useful technique for studying the wave scattering in
closed and open irregular metallic, dielectric and im-
pedance waveguides [6-10], field converters, cavity
antennae [11-16], and other practically important prob-
lems. An attempt to justify the above method for the
3D vector problem was undertaken in [17]. However,
the range of the practical applicability of the method
is still not examined theoretically and numerically.

The purpose of this paper is to demonstrate the
mathematical equivalence of the main equations of the
method in the form presented in [3, 5] and in [1, 2], to

suggest an iterative procedure for solving the main
equations of CSM, and to investigate numerically the
applicability of the method for the case of large enough
irregularities. Application of the method is presented
in the framework of the new general scheme for the
investigation of the wave scattering in irregular
waveguides proposed in [18]. Scattering problems in
the domains with infinite boundaries were studied
in [19]. A detailed analysis of the scattering by obsta-
cles in regular waveguides is given in [20]. In [21] the
waveguide theory is developed in application to opti-
cal waveguides.

Here we present the method for acoustical
waveguides with soft walls; the pressure u on such
walls is equal to zero. The waveguides with the con-
tinuously varying cross-section shape are considered.
The two-dimensional case is equivalent to the electro-
magnetic problem for the E-polarization (u = E).
Derivations of the main equations are made in the way
similar to [1, 2]. The scattering problem is put in two
forms: as a boundary value problem with inhomoge-
neous equation and homogeneous conditions at infin-
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ity, as well as such a problem for homogeneous equa-
tion with inhomogeneous conditions at infinity.

The idea of CSM as a method for solving the prob-
lems of wave propagation in irregular waveguides is not
new, but in this paper a self-contained and rigorous der-
ivation of its basic equations is given. The novel idea
and novel result in the paper is the numerical implemen-
tation of the method based on an iterative procedure.

Numerical results are presented for two problems:
for a test one having an exact solution and for a prob-
lem with the geometrical parameters varying in a wide
range. The results obtained for the test problem show
the character of changing the errors of the computed
solution versus geometry of irregularity as well as
versus number of the normal modes taken into account.

It is known that CSM is suitable for investigation
of the waveguides with slowly varying irregularities
(in the case considered in our test-problem the slow-
ly varying waveguide means that the angle between
the waveguide boundary and axis is not large). This
limitation is necessary in order that the rate of con-
vergence of the series representing the solution be
satisfactory from the practical point of view. The nu-
merical results obtained in the paper show that the
method we use can be successfully applied for a wide
range of the slopes of the waveguide irregular part
(up to angles TU3 in our case). The results demon-
strate also the efficiency of the proposed implemen-
tation of the method.

The time dependence of the form exp(— j(ot) is
assumed.

2. Problem Statement

Let us consider a waveguide which is a union of
two regular waveguides, W, and W,, with the bound-
aries S, and §,, respectively, joined by an irregular
domain W, with the boundary S (see Fig. 1). We as-
sume that the cross-section D(z) of W, varies smooth-
ly as a function of z, 0<z<d, where z is directed
along the waveguide. By x we denote the transversal
to the z-axis coordinate in the cross-section D(z). In
the 3D case the x-coordinate is two-dimensional,
x = {x x,}. We also assume that the boundary of the
waveguide is such that there are no trapped modes in
the waveguide, that is, there are no non-trivial qua-
dratically integrable solutions to the homogeneous
boundary value problem describing the waves in the
waveguide. According to Theorem 2.1 in [20], p. 92,
this is the case if the boundary is described by a mono-
tone function of z. In the 3D case the geometrical
condition on the boundary in [20], p. 92, is as follows:
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Fig. 1. Geometry of the problems

the exterior normal to the boundary forms an obtuse
angle with the positive direction of the z-axis.
The Helmbholtz equation,

92 )
(AX+6?)u+k u=f, (1)

with a real wavenumber £ holdsin W =W O WO W,
A is the Laplacian with respect to the x-variable,
f=f (X, Z) is a compactly supported function, that is,
the function vanishing outside a bounded region. We
assume that the support of f is localized between
some sections, Z = z and z=2, in W;, 7, <z, <0:

f(x,2)=0 if z0[3, 3]. Here z, and z, are arbitrary

negative numbers, so that the support of the source
function f'is located in W,. The support of f'is the
complement of the largest open set on which f van-
ishes almost everywhere. The boundary condition

u=0 at

s=5050s, @)

holds, and the radiation conditions at infinity are
imposed:

u

Z- -0

—_ir®
0% ploe B2y ® (%), 3)
n
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u

Z->

[ Z pr(g)ejﬁ(f’(z—d)vrgm (), 4)
n

where the coefficients p(_lg and pgz) are unknown.
Here (and below) the summation is from n =1 to oo,
B = (k2 kW22 =1, 2; for driving modes B[(:)
are the real positive constants and for damped modes
they are imaginary ones (]Bg) <0); kr(]i)z, vr(]i) are

the eigenvalues and eigenfunctions of the boundary
value problem for the transversal Helmholtz equation

AR +kPA =0 )

with the boundary condition v{) =0 at the contours

0D; of the cross-sections D. The functions v are

orthonormal in L*(D,):

982 099 (0=,
D.

where the overbar stands for complex-conjugate (we

assume that in general case Vv, are complex).

Let us call the problem (1)-(4) Problem A. In prac-
tice, instead of the force term f (X) in (1), the excita-
tion is often given in the form of the incident normal
modes coming from —oo. In this case = 0, but the
total field at —oo is the sum of the incident and reflect-
ed fields, while at +co the total field is the transmitted
field. Problem A can be easily reduced to this form.

One can present the solution of (1) in W, as

u=U°+U?, where U is any partial solution of the

problem (1)-(3) in , and U ° satisfies the homoge-
neous Helmholtz equation in W with the conditions

(2), (3). The function U ° may be found as the solu-
tion of the inhomogeneous problem in the regular
waveguide /¥, extended to o with the condition (3) at
—oo and the condition of type of (4) at co. This prob-
lem can be easily solved through the separation of
variables. Here z, has the same meaning as on the line

above formula (2). Since f=0at z, < z<0, the func-

tion U satisfies the homogeneous Helmholtz equa-

tion in this region and has the form
ip®
U= ple™ P (x) (©)
n

with the known coefficients p® . This function de-
scribes the incident field, it represents the waves prop-
agating in the positive direction of the z-axis.

The general solution of homogeneous Eq. (1) in
W, satisfying (2), (3) in W, is as follows:

—ig®
us=% phe ™ol (x). @)
2
So the solution of (1)-(3) in W, is

_ 1) _ig® 1) - jp® 1)
U, o = p [P+ pQe P VD (9. (8)
n

Since k = const, the general solution of the prob-
lem in W, follows from (4):

— 2) AiBP (z-d), (2
Uy =y PV I (), ©)
n

Putting z = 0 in (8) and z = d in (9) yields the
conditions for u(x,z) at the vertical sides of W (that s,
on the sections z = 0 and z = d):

U, = > [P + pEIVY (), (10)
n

U, =y POVE (). (1)
n

In a similar way, differentiating (8), (9) with respect
to z and putting z = 0 and z = d, respectively, yields two
more conditions for 0u/0z at these boundaries:

ou
0z

=iy BRIy ~ PGV (), (12)
z=0 n
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du

i > B pivi) (9. (13)

z=d n

Thus, the problem A is reduced to the non-stan-
dard interior boundary problem (1), (2), (10)-(13) for
the irregular domain W,.

Let us call this problem Problem B. Here p,(}) are
the given magnitudes of the excitation modes calcu-
lated in (6) and pﬁl,z , ,(12) are the reflection and trans-
mission factors, which are to be found.

Often a statement of the problem, alternative to
(1)-(4) is used based on the concept of the scatter-
ing matrix. Namely, the source in the Eq. (1) can
be taken in the form of one normal mode of the
left waveguide /7, coming from —co. Then the prob-
lem lies in finding the set of functions u , m =1, 2, ...
satisfying the homogeneous Eq. (1) in /' with the con-
dition (2) and the following conditions at infinity:

U, . O+ Y r g™ P x 09

n
iR (z2—
Unl, o O ta®® NP (9 (15)
n

Here {rmn}, {tmn} are the unknown reflection and
transmission matrices, respectively.

Let us call this problem Problem C. If this prob-
lem is solved for all m =1, 2, ..., then the solution of
Problem A is given as

- @
U= > PmUn; (16)
2

where p,(ﬁ) are the same as in (6).

If f(x,z) =0, then the right-hand sides of (14), (15)
give the solution of Problem C in ¥, and the scatter-
ing problem in W is reduced to the boundary value
problem (1), (2), (10)-(13) in W, with u = u_,

0

@ =r (3 =t Thus, Problem C

mn? p—n mn? n

(@) =5

n
is reduced to Problem B.

Hereafter we study Problem B. From the above
arguments it follows that in general the scattering
problems in irregular waveguides can be reduced to
Problem B.

3. Mathematical Description of the Cross-
Section Method

The solution of Problem B can be found in the form

u(x, z) = z Cn (DVn (2 ), (17)

where ¢, =(u,v,)), (u,v,)= J'u(x, 2V, (x, 2)dx is
D(z)

the inner product in L2 (D (Z)) Vy (X, Z) are the eigen-
functions of the equation of type of (5) in the cross-
section D(Z) with the eigenvalues k?(z) and bound-

ary condition v, =0 at 0D(Z) . The functions v, (x, Z)

are orthonormal in L2 (D(Z)):

(Vm’vn)zanm' (18)

The above formulation is valid in 2D and 3D cas-
es. We assume that the eigenfunctions v, (X, Z) can be

easily calculated for each cross-section D(Z). Other-

wise the practical application of the cross-section
method is difficult.
To obtain a set of ordinary differential equations

for ¢, let us multiply (1) by v,, and integrate over
D(z) to get

B2 (2)c, +(U",v,) =0, (19)

where  B2(2) =k?-k2(2), u"=0%u/dz2.

Differentiating C, (Z) with respect to z yields:
c"=(u",v,)+2U’, V') +(u,vy). (20)

From (19), (20) one can obtain:

B2c, +ci —2(u',v,) - (U, Vi) =0. 1)
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According to (17), the last term in (21) takes
the form:

(UVR) = BomCm, (22)
where
Brm = (Vi Vi) (23)

If the boundary 0D(z) is varied smoothly with

respect to z, then the series (17) can be once differen-
tiated termwise:

u' =" [ViCm +CrVinl- 24)
2

Using (24) one writes the term (U',v,) as
(U Va) = [danCin + Cinom], (25)
m

where

dom = (Vm:Va)s @am = (Vs Vi)- (26)

From (21)-(25) one gets
Cnt Bﬁcn 2% anCm— ) (Oym +2d,y)c, =0
2.0 "2
@n
Note that
8nm = ~@mp, (28)

as follows from differentiating the identity (18) with
respect to z. Similarly, differentiating (18) twice,
one gets:

2dnm = _(bnm + an) (29)

and (27) takes the form
C;; + B%Cn - Zz anmC;‘n + Z ancm =0. (30)
m m

Eq. (30) must be satisfied forn =1, 2, ....
It is useful to rewrite (30) in the matrix form:

C"+K?C-2AC'+B'C=0, (31)

where C:{Cn}, K :diadBn), A:{anm}: B" ={bn

is the matrix adjoint to B.
Let us now eliminate the matrix B" from (31). For
this purpose we differentiate the second equation in

(26) and get apy, =bpm +do, or
B=A-D. (32)

To eliminate the matrix D note that

V), = Z A Vin- (33)
m

Then Ao = Vi Vo) =3 80 (Vin Vp) = 3 g

so that p p

D=AA". (34)
From (28) one gets 4 = —A". Therefore

B =-A+A? (35)

and Eq. (31) can be written as

C"-2AC'+(K%2-A'+A%)C =0. (36)
Let us introduce a new pair of unknown vectors,

C and G, in place of C; ¢, (Z) and gn(z) are the

components of the vectors C and G, respectively.
Namely, let
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G=C'-AC. (37)

Then

C"=G'+AC+AC' =G+ AC+A(G+AC) =
=G'+AG+ (A +A?)C

and (36) yields:
G'-AG+(A'+K?-A?+B")C=
=G'-AG+K?C=0.

Thus we have the following set of equations for C, G:

C'=AC+G, G'=AG-K?2C. (38)

The boundary conditions for Egs. (38) can be ob-
tained from (10)-(13) with account that v, (x,0) = v,gl) ,

v, (x,d) =v?.
From (10), (12) one gets

¢, (0) = p{ +p) (39)

ch(0)= mCn(©)=8,(0) = B[P -~ P&,
(40)

where g, (0) is the component of the vector G(O), Gis
defined in (37). One can eliminate the unknown p_,
from (39), (40) to obtain the following condition:

C(0)- jK (0)G(0) =2P?, (A1)

where PY ={ p,(})} .
Similarly, from (11), (13) we have

C(d) + jK (d)G(d) =0. (42)

Egs. (38) together with (41), (42) state the interior
boundary value problem for the functions C, G in W,
We assume that Bﬂ) # 0 for any n.
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The set of Egs. (38) is stiff [22], because the func-

tions C,, g, contain both exponentially increasing and

exponentially decreasing components (if Im(ﬁ i )¢ 0).

The computational methods developed for solving
these equations are rather expensive.
To eliminate this difficulty, let us introduce the new

unknown functions P, ={p,(3} and P ={p_ (3}

describing the magnitudes of the forward and back-
ward normal modes in the irregular domain:

C=P, +P, G=JK(P, -P.). (43)

Then one has the new set of equations from (38):

P =(Z,+ K)P, +Z,P_, (44)
P =(Z,- jK)P.+Z,P,, (45)
where

Z, =(A-KK'+KTAK) /2, (46)
Z,=(A+KK'-KTAK)/2. (47)

The boundary conditions for P, and P. can be
casily obtained from (41), (42):

P.(0)=P®, (48)

P_(d)=0. (49)

Egs. (44), (45) are equivalent to Egs. (2.46) from [5].
Theoretical problems concerning the numerical
solution of the problem (44)-(49) need further inves-

tigation. Note that the functions P, do not contain

exponentially increasing component, whereas P_ do

not contain exponentially decreasing component. This
fact allows one to apply an iterative method for solv-
ing this problem: at each iteration a Cauchy problem
is solved for one subset of Egs. (44), (45) in the for-
ward or backward directions, respectively. Namely,
the equation
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(=) =(Z+ )PP + 2,2 (50)

(the value in the square brackets denotes the serial
number of iteration) with the initial condition of the

type of (48) is solved with respect to P,Ezqﬂ] for
0<z<d in the forward direction at each odd

(2q + 1)-th iteration (=0, 1, 2, ...) with PL?¥ taken
from the previous iteration. At the first iteration one

takes P =0. Similarly, the equation

(P[2q+2] )' - (21 _ JK) E2q+2] + 22 Ej2q+1] (51)

with the initial condition of the type of (49) is solved

with respect to P!27*2 for 0< z<d in the backward

direction at each even (2¢ + 2)-th iteration with P[29*Y

taken from the previous iteration.

Such a technique can be interpreted as taking into
account successive transformations of the normal
waveguide modes at the irregularities.

The definition of the functions p, (Z) p_, (Z) (43)
is unique everywhere except the “critical sections”

z=2z, where ,(2) =0. At these points the compo-

nents of K™ in Egs. (44), (45) are not defined. In
this paper we do not investigate the properties of the
solution in the neighborhoods of “critical sections”.

Let us note that the functions p, (Z), p_, (Z) are in-
troduced by (43) only for z[ (Zn -9, z, +6) with

some small d. In the intervals (zn -9,2, +6) Egs.
(38) should be used. The matching conditions at
z =z, =0 for these equations follow from Egs. (43)

used at these points.

Then the n-th Eq. (50) or (51) is solved at each
iteration only for |Z— zn| > h,, where h, is a step size
of'the variable z in the numerical method for the Cauchy
problem, and the equation is substituted by the n-th
pair of Egs. (38) at the last discretization point pre-

ceding z,. At the first discretization point after z,

the above pair of Egs. (38) is substituted by the n-th
Eq. of (50) or (51). At the points of substitution the

functions ¢,, ¢, and p,,, P_, are matched by for-

mula (43). This technique for dealing with critical
cross-sections was used in [3].

4. Numerical Results

The applicability of the CSM is defined by the rate
of convergence of the series (17). There are no theo-
retical estimates of this rate. Numerical results sug-
gest that this rate decreases as the slope of the bound-
ary of the waveguide irregular part increases. The
numerical experiments were carried out to find out
the above dependence and the practical limitation of
the method.

The numerical results presented refer to the 2D

problems with the same regular waveguides W, W,

but different shapes of the irregular domain W,

(Fig. 1 (a), (b)). To demonstrate the dependence of the
errors on the number of the terms kept in series (17)
we show the numerical results for the test problem
concerning the waveguide shown in Fig. 1 (a). In this
case such errors are expected to be greater than in the
second problem because of the nonsmoothness of the
waveguide upper boundary. Next, the results of the
numerical solution of both problems are presented for
the case when the incident field is the first normal
mode of the left waveguide.

The first problem is a problem for the waveguide

with W, of'the height h;, i=1,2, and the height of W,
given by the formula:

h(z) = +z(h, -hy)/d

(see Fig. 1 (a)). As a test problem for the method, we
choose the above one with the initial data allowing an
exact analytical solution. These data are taken in the
following way. First, an exact solution of the homoge-

neous Eq. (1) with conditions (2) in W}, is analytically
constructed. Then the magnitudes p®, p? of inci-
dent waves in W;, W,, respectively, are calculated,

which excite jointly the field in W, described by this
exact solution. Next, these magnitudes are used as
initial data in the Problem B, which is solved numer-
ically. Finally, the obtained solution is compared with
the exact one.

Let us choose the solution of (1), (2) in W, in the
form of standing field:

u(x,2) =J,,4 (kr)sin(m / a), (52)

where J,, 1s the Bessel function of the first kind,
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o =arctan(p, —h;)/d), ¢ =arctank/(z+ z;)),
r=(x*+(z+2,)?)"?. The function (52) satisfies
homogeneous Eq. (1) in W, as any function of the
form J, (kr)sin(vg) does, and conditions (2) at ¢ =0,
¢ =0 in W, . Denote u® = u|z:z(i) Vi=1,2, zZ0 = 0,

2@ =g, Expand these functions and their derivatives
with respect to z as the Fourier series with respect to

the basis functions v,(:) (x)=(2/h )Y 2 sin(hmx/ h):

009 = Y v (4, (53)
ou(x, z) _ (OV0) 54
| Z g\l (%), (54)

and calculate p, (0) and p_, (d) by the formulas:

pa(0) = - jg, /BP) /2 (55)
P (d) =P +jg,/B?)/2 (56)

where BY = (k% - (n/h)?)Y2. Egs. (55), (56) are
the boundary conditions for Egs. (44), (45). To reduce
them to the form (48), (49) one should consider two
problems with the incident wave coming from —co with
the magnitudes of incident modes (55) and from oo
with the magnitudes of incident modes (56), respec-
tively, and add the solutions of these problems. But
the numerical implementation of the above iterative
procedure shows that it converges not only for the
problem with the boundary conditions (48), (49), but
also for the more complete conditions (55), (56). This
fact allows one to apply the above procedure for solv-
ing the problem (44), (45), (55), (56).

To investigate the dependence of the calculating
errors on the wall inclination in W, and the number of
normal modes taken into account, the problem has been
numerically solved at the different values of these
parameters. In Fig. 2 the values

e =Wl - | (57)

are given as functions of d and N for the waveguide

with kd, =151 kd, =451 where U are the ap-

proximate values of U calculated using the series
(17) in which N first terms are kept. There are one

driving mode (with ImBﬁ) =0) in the left section and

four such modes (with ImBgz) =0) in the right one.

Fig. 2. Relative computation accuracy of the field at z = 0
(solid lines) and z = d (dashed lines) keeping N terms
in (17) for the waveguide shown in Fig. 1 (a)

One can see that a high accuracy (the error is less
than 1 per cent) is achieved for tana = (, —h )/d< 0.5

(o <25° with N =6, that is by taking into account

only two decreasing modes (with ImB >0) in W,.
With N =25 this accuracy is achieved for the values of
o up to tana = 2 (a < 60°).

In all the variants of the input data the iterative

procedure yielded the solution with the accuracy
0.01 per cent in 20+30 iterations.

In the second problem the height of W is taken in
the form of a cubic spline:

h(2=h+(Z 9°B-27 J(p-

(see Fig. 1 (b)). Both problems are solved numerically
by the above method with the same geometry of the
regular waveguides: kh =1.5m, kh, =4.5m. In this
case only one driving mode exists in the left waveguide,
and four ones exist in the right waveguide. The length
of irregular domain ¥ varies in the range kd = 5+30.
The number of retained normal modes in series (17) is
taken in the inverse dependence of kd in the range
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N =25+6. The excitation is assumed to be of the
form of the driving mode of W, coming from —co.
The magnitudes of the reflection and transmis-
sion factors of driving modes in W, and W, for the
both problems are shown in Fig. 3. As it was expect-

ed, the reflection factor ‘pfll)‘ is negligibly small in

the second problem where the shape of the regular
domain is smooth. But this factor is also not large in
the first problem, even in the case of a large angle of
the wall break. The difference between transmission

factors ‘ pﬁz)‘, n=1, ..., 4, 1in the problems is visible

and it varies not too strongly with the length of the
irregular domain.

A

Fig. 3. Magnitudes of the reflection and transmission factors
in the waveguides shown in Fig. 1 (a) (solid lines) and
Fig. 1 (b) (dashed lines) with kh, = 1.5T1 kh, = 4.5 excited
by the dominant mode of the left waveguide with p " = 1

5. Conclusion

The problem on wave scattering in irregular
waveguide with different asymptotics of the bound-
ary at —co and o and the irregular domain with the
continuously varied cross-section has been investi-
gated by the cross-section method. Derivation of the
main equations of the method has been applied, which
does not use the differentiation of the non-uniformly
converging series. The problem is reduced to a bound-
ary value problem for a countable set of ordinary
differential equations in the irregular part of the
waveguide.

An iterative procedure has been proposed for solv-
ing these equations. It allows one to avoid the expo-
nentially increasing errors in the stiff set of the dif-

282

ferential equations to which the problem is reduced
originally.

Numerical results have been obtained for two 2D
problems with smoothly and nonsmoothly varied cross-
section of the irregular domain. In particular, a test
problem with the two-side excitation forming a stand-
ing field in the irregular part of the waveguide has
been considered. The numerical results demonstrate
high efficiency and stability of the method. For both
problems the dependences of the reflection and trans-
mission factors on the geometry are calculated and
compared with each other.
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YucaeHHasi peaam3anus MeToaa MmonepeYHbIX
ceuyeHui IJIA HEPEryJsipHbIX BOJIHOBO/0B

A.T. Pamm, H. H. BoiiToBuu,
0. ®. 3amopckast

Uccnenyercst paccessHue BOJH B HEPETYJSPHBIX
BOJIHOBOZIaX. PaccMarpuBaeTcsi METO/ MOTIEPEUHBIX
CEUEHHMH JIJIsl BBIYMCIICHHS TIOJISI B BOJIHOBOJIHOH cHcC-
TEME, COCTOSIICH U3 JABYX PErYJISPHBIX BOIHOBOIOB,
COCIMHCHHBIX HEpErysipHOU oOnacThio. B crarbe
JlaeTCsl MaTeMaTHYECKU CTPOTHI BBIBOA OCHOBHBIX
YpaBHEHHI METOJa W TNpeJlaraeTcsi UTeparoHHast
Npoleaypa UX pereHus. AJITOPUTM NPUMEHSIETCS K
3ajja4aM C IIaJKUMH U HEIIaJKUMH HEOJHOPOJHOC-
tamMu. Ha npumepe monenbHON 3amadu, uMeromeit
AQHAJIIMTUYECKOE pElIeHNE, YCTaHABIMBAIOTCSl TPaHu-
bl IPUMEHUMOCTH METO/Ia.

YucioBa peaJiizanisi MeTOAy MonepevyHNX
nepepisiB 1JIs1 HeperyJsipHUX XBHJIEBOIIB

O. I. Pamm, M. M. BoiiToBHnu,
0. ®. 3amopcbka

JociipKyeThest po3citoBaHHS XBHIIb B HEPETYJIsIp-
HUX XBUJIEBO/IaX. Po3riisaeThest METO N onepeuHux
nepepiziB [yIsl OOYKMCIICHHS MMOJIsl B XBUJICBOIHIN CH-
CTEeMI, 1110 CKJIAJAEThCA 13 IBOX PETYJSIPHUX XBHJIE-
BOJIIB, 3’ €IHAHUX HEPETYySIpHOIO o0OnacTro. B crarri
JIA€THCS MATEMaTHYHO CTPOTe BUBEJCHHS OCHOBHUX
PIBHSIHB METOJly 1 IIPONIOHYETHCS iTepaliifHa rnpore-
Jypa Juist iX po3B’s3yBaHHS. AJTOPUTM 3aCTOCOBYETh-
s 10 3aJia4 3 TIIaJJKUMU Ta HerVIaJIKUMHU Heperysp-
HocTssMU. Ha mpukiani MojenbHOI 3ajadi, M0 Mae
AQHAJIITUYHUN PO3B’S30K, BCTAHOBIIIOIOTHCS T'PAHMUII
3aCTOCOBHOCTI METOJLY.
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