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In the paper, a new algorithm based on the application of template wavelet coefficients is proposed to solve
the problems concerning noise reduction in the vicinity of edges in signals and images and suppressing parasitic
oscillations, which arise when threshold wavelet algorithms are used. It is shown that this approach calls for
choosing a specific wavelet. Examples of the application of the developed technique are given.

1. Introduction

The problem on noise reduction and enhancement
of image edges ranks among typical problems in im-
age processing. This paper deals with the problem of
noise reduction in signals, which are slowly varying
functions between sharp edges. The strings and col-
umns of images obtained in experiments or observa-
tions are examples of such signals. For instance, radar
images of clouds have slowly varying reflectivity be-
tween sharp cloud edges.

The high-frequency noise components produce the
main distortions in signals and images, since the pow-
er of the signal high-frequency component is often
less than the power of the low-frequency component.
However, an application of the conventional low-fre-
quency filtration results in smoothing edges and loos-
ing fine features. To keep the edge sharpness, the high
frequencies should be removed between the edges and
retained in the vicinities of the edges. For this pur-
pose, one can use a representation of the signal, which
allows analyzing local properties of signals both in
time and frequency domain. Window Fourier trans-
form is an example of such representation [1],
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Here ( )w t  is a window function, usually Gaussian.
Window Fourier transform gives the spectrum of the

part of a signal cut out by the “window”. A disadvan-
tage of this transform is that the time resolution deter-
mined by the window width is fixed. Wavelet trans-
forms provide more accurate time-frequency represen-
tation of signals.

Wavelet is a square integrable function localized
both in time and frequency domain and satisfing the
admissibility condition [1]
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If wavelet is a differentiable function, the admissibil-
ity condition can be rewritten as

( )d 0.t t
∞

−∞

ψ =∫ (1)

Classical examples of wavelets are the first and the
second derivatives of the Gaussian,

( ) ( )2exp ,t t tψ = −           ( ) ( ) ( )2 21 2 exp .t t tψ = − −

The continuous wavelet transform (CWT) of a sig-
nal  f(t) is introduced as [1-5]
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where b denotes the real numbers, and a is a positive
number.  The symbol “*” stands for complex conjugation.
If the admissibility condition is satisfied, the inverse con-
tinuous wavelet transform is given by the relation
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The wavelet spectrum ( , )W a b  is a function of two
variables: the scale parameter a > 0 (the analog of
frequency) and translation parameter b (location of
the time window). The wavelet transform gives a local
spectrum of signal in the vicinity of b, similarly to the
window Fourier transform. However, the time and fre-
quency resolutions of the wavelet transform are relat-
ed to each other: the high-frequency wavelet has
a narrow time window and low-frequency wavelet has
a wide time window. It should be also noted that there
are a lot of different wavelets and one can choose an
appropriate wavelet allowing for the features of the
problem considered.

In practice, the discrete wavelet transform (DWT)
is usually applied [1-6], in which case the samples of
the wavelet spectrum, called wavelet coefficients, are
calculated. Samples of the wavelet spectrum are taken
in the nodes of a grid on the plane (a,b),

,[ ] ( , )j j j kd k W a b= ,       ,j k Z∈ . (3a)

where Z denotes the space of integer numbers.
There are two types of discrete wavelet transforms

and wavelet coefficients: decimated and undecimated,
depending on the type of the grid.The former DWT
calculates the samples of the wavelet spectrum on the
following grid:

2 jja = ,            , 2 jj kb k= ,

whereas the latter – on the grid:

2 jja = ,             kb k= , (3b)

Wavelet coefficients with the same octave number j
and various k-values form an octave.

The inverse discrete wavelet transform was intro-
duced to reconstruct the original signal from its wave-
let coefficients.

Several algorithms based on the wavelet transform
have been proposed to treat signals and images (e. g.
[7-9]). Each algorithm involves three main steps:
i) The wavelet spectrum is formed using some type of
wavelet transform. ii) Then the spectrum is treated by
means of linear or nonlinear filtration. iii) Finally, an
inverse wavelet transformation is performed to get the
filtered image or signal.

From (1) and (2) one can conclude that the smaller
signal variation, the smaller the values of the wavelet
coefficients, and vice versa. This means that sharp
variations of a signal or image edges give rise to peaks
in each octave of the wavelet coefficients. Such peaks
are called edge peaks. Their position indicates loca-
tion of edges. The presence of noise leads to similar
peaks and naturally complicates the analysis. Exam-
ples of wavelet coefficients for clean and noisy sig-
nals are given in Fig. 1.

The main idea of so far used algorithms for filtra-
tion of the wavelet coefficients lies in the following.
The wavelet coefficients that describe the edge peaks
are preserved, whereas the rest of the coefficients are
eliminated. This leads to reduction of noise influence.
The difference between various algorithms is mainly
due to the rule, which is used to determine the correct
coefficients describing the edge peaks.

The wavelet threshold filtering is the most popular
algorithm for this purpose. According to this algorithm,
the wavelet coefficients, which exceed some thresh-
old value, are considered as correct ones. The thresh-
old value is chosen either heuristically or with the help
of special algorithms [7, 8].

This approach has two disadvantages. Firstly, de-
leting the “damping tail” of edge peaks leads to para-
sitic oscillations in the reconstructed signal. Secondly,
the coefficients satisfying the threshold condition are
not eliminated, so that the noise in the vicinity of edg-
es is not filtered.

The drawbacks mentioned are illustrated in Figs. 2
and 3. The result of the application of threshold filter-
ing to the noiseless test signal of Fig. 2 (a) is shown in
Fig. 2 (b). The parasitic oscillations due to deleting
the “damping tail” is clearly seen in the latter figure.
Fig. 3 illustrates the application of this approach to a
noisy test signal shown in Fig. 3 (a). The result of the
filtration depicted in Fig. 3 (b) illustrates that the noise
in the vicinity of edges is preserved.

In this paper, a novel approach to the filtration of
wavelet coefficients is proposed in order to get rid of
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these drawbacks. The main idea of the approach lies
in the application of template wavelet coefficients,
which are used for replacing the noisy wavelet coeffi-
cients. To realize the technique proposed a specific
type of analyzing wavelet should be used. It has been
found that the first derivative of the cubic B-spline is
an appropriate choice for analyzing wavelet.

The paper is organized as follows. The elements
of the theory of multiresolution analysis (MMA) are
considered and the formulas of undecimated DWT are
given in Section 2. The main idea of the proposed
algorithm is described in Section 3. In Section 4, the
choice of the analyzing wavelet is discussed. Section
5 contains a conclusion.

2. Multiresolution Analysis and Discrete
Wavelet Transform

In this paper, we consider the DWT algorithms
based on multiresolution analysis (MRA) and the py-
ramidal algorithms similar to them. The rigorous

mathematical definition of MRA can be found in
[1, 6]. Here we give a simplified definition of MRA,
sufficient to explain the DWT algorithm.

In the theory of MRA a square integrable function
f(t) is represented as a sequence of its approximations
( )jf t . The larger octave number j, the smoother the

approximation ( )jf t . In other words, more accurate

approximation (with smaller j) contains higher frequen-
cies; the accuracy of the approximation increases with
improving the resolution.

MRA is defined as a sequence of closed nested
subspaces 2 ( )jV L R⊂ , where R is the space of the
real numbers,

2 1 0 1... ...V V V V−⊂ ⊂ ⊂ ⊂ ⊂ ,

and the approximations ( )jf t  are the projections of
2( ) ( )f t L R∈  on each of the subspaces Vj. Let us de-

Fig. 1. The wavelet coefficients dj[k] of the signal f(t): clean (a) and noisy (b)
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note the orthogonal complement of Vj to Vj−1 as Wj,

1j j jV V W− = ⊕ .

The symbol of the direct sum means that each el-
ement of the subspace Vj−1 can be uniquely written as
a sum of an element of Vj and an element of Wj. The

subspace Wj contains the “detail” information required
to go from the approximation with the resolution j to
the approximation with the resolution   j – 1.

In each of the subspaces Vj there exists an orthog-
onal basis [1],

{ }, ( )j k k Z
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∈
φ ,          ,

1 2( )
22
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t kt
⎛ ⎞−φ = φ⎜ ⎟
⎝ ⎠

.

Fig. 2. Noiseless test signal processing:
(a) – noiseless test signal, (b) – test signal after threshold
filtering, (c) – test signal after the proposed filtering technique

Fig. 3. Noisy test signal filtering:
(a) – noisy test signal, (b) – test signal after threshold filtering,
(c) – test signal after the proposed filtering technique
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Square integrable function ( )tφ  is a scaling function
of the MRA and satisfies the requirement

( )d 1t t
∞

−∞

φ =∫ .

In subspaces Wj  there exists an orthogonal wave-
let basis,
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ψ ,           ,

1 2( )
22
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⎛ ⎞−ψ = ψ ⎜ ⎟
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.

It should be noted that such basis could not be formed
by an arbitrary wavelet, but only by some special
wavelets.

The MRA described above is an orthogonal one:
j jW V⊥ . There exists a biorthogonal MRA with the

sequences of dual subspaces jV  and jW , and there-
fore j jW V⊥ , j jW V⊥ . Bases in the subspaces jV
and jW  are formed by dual scaling function φ  and
dual wavelet ,ψ  respectively.

The subspace 0V  can be represented as a direct
sum of 1V  and 1W , then the subspace 1V  can be rep-
resented as a direct sum of 2V  and 2W , and so on,
and we have

0
1

J

J j
j

V V W
=

= ⊕ ⊕

0 , ,
1

( ) [ ] ( ) [ ] ( )
J

J J k j j k
k j k

f t c k t d k t
=

= φ + ψ∑ ∑∑ .

The coefficients

*
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∞

−∞

= φ∫

are called the scaling coefficients of the function f(t).
Thus, signal is exactly described by its wavelet coef-
ficients [ ]jd k , 1, 2, ...,j J=  and scaling coefficients

[ ]Jc k . Scaling coefficients give low-frequency smooth
approximation, whereas wavelet coefficients describe
fine features and edges.

In practice, signal can be measured and presented
by its samples only approximately. The signal mea-
sured can be projected on the subspace 0V  and we
will assume that the approximation 0 ( )f t  is suffi-
ciently accurate. The scaling function ( )tφ  is well
localized both in time and frequency domain similar
to wavelet, and, therefore, the scaling coefficients
0[ ]c k  can be considered as the samples of the signal

with sufficient accuracy.
According to the expression

1 0 0V V W− = ⊕ ,

the basis functions of the subspaces 0V  and 0W  can be

expanded via the basis functions of the subspace 1V− ,

( ) 2 [ ] (2 )
k

t h k t kφ = φ −∑ , (4a)

( ) 2 [ ] (2 )
k

t g k t kψ = φ −∑ , (4b)

and the basis functions of the subspace 1V−  − via the

basis functions of the subspaces 0V  and 0W ,

2 (2 ) [ 2 ] ( )
k

t n h n k t kφ − = − φ − +∑

[ 2 ] ( )
k
g n k t k+ − ψ −∑ . (4c)

Here h, g, h , and g  are the filters determined by the
wavelet and the scaling function.

Relations (4a-4b) enable to build fast recursive
undecimated DWT algorithm [1, 4-6] called the DWT
algorithm based on MRA. The pyramidal DWT algo-
rithms are based on the other recursive relations sim-
ilar to recursive relations of MRA (4).

An algorithm of the direct undecimated DWT is
given by

*
1[ ] [ ] [ 2 ]j

j j
n

c k h n c k n+ = +∑ , (5a)

*
1[ ] [ ] [ 2 ]j

j j
n

d k g n c k n+ = +∑ , (5b)
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and allows to calculate recursively the coefficients
[ ]jd k , 1, 2, ..., ,j J=  and [ ]Jc k  from the scaling

coefficients 0[ ]c k ,

*
0[ ] ( ) ( )d .c k f t t k t

∞

−∞

= φ −∫

An inverse undecimated DWT algorithm is given by

1 1
1 1[ ] [ ] [ 2 ] [ ] [ 2 ] ,
2 2

j j
j j j

n n
c k h n c k n g n d k n+ += − + −∑ ∑

(5c)

and yields the coefficients 0[ ]c k  from the coefficients
[ ]jd k , 1, 2, ..., ,j J=  and [ ]Jc k .

3. The Algorithm of Template Wavelet
Coeffcients

Since wavelet coefficients are the result of the
convolution of the wavelet and signal, the shape of the
edge peak is determined by the shape of both the wave-
let and edge. The jump is the simplest edge and a
signal with such single edge is the Heaviside function

1, 0,
( )

0, 0.
t

t
t

≥⎧θ = ⎨ <⎩

In accordance with (2), (3), the undecimated wave-
let coefficients of the Heaviside function, called be-
low the template wavelet coefficients, are given by

*1[ ] d
22

j jj
k

td k t
∞

θ

−

⎛ ⎞= ψ ⎜ ⎟⎝ ⎠∫ . (6)

These coefficients describe the edge peaks, which
correspond to a jump discontinuity of unit height for
any function.

Let us consider a signal, which is a slowly chang-
ing function between sharp edges. Such signal can be
represented as

( ) ( ) ( )m m
m

f t s t H t T= + θ −∑ ,

where ( )s t  is a slowly varying function, mT  and mH
are the coordinates and heights of the sharp edges.
The wavelet coefficients of such signal are given by

*1[ ] ( ) d
22

j jj

t kd k s t t
∞

−∞

−⎛ ⎞= ψ +⎜ ⎟⎝ ⎠∫

*1 d .
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m jj
m T

t kH t
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∑ ∫

We will assume that the slowly varying function
( )s t  coincides with the approximation of the function
( )f t  with the resolution J, and therefore is wholly

described by the scaling coefficients [ ]Jc k . Then their

contribution to the wavelet coefficients with j J≤
equals zero. These wavelet coefficients, called below
clean wavelet coefficients, are completely determined
by the locations and heights of the edges, mT  and mH ,

and by the template wavelet coefficients [ ]jd kθ ,

[ ] [ ]c
j m j m

m
d k H d k Tθ= −∑ . (7)

As has been mentioned above, the wavelet and
scaling coefficients of the higher octaves (j = 1, 2, 3)
are corrupted by the noise in a greater extent than those
of the lower octaves (j = 3, 4, 5). On the one hand, this
is explained by the fact that we often have a high-
frequency noise. On the other hand, this is due to the
signal power concentration in the low frequency com-
ponent of the signal. Therefore, the signal-to-noise ratio
is better in low octaves.

The described peculiarities of wavelet coefficients
have led us to a new approach to the filtration of wave-
let coefficients. The basic idea of this approach is the
following. From the analysis of wavelet coefficients
with large octave number J one can find positions mT

and heights mH  of the edges for a particular signal.

After that, by using the template coefficients [ ]jd kθ ,

one can calculate the clean wavelet coefficients [ ]c
jd k

with j J≤ . These coefficients are used to replace real

noisy wavelet coefficients [ ]jd k  for all j. Supplement-
ing the clean wavelet coefficients by the retained scal-
ing coefficients [ ]Jc k  and carrying out the inverse
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DWT, we obtain the filtered signal. As a result, the
noise is reduced to a large extent, and spurious para-
sitic oscillations do not arise. Moreover, it should be
noted that slow time variations of the signal are mod-
eled correctly, since they are mainly described by the
scaling coefficients [ ]Jc k .

The locations of edges, mT , can be found as the
positions of extremes of the wavelet coefficients with
sufficiently large octave number [ ]Jd k , and the heights
of edges can be calculated from the extreme wavelet
coefficients by the expression

[ ]
[0]

J m
m

J

d T
H

d θ= . (8)

Some threshold may be used to distinguish the edge
peaks from those produced by noise. This threshold
defines the minimum height of edges.

It is clear that the octave number J is desired to be
taken as large as possible to reduce the noise to a large
extent. However, the value of J is restricted by two
requirements. Firstly, the approximation with the res-
olution J should be sufficiently accurate to describe
the slowly varying component of the signal. Secondly,
with increasing J the resolution of closed edges be-
comes worse since their edge peaks merge each other.
Thus, to distinguish the finest features in the case of
weak noise one can take J = 2, 3, and in the case of
strong noise it should be taken J = 3, 4. To improve
the resolution of closely situated edges the locations
and heights of the edge can be found from the J1-th
octave; the scaling coefficients can be retained at the
J2-th octave, and clean wavelet coefficients can be
calculated for 2 1J J> .

Thus, the algorithm of template wavelet coefficients
allows the noise reduction not only between the edg-
es, but also in their vicinity, and parasitic oscillations
do not arise. Moreover, the algorithm allows recon-
structing the sharp edges from smoothed edges cor-
rupted by the noise.

4. Choice of the Wavelet

Let us consider the wavelet in the form of a deriv-
ative of an even square integrable function ( )G t ,

d( )
d
Gt
t

ψ = ,                    ( ) ( )G t G t− = .

Then the expression (6) for the template wavelet coef-
ficients is reduced to

[ ] 2 .
2

j
j j

kd k Gθ ⎛ ⎞= − ⎜ ⎟⎝ ⎠
(9)

To find the locations and heights of edges with a
high accuracy, the edge peaks should be well local-
ized and have a single extreme, pointing the edge
location. This means that the function G(t) should
have a bell-like shape.

For example, G(t) can be taken in the form of
Gaussian. Then the wavelet will be the first derivative
of the Gaussian. However, the cubic B-spline is the
more appropriate choice for the function G(t),

3

3 2

3 2
3

3

1 ( 2) , 2 1,
6
1 (3 6 4), 1 0,
6
1( ) (3 6 4), 0 1,
6
1 ( 2) , 1 2,
6

0, | | 2.

t t

t t t

t t t t

t t

t

⎧ + − ≤ ≤ −⎪
⎪
⎪− + − − ≤ ≤⎪
⎪⎪φ = − + ≤ ≤⎨
⎪
⎪

− − ≤ ≤⎪
⎪
⎪ >⎪⎩

(10)

The cubic B-spline and the chosen wavelet are
shown in Fig. 4. The Fourier transform of the cubic
B-spline is

4

3
1 sin / 2( )

/ 22

∧ ω⎛ ⎞φ ω = ⎜ ⎟ωπ ⎝ ⎠
.

It turns out that for the chosen wavelet exact pyra-
midal direct and inverse DWT algorithms with the
finite-length filters (i. e. the filter with finite number
of nonzero elements) can be built. The formulas of the
pyramidal DWT can be obtained from the formulas of
the undecimated biorthogonal DWT (5) substituting

1[ ]jd k+  by [ ]jd k , 0, 1, 2, ..., 1j J= − , with the fil-
ters given in Table 1.

We have obtained this pyramidal algorithm from
the well-known biorthogonal MRA with the quadratic
B-spline as the scaling function [1] by using the ex-
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pression that relates the chosen wavelet

3d
dB t
φ

ψ = , (11)

to the wavelet 2ψ  from the above mentioned bior-
thogonal MRA,

( )2
1ˆ ˆ(2 ) 2 cos ( )
2

i
Be− ωψ ω = − + ω ψ ω .

In other words, the pyramidal algorithm has been ob-
tained substituting the biorthogonal basis of subspac-
es Wj  based on 2ψ  by nonorthogonal basis based on

the chosen wavelet Bψ .

For the chosen wavelet, the template wavelet coef-
ficients can be rewritten as

3[ ] 2 ,
2

j
j j

kd kθ ⎛ ⎞= − φ ⎜ ⎟⎝ ⎠
(12)

and the clean wavelet coefficients (7) are given by

3[ ] 2
2

c j m
j m j

m

k Td k H −⎛ ⎞= − φ ⎜ ⎟⎝ ⎠
∑ . (13)

We have found that clean wavelet coefficients can
be calculated in a fast way. Namely, since the cubic B-
spline is the scaling function of biorthogonal MRA
[1], the Eq. (4a) is valid for this spline with the filter
3[ ]h k  (see Table 1). By applying (4a) to the expres-

sion (13) one can find that clean wavelet coefficients
can be calculated with the Eq. (5a). In fact, it is suffi-
cient to calculate the clean wavelet coefficients 0 [ ]

cd k
for 0j =  directly from (13), and then take them as the
coefficients 0[ ]c k  for (5a). By carrying out the calcu-
lation in this way, we have obtained

3
1[ ] .

22
m

j m jj
m

k T
c k H

−⎛ ⎞= − φ ⎜ ⎟⎝ ⎠
∑ (14)

One can easily see that required clean wavelet coeffi-
cients equal

[ ] 2 [ ]c j
j jd k c k= , 1, 2, ..., 1j J= − . (15)

The choice of cubic B-spline as a function G(t)
allowed us to build simple, effective and exact direct

  n  ][ng      ][nh      ][~ ng       ][
~
nh ][3 nh

–3 –  – –1/16     –      –
–2 –  – –1/16     – 2 /16

–1 –        2 / 4−  1/2 2 /8 2 / 4

  0 –1       3 2 / 4  1/2 3 2 /8 3 2 /8

  1   1       3 2 / 4  1/16 3 2 /8 2 / 4

  2 –       2 / 4−  1/16 2 /8 2 /16

Table 1. Filters

Fig. 4. Cubic B-spline (a) and proposed wavelet (b)
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and inverse pyramidal DWT algorithms with the finite
length filters, and to organize the computation of the
clean wavelet coefficients in a fast way. Another choice
requires more complex algorithms than proposed py-
ramidal. Therefore, the choice of cubic B-spline can
be considered to be particularly successful.

5. Results

Now the final version of the proposed algorithm
can be described by collecting all steps discussed in
the previous sections. The main steps of the algorithm
are shown in Fig. 5. First of all, the wavelet [ ]jd k  and

scaling [ ]Jc k  coefficients are calculated by using the
direct DWT with the chosen wavelet (5a, b). Then the
edge positions mT  and edge heights mH  are calculat-

ed from the coefficients [ ]Jd k , and clean coefficients

0 [ ]
cd k  are built according to (13). The other wavelet

coefficients are built by using the fast algorithm (14-
15). At last, the filtered signal is obtained by using the
inverse DWT (5c).

Thus, the application of the proposed noise re-
duction technique allows us to avoid the excitation
of parasitic oscillations. The result of applying the
proposed algorithm to a noiseless test signal (see
Fig. 2 (a)) is shown in Fig. 2 (c). The result of apply-
ing the threshold algorithm to the same noiseless test
signal is shown in Fig. 2 (b). As one can see, parasit-
ic oscillations in the vicinity of edges are totally ab-
sent when proposed algorithm is used. This is in
contrast to the threshold filtering technique.

Moreover, proposed technique allows an effec-
tive noise reduction from the signal not only be-
tween the edges but in the vicinity of the edges as
well. The noisy test signal shown in Fig. 3 (a) was
processed by using the threshold technique (Fig. 3
(b)) and the proposed algorithm (Fig. 3 (c)). Com-
paring both figures one can see that the noise re-
duction is rather good when the proposed algorithm
is used.

The signal processing algorithm described above
can be used for grey-level image processing as well.
Grey-level images are treated by an application of
the one-dimensional algorithm at first to columns and
then to strings. The color image can be represented
as three images, which are the RGB-components of
colors, and thus it can be processed by applying the
grey-level image processing algorithm to each of these
components.
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Алгоритм удаления шума на основе
использования шаблонных вейвлетных

коэффициентов

А. А. Безвесильный, В. В. Виноградов,
K. Шунеманн

В статье предложен новый алгоритм, основан-
ный на применении шаблонных вейвлетных коэф-
фициентов для решения проблем, связанных с уда-
лением шума в окрестности границ в сигналах и
изображениях и подавлением паразитных осцил-
ляций, которые возникают при использовании по-
роговых вейвлетных алгоритмов. Показано, что
этот подход требует выбора специального вейвле-
та. Приведены примеры применения предложен-
ного подхода.

Алгоритм видалення шуму на основі
застосування шаблонних вейвлетних

коефіцієнтів

О. О. Безвесільний, В. В. Виноградов,
К. Шунеманн

У статті запропоновано новий алгоритм, що
базується на використанні шаблонних вейвлетних
коефіцієнтів для розв’язання проблем, пов’язаних
з видаленням шуму поблизу меж в сигналах та
зображеннях і знищення паразитних осциляцій, що
виникають у разі застосування порогових вейвлет-
них алгоритмів. Зазначено, що цей підхід вимагає
вибору спеціального вейвлета. Наведено прикла-
ди використання запропонованого підходу.


