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A self-consistent mathematical model of the spatial-harmonic magnetron with cold secondary-emission
cathode is proposed for investigating both transient and steady-state processes. Characteristic features of
the simulation of space charge effects, secondary-emission, and nonlinear electron-wave interaction are de-
scribed. Illustrative examples of simulations are given in order to show peculiarities of the operation of the
spatial-harmonic magnetron as compared to conventional magnetrons. Multi-stable states of the magne-
tron are described and the mechanism of their formation is proposed.

I. Introduction

Since the fifties, it has become clear that con-
ventional magnetrons [1] do not operate effectively
in the millimeter-wave band because of three main
limitations, which are inherent in their design. At
first, the dimensions of the magnetron cavity be-
come too small since they scale as A, the wave-
length. At second, the dc magnetic field grows as
/L. At third, the necessary current density and
back-bombarding are so intense that the life-time
of thermionic cathodes is too short from the point
of view of practical applications. Several solutions
have been proposed to overcome these problems
and to develop the effective tubes for millimeter-
wave band. Spatial-harmonic magnetrons with
secondary-emission cathode (SHM) can be consid-
ered as the most successful alternative to conven-
tional magnetrons [2]. These magnetrons utilize
first backward space harmonic of the mw/2 or
neighboring mode as working mode. That allows
to increase the magnetron cavity dimensions by
several times, and to decrease the needed values of
dc magnetic field by a factor of about four. The
problem of the cathode lifetime has been success-
fully solved by introducing a cold secondary-
emission cathode rather than thermionic one. At
present, SHMs are available for frequencies as
high as 140 GHz where they can provide 10 kW
peak output power [3]. These magnetrons offer
also low-voltage, compact, and lightweight advan-
tages and are now coming into use in various prac-
tical systems [4,5].

For a long time, the development and modifi-
cations of the SHM have been based on empirical
rules accumulated from a large volume of experi-
mental data. However, at present a demand has
arisen for a nonlinear self-consistent analysis of
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such magnetrons that will allow to examine ade-
quately the physics of their operation with the aim
of a further enhancement of their performance. In
this paper, a contribution has been made to the
development of such a theory. We propose a
mathematical model, which allows for all principal
effects determining magnetron operation. We also
present illustrative examples of simulations in or-
der to show characteristic features of the SHM op-
eration as compared to conventional magnetrons.
The paper is organized as follows. In Section II,
we describe the basic physical phenomena under-
lying the SHM operation. Section III deals with
the equations of excitation of the magnetron cav-
ity. The space charge description is given in Sec-
tion IV. Section V contains the formulation of the
equations of motion. The modelling of the secon-
dary-emission is discussed in Section VI. The
complete mathematical model is described in Sec-
tion VII together with illustrative examples of
some simulations. The Appendix contains the
derivation of the norm of the magnetron cavity.

I1. Physical model

There are three basic processes which deter-
mine the physics of SHM operation: 1) secondary-
emission from a cold cathode initiated by a bom-
barding current, 2) space charge formation limit-
ing secondary emission and affecting electron tra-
jectories, and 3) the wave-particle interaction in
the presence of dc, rf, and space charge fields. All
these processes are interrelated to a great extent.
Each of these processes has its peculiarities com-
pared to classical magnetrons that should be taken
into account when developing the corresponding
mathematical model and methods for its study.



K. Schiinemann, S. V. Sosnytskiy, and D. M. Vavriv

As for the secondary-emission, it usually takes
place also in classical magnetrons with thermionic
cathode. However, its contribution to the total
current is not a principal one there. The electron
bombarding of the cathode is mainly used for
heating the thermionic cathode. The total current
in the SHM, on the other hand, is only due to the
secondary-emission from a cold cathode, which is
typically made of a copper core coated with a
platinum foil [1,2]. Therefore, the accurate model-
ling of the secondary-emission is of principal im-
portance for any SHM simulation. This modelling
so far can be based mainly on empirical results
concerning secondary-emission properties of
platinum or other materials which are used for
coating the cold cathode. In particular, the de-
pendence of the secondary-emission coefficient
versus both impact energy and impact angle, and
the directional diagram for the secondary elec-
trons are needed for modelling.

The modelling of the space charge effects in the
SHM also has its special features. Simulation and
analysis of physical processes in classical magne-
trons are usually based on the assumption of pe-
riodicity of the space charge known as the forma-
tion of spokes with an angle period of
27c/(n+mM), where n means mode number, m

space harmonic number, and M number of anode
resonators. It appeared (see Section VII) that this
assumption is not valid for the magnetrons under
investigation. It becomes clear that the simulation
of such magnetrons is a more complicated task
since the complete interaction space should be
considered rather than the angle period of
2n/(n+mM) only.

The wave-particle interaction in the SHM is
realized as an interaction of electrons with the first
backward harmonic of the =/2-mode (or
(n/2—-1)-mode) in contrast to the classical magne-

trons where the principal harmonic of the m-mode
is used as the working mode. The backward har-
monic is localized near the anode structure so that,
in order to realize an effective electron-field inter-
action, the value of the dc magnetic field B should
be chosen close to its critical value

= 2 _ 2\
B, =r1,4/8mU, e (r; —17)"'. Here U, means

anode voltage, 7, and 7. anode and cathode radii,

respectively, m, electron mass, and ¢, magnitude
of electron charge. Typical positions of operating
points for the SHM and for classical magnetrons
are indicated in the parameter plane (dc magnetic
field B) versus (anode voltage U, ) in Fig. 1. Curve
a represents the dependence of the cut-off voltage
vs. B. Curves b and b, are Hartree’s threshold
voltages vs. B for the first backward harmonic of
the n/2-mode and for the principal harmonic of
the m-mode, respectively. The position of the op-

erating point for the SHM is much closer to the
cut-off parabola than that of the classical magne-
tron.

Anode voltage

0 DC magnetic field

Fig. 1. Parameter plane (dc magnetic field) versus
(anode voltage) with the parabola of the cut-off voltage
(dashed curve). Curves b, and b, are Hartree'’s

threshold voltages vs. B for the first backward harmonic
of the /2 -mode and for the principal harmonic of the
T -mode, respectively. Points 1 and 2 indicate the typical
location of the operation point for spatial-harmonic
magnetrons and for classical magnetrons, respectively

Fig. 2. Geometry of the magnetron cavity

When modelling the wave-particle interaction
in the SHM as in the case of classical magnetrons,
it can be assumed that the spatial field structure in
the presence of electrons is the same as in the
“cold” cavity. Thus, the mode field structure and
the natural frequencies can be found from the so-
lution of a boundary value problem. The geometry
of the SHM oscillatory circuit, shown in Fig. 2, is
usually the same as that for classical magnetrons,
that allows using corresponding results on natural
oscillations of the magnetron cavity. By now, ap-
proaches have been developed to determine the
field structure, the natural frequency, and the
mode Q-factor of the magnetron cavity with
rather high accuracy [6,7]. An example of the cal-
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culation of resonant mode frequencies of a loaded
magnetron cavity together with values of the Q-
factor is shown in Fig. 3. This figure illustrates a
practical advantage of the used m/2-mode or
neighboring ones as operating mode. The advan-
tage is a better mode separation in comparison
with the m-mode, as one can learn from the figure.
It can be seen that the distance between neigh-
boring modes on the frequency scale is drastically
larger for the ©/2-mode (n = 4) as compared to
that for the m-mode (n = 8). These simulation re-
sults as well as experimental studies [1,2] allow to
assume that modelling the SHM can be based on a
single mode approximation, at least during the
first stage of development of the theory.
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Fig. 3. Resonant frequencies and Q-factors of the
magnetron cavity modes with mode number 1 to 8

When approximating the field structure, both
synchronous and principal harmonics of the anode
periodic structure must be taken into account
rather than only a synchronous harmonic as in the
case of classical magnetrons. This is due to the fact
that the principal harmonic amplitude is much
larger than the amplitude of the synchronous
harmonic.

The SHM model proposed in this paper in-
volves all the processes mentioned above, which
are described in a two-dimensional frame assum-
ing non-relativistic motion of the particles. The
mathematical description of this model is given in
the following sections. We start the derivation
with a description of the cavity field.

III. Equations of Cavity Excitation
In the framework of the single mode approxi-

mation, the rf-electromagnetic field excited in the
magnetron cavity can be written in a form

E (.7)=RelC,()E, Fle@+w}. )

Here C,(7) means dimensionless field amplitude
of the n-th mode, y=wy(z) is the phase of the
field, , is a natural frequency of the mode, and
E,(7) is the spatial field distribution. In two-
dimensional approximation, the radial and angu-
lar components of E,, (F) for the cavity shown in
Fig. 2 are given by the expressions [8]:

EM 1 & Zykr)
E, =i—— ) sin(yp)—L—=e™, ®)
S ol o Z; (kr,)
EM 3 sinyd Zj(kr) _,
E , =— s 3
S Y Z’(kra)e @)

Here r and ¢ are the polar coordinates, 6 =d/2r,

is the normalized half-width of the anode slots,
k=w,/c means the wave number with ¢ being

J,'{(kr)
Jf,(kra)
where JY(kr) and NY(kr) are, respectively, Bessel

the light velocity, Zy(kr)= JY(kr)— Ny(kr),

and Neumann functions of the order y=n+mM.

E is a normalization coefficient having the dimen-
sionality of the field strength. For the sake of con-
venience, this coefficient is chosen to be
Ei=2U/d-

For practical tubes, the condition y>>kr,
usually holds that allows using the following as-
ymptotic expressions for the spatial distribution of
the field components instead of using Egs. (2) and
3):

E

=na i = S
= =I,ZUHM R, 2 sinyd R +R_ e
nd R 1/ RJ—R“Y

m==o%

4

£ _2UMR, isinyﬁR’—R"ye_m )
st B e T ey

m=—oco

azra/rc'

where R=r/r,, R

Amplitude C,(7r) and phase y=wy(z) of the
cavity mode are governed by the equations of
cavity excitation [9], which can be written as:

an__ Dy __1_ = L \o* (=), o
=== Re Nn <;[j(r,l)E" (I'k dV> *

dr %205

(6)
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4
Here Q, means the mode Q-factor, N, is the
mode norm which is calculated in the Appendix,
j(7,1) is the current density in the interaction
space, V is the cavity volume, and <> means av-
eraging over the period of the rf oscillations.
Keeping in mind that the simulation of magne-
tron operation will be based on the representation

of the electron cloud by a set of macroparticles, we
rewrite the integral involved in Eqgs. (6) and (7) as:

1= [ 160, 'y =
)

X :
=4y z {fk Ep (191 )+ 191 Ep (e 91 )}e'(m"my) ,
k=1
®)

where g, means charge of the macroparticle, K,

is the number of macroparticles used in the simu-
lation, r, and @, are polar coordinates of the k-th

macroparticle, and the overdot means derivative
with respect to time. The coordinates of each par-
ticle and their derivatives can be found from the
equations of motion. In order to formulate these
equations, an expression for the space charge field
should first be specified.

IV. Space Charge Field

The calculation of the space charge field leads
to the solution of Poisson's equation:

2
1a(,90) 12 _ ple) ©
ror 2

or r? o 0) = £

where p(r,@) means the space charge density dis-
tribution and ¢, is the permittivity of free space.

In order to separate the space charge field poten-
tial from the potential introduced by the applied
anode voltage, the following boundary conditions
are used:

L Gl
r=r, r=r,

=0. (10)

Poisson's equation can then be simplified by ap-
plying a coordinate transformation [10]:

reret (11

[4

In terms of this new coordinate, Eq. (9) reads:

—®=F(y.9), (12)
P

2
where F(y,9)= ——:;'—e2~vp(y,(p).
0

For a numerical solution of Eq. (12), we rewrite it
in a finite-difference form:

o (¢‘i+|.k =20, + D, ; )+
+@ e —2Py + Dy = (AJ’)Z Fy, (13)

ie (LM =1), ke (LM, =1).

Here @, and Fj are, respectively, the values of
the potential and of the function F(y,9) at the
point with coordinates (@, y)=(iAp,kAy), where
A@=2n/M,, Ay=In(r,/r)IM,, M, and M,
are the numbers of sub-intervals within the inter-
action space in ¢ - and y-directions, respectively,
and a.=Ay/A¢. Thus, we have arrived at a set of
algebraic equations of the order M (M, —1) with

respect to the values of the potential at the lattice
nodes which is preferable than to deal with the
partial differential equation (12). For the solution
of Eq. (13) the method proposed in [10], which is
based on the fast Fourier transformation, has been
used.

Let us now consider in more detail a way of
calculating the Fj, -values. As far as the space
charge is represented with a set of macroparticles,
its density can be written in a form:

K arl .
p(y,w)=qf° XSO—yJ-)S(%cP_,«), (14)
j=1

where y;, ¢, are coordinates of the j-th macroparti-
cle and L means the axial length of the interaction
space. The so-called “cloud-in-cell” method [11] is
used in order to assign a charge value to each node
of the lattice. According to this method, the charge
of a particle with coordinates y;, @; is shared be-

tween four neighboring nodes by using the rules:

qik = (l’”)(] _b)%’ i1k =a( “b)CIo,
(15)

Gixn = (- a)gs. Gk =abgq,

where a=(9; —¢;)/A¢, b=(y; —y;)/Ay.
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By using these rules, one arrives at the
following expression for Fj:

dix
e > 16
ik € LA(pAy ( )
Provided that the solution of Eq. (13) has been
found, the components of the space charge field
strength are given by the expressions:

g 99 __e” 00
o TRy
(17)
ch 1 0D e oD
EQ’ =E——— =
r ¢ . 09
where
@ (-« a
gy‘= (Ay )(¢i.k+| ~Dy )+A_y(¢i+1.k+1 -¢i+l.k)’
(18)
Jd (I-b b
% = (A_(p)(‘bm.k — Dy )+Z—(5(®i+"l"+' =@ )

Here a and b mean the same as in Eq. (15).

Having expressions for the rf components of
the cavity field (see Egs. (4), (5)) and also for the
components of the space charge field, we can pro-
ceed to the equations of motion.

V. The Equations of Motion
In polar coordinates, the equations of motion

for an arbitrary electron in the interaction space
can be written as

pppafe lady '+aq’(”‘“’)—5,’f(r,<gz)—3r¢
my| In@, /1) r ar

rip+2rp=-2 Br'—E[{(r,(gt)——lM
my ro 0Q

(19)

where the components of the rf-field are given by
the expressions:

E:/ = Cu RC{E", (rv(P)e_i(w"’+W)}
(20)
Eq’{ =G Re{E,,(p (r,(p)e"("’"”"')},

with E,, (r.¢) and Emp(r,(p) given by Eqgs. (4), (5).

Now let us rewrite the equations of motion in
terms of the variables y, ¢ and the dimensionless
time t=Qr with Q=¢e,B/m, being the cyclotron

frequency:

- +('p=e‘2-‘{A +5—;f -, i&;,,(e”’—re“w)sin (ynp+ut+\|):l,

nE—co

o2 w:‘fz"[%—q;—c, Yo,k —¢Jcos (Y<p+vt+w)J-

Moo

21

Here A :L IS
mor’Q% In(r, I1,)
describing the effect of anode voltage on particle
eU, M sinyd 1
myr2Q* © ¥ RY-RY
coefficients describing relations between the

coefficient

are

motion, g, =

spatial harmonics of the anode structure,
v=w,/Q means the normalized natural
frequency of the working mode, and

@'(y,0)=e,®(y,0)/(myr’Q?) is the normalized
potential of the space charge field. These
equations should be supplemented with initial
conditions for both “thermal” electrons, which are
produced by the auxiliary side cathode, and
secondary-emission electrons from the cold
cathode. In order to specify the initial conditions
for the “thermal” electrons, the problem for the
injection of these electrons should be solved.
However, these electrons should be taken into
account only in the initial stage of the field
development. The analysis of the steady-state
oscillations can be performed without considering
the “thermal” electrons since their amount is
negligibly small compared to the amount of the
secondary-emission electrons. As for the initial
conditions for the latter electrons, they should be
specified at the cathode where y = 0. The initial
values for other variables are defined by
secondary-emission processes, which will be
considered in the next section. The electron
trajectories determined by Egq. (20) and by the
initial conditions should be calculated until the
variable y becomes zero or In(r,/r,), what means
that the particular electron has reached either the
cathode or the anode surface, respectively. By
impacting the cathode, an electron causes the
secondary-emission.

VI. The Secondary-Emission

The description of secondary-emission is com-
plicated by the lack of an adequate mathematical
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model of this process. Usually, experimental data
are used in order to establish relations between
primary and secondary electrons. In this paper,
the following assumptions are applied in accor-
dance with [12,13]:

1) The secondary-emission electrons encompass
“truly” secondary electrons and inelastically re-
flected ones. The energy of the former electrons is
distributed between 0 and 50 eV with a maximum
at 0 eV, the energy of the latter is located between
50 eV and the energy of a primary electron. The
energy distribution of the inelastically reflected
electrons is yet imperfectly understood. Therefore,
it has been assumed to be a homogeneous one.

2) The “truly” secondary emission coefficient &
and the inelastic reflection coefficient n depend on
the energy of the primary electron w, (impact en-

ergy). The coefficient 8 also depends on the inci-
dence angle o of the primary electron. The relation
between § and a is described according to

l+o”/

a(wo,a)=50(_£g_n][1+a2 /(2n)]. (22)

Here 8,(w,) means the secondary-emission co-

efficient for normal incidence angle. The depend-
ences of the secondary emission coefficient and the
inelastic reflection coefficient versus impact energy
for normal incidence angle have been approxi-
mated in the case of platinum by

n= 0.47(1 e ] (23)
Swy wy <0.3,
8 =11.39-0.8(0.8 - w,)? 0.3<w, <1,
B wo 21.
(24)

Here the impact energy w, is measured in keV.

These approximations are shown in Fig. 4 to-
gether with corresponding experimental data pub-
lished in [12]. The agreement is good.

3) Both “truly” secondary electrons and the
inelastically reflected ones leave the cathode sur-
face at randomly distributed angle 3, which is the
angle between the cathode normal vector and the
electron velocity vector after leaving the cathode.
The probability that this electron leaves the cath-
ode at some angle B is proportional to cosp .

Having specified the processes on the cold
cathode, the equations of motion, the space charge

field, and the equations of cavity excitation we can
proceed to the formulation of the final mathemati-
cal model.
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Fig. 4. Dependence of the secondary-emission coefficient
and the inelastic reflection coefficient on the energy of the
primary electron:

solid curve — approximation, dashed curve — experimental
data

VII. Mathematical Model

Let us start from integral (8), which is propor-
tional to the complex power of electron-wave in-
teraction. With respect to the variables and dimen-
sionless parameters involved in Eq. (21), this inte-
gral can be written as:

7 =g9m0r(293><
K0
I:,, 55

S Z 28'" L iy (e e )+ ; (ew, +e ¥ )]e"("“"’”“’r )_

J=l m=—oo

(25

Real and imaginary parts multiplied by C, are

equal to the active and reactive power of the inter-
action between the electrons and the rf-field in the
magnetron, respectively. In terms of I, the equa-
tions of cavity excitation (6), (7) read:
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(26)

Rewriting these equations in dimensionless pa-
rameters and supplementing them with the equa-
tions of motion and the expression for the space
charge field, we arrive at the mathematical model
of the magnetron:

27

n

: v 1
C,=C,—| $C,.¥v)-— |,
n MZ[I(MW)Q]

V=-25(C,v). 28)

FHi? -9 +o=ex

X{A + aai, -C, is,,, (e*" +e v )sin(y<p+ T+ w)}

m=—oco

(29
§+259- =
e e—z_rl:aa% ~Cr "th’” (ey-" =Y )cos(Y(P+ VT+ \V)},
(30)
SHDL 0 e,
0 =F(y, 31
S (7.0) )
Here

S _Reix
8; [ Im JC,

k 0
- <X DA [‘ ; (e % B )+ b, @m - Sl )]x

j=1 m=-1

xXe

fnrvrm)) -

are the oscillatory characteristics of the magnetron
describing the effect of the electrons on the develop-

¥ ’ <3 €y .

ment of the cavity mode, F (y,(p)——ZZ—F(y,(p) is
myr; €2

a function describing the space charge distribution

in the interaction space at any moment of time,

and G =-2qymy’Q° /(e,N,,) is a dimensionless

parameter.
Solving this set of equations with correspond-
ing initial conditions, one can find the evolution of

the amplitude and the phase of the resonator field
and the power characteristics, like the power ex-
tracted from a dc supply (£), the electron effi-

ciency (m,), and the rf power delivered by the
beam (P, ). As for the power from a dc supply, it

is equal to the change of the potential energy of all
electrons in the interaction space per unit time.
The potential energy of the j-th macroparticle is given
by the expression W;=gq,U, ln(rj /. )/[ln(r,, /).

Taking the derivative of this expression with re-
spect to time, performing both averaging over a
period of the rf-oscillations and summing up over
all macroparticles, we arrive at the expression for
the dc power:

U/ A 7
sy ki gaiud =k 33
B o ln(ra /rr) Z 7 5

g=1"J

In terms of dimensionless coordinates used in
Egs. (27)-(31), this expression can be written as

By =-20 1 203s, (34)

€

K
where S, =<2Ayi> is a quantity describing the
j=1
interaction of electrons with the dc field.

As it was noted before, the rf-power delivered
by electrons to the rf-field is proportional to the /-
value given by Eq. (25). This leads to the following
expression for P, :

S

e

~C RN =-C> Gq—"morfsfs,. (35)

€
Thus, the electron efficiency can be calculated as

S
=PI =CT=L 36
P 0 n GSO ( )
It is often necessary to know the anode current
value, denoted by 7,. This value can be found

from dc power as

. 37
« U(I ( )
A computer code has been developed to solve
the above given system of equations and to study
the physics of magnetron operation. The above
mentioned peculiarities of SHM operation lead to
the fact that the code requires more computer re-
sources in comparison to codes used to simulate
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the classical magnetrons. The dimensionless time
step At needed for the numerical solution of the
equations of motion (29) and (30) is mainly de-
termined by the rate of the variation of the rf-field
amplitude which is experienced by the electrons.
The spatial gradient of this amplitude is large due
to the concentration of the field near the anode
structure what requires small values of the time
step compared to the cyclotron period. In the re-
gion near the anode, the At-value should be as
low as 0.005. In other regions of interaction space,
this value should be smaller than the characteristic
transit time through a cell of the lattice which is
used for the solution of Poisson's equation. In this
case, the At-value is about 0.02.

Since Poisson's equation should be solved for
the whole interaction space, a large number of
sub-intervals M, along the azimuth coordinate is

needed. In our simulations, this number is equal to
256, what corresponds to approximately 20 sub-
intervals for one slow wave length. The number of
sub-intervals M, in radial direction is not so criti-

cal, a typical value being 48. The number of
macroparticles within the interaction space K, is

related to the charge of a single macroparticle g,.

In order to have a smooth space-charge density
distribution, it is desirable to have approximately
2-3 particles per one cell. Therefore, K, should be

larger than 30000. In our simulations, we used
about 40000 macroparticles.

When simulating the classical magnetrons,
only one spatial harmonic of the rf-field is usually
taken into account. This is possible due to the fact
that in classical magnetrons the amplitudes of the
non-synchronous harmonics do not exceed the
amplitude of the synchronous one, whereas in the
case under consideration, the synchronous har-
monic amplitude is small compared to the ampli-
tude of the principal harmonic, so it is the latter
one that should be taken into account.

VIII. Steady-State Oscillations

The mathematical model obtained allows the
investigation of both transient and steady-state
processes. If only the steady-state oscillation re-
gimes are of interest then the computation proce-
dure can be simplified, at first by neglecting the

derivative in Eq. (27), i. e. C,, =(), and at second
by neglecting the dependence of S, and S, on the

phase. Strictly speaking, there are always some ir-
regular variations of the amplitude. Since these
variations occur at relatively low rate, it appeared,
however, possible to assume C,, =0. As for the

second assumption, it means that the “hot” fre-
quency is constant in time. In this case, we have

the following equations for the amplitude and
phase instead of Egs. (27) and (28):

5(C,)=1/0,, (38)
\if =—§S2 {c.) (39)

Thus, in order to find values for the steady-state

amplitude, the oscillatory characteristic S,(C,,)

should be calculated. Provided the amplitude
value is known, equation (39) gives the shift be-
tween the “hot” frequency and the “cold” one. It
should be noted that even if the C, -value is con-

stant, there are still time variations of the oscilla-
tory characteristics S,(C,), S, (c,). Therefore,

these characteristics have been averaged over large
time interval. An example of the calculation of the
oscillatory characteristic S,(C, ) is given in Fig. 5.

We have used the following set of magnetron pa-
rameters for the simulation: number of anode
resonators of 16, anode radius of 2.25 mm, cath-
ode radius of 1.3 mm, axial length of 6 mm, depth
of the anode resonators of 1.385 mm, width of the
anode resonators of 0.486 mm, anode voltage of
13.9 kV, dc magnetic field strength of 0.5875 T,
operating frequency of 38.11 GHz, and the n/2 op-
erating mode. In Fig. 5, two points (I and 2),
which are obtained as direct solution of the set of
equations (27)-(31), have also been indicated.
These points fit to the S,(C, )-curves fairly good

what justifies the approach which has been based
on the application of oscillatory characteristics for

S|

0.002 -

0.001

Fig. 5. Oscillatory characteristic (solid curves). Points 1
and 2 indicate the calculated results obtained from the
complete mathematical model. Point 3 indicates the result
without taking the principal harmonic into account. The

dashed line is given by the equation S, =l/Q,, for
Q, =180. The intersection points of this line with the

oscillatory characteristic define the amplitude values of
steady-state oscillations
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the study of the steady-state regimes. In this fig-
ure, the result of the computer simulation has been
indicated by point 3 for the case that the principal
harmonic is not taken into account. A notable dif-
ference of this point location with respect to points
1 and 2 can be observed.

When the oscillatory characteristic .S, (C,,) is

known, stationary values of the field amplitude
can be found as intersection points of the S,(C, )-

curve with the horizontal line with ordinate equal
to 1/Q,, as one can see in Fig. 5. It is found that

the function S,(C,) is multi-valued, and due to

that there are several stationary states with differ-
ent amplitude values for the same set of magne-
tron parameters. Thus, the magnetron is a multi-
stable system. Multi-stable properties of a magne-
tron are well-known from the experiments [14],
they could, however, not be explained till now in a
reasonable way. Our simulation results indicate
that such states may be related to the natural os-
cillations of the electron cloud. The peculiarity of
the SHM consists in the fact that the rf-field is lo-
calized near anode and slightly affects the electron
cloud oscillations near cathode, and, therefore,
different stable states may be related to different
modes of electron cloud oscillations. Figs. 6 and 7
show electron distributions for the above-
mentioned stationary states, which correspond to

Fig. 6. Space charge distribution for point 1 in Fig. 5

points | and 2 in Fig. 5, respectively. It is obvi-
ously seen that although the rf-field distribution is
the same for both cases, the electron distributions
are essentially different. For example, it is possible
to recognize four large scale characteristic periods
in the azimuth direction in Fig. 6, whereas there

are five such periods in Fig. 7. Simultaneously
there is some spatial modulation which is related
to the synchronous harmonic of the rf-field, which
in this case has 12 periods. It is also obviously seen

Fig. 7. Space charge distribution Sfor point 2 in Fig. 5

from Figs. 6 and 7, that the interaction of cloud
oscillations with different spatial periods leads to
the formation of electron distributions, which do
not show a periodical structure in an azimuth di-
rection. Due to that, the SHM modelling requires
the consideration of the whole interaction space
rather than of an angle sector related with the rf-
field period.

IX. Conclusions

In this paper, a self-consistent mathematical
model of spatial-harmonic magnetron with secon-
dary-emission cathode has been proposed. The
model takes into account the space charge effects,
secondary-emission, and nonlinear electron-wave
interaction. It can be used for a detailed study of
magnetron operation. It has been found that in
order to describe adequately the operation of these
magnetrons, the whole interaction space should be
considered and the principal spatial harmonic
should be taken into account together with the
synchronous one. Multi-stable states of the SHM
have been detected and their strong influence on
the magnetron dynamics has been demonstrated.

Appendix

The mode norm N, is defined by the following
expression:

N,=¢ j E,FE.G)dv .
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It is written with respect to variables (r,9,f), used
in Egs. (6), (7). The volume V represents the space
which is occupied by rf field. It is convenient to
represent this volume as a sum of two parts
V =V,+V,, where ¥, is a volume bounded by
r=r. and r=r,, and ¥, represents the volume

inside the anode resonators. Thus, the mode norm
can be written as:

N, =t [ E,(F)E; () dv +
Vl
v [ E,()E, () dV =Ny + N,
V2

Let us derive the expressions for these integrals
separately. Within the volume ¥}, the rf-field spa-

tial distribution is given by Egs. (4), (5). By using
these expressions, one obtains:

Ny =eojdzzfdcprj (5,0, @+ - O frrr=

o257
s Y

el
»  RR-RY

ed : Yy Y
e, 12 M s siny® 1R,,+R,iY :
nd f YRZ_R{I

W==°p

As far as the width of the anode slots is essentially
smaller than the anode radius, each of the resona-
tors can be treated as a rectangular waveguide
with shortened end. This waveguide has a length /
and a cross-section (Ld). The rf-field distribution
within the waveguide shows a single component
E, , which is given by

E, =ﬂsin(k(l—x))
d sin k/

where x is the coordinate along the waveguide
with the origin at the anode surface. When writing
this expression, the phase shift between the resona-
tors is neglected since it has no influence on the
norm value. The anode resonators are assumed to
be equal, and thus their contributions to the mode
norm are equal. The total contribution to the
mode norm caused by the anode resonators is

2 !
s i sin? (k(/ - x)) dx =

N,, =Mg,L
dsin® kl %

Sy

sgiaia O p) —sin 2kl
% kd sin> kl( )

The values of N, and N,, have the same order

of magnitude. For example, for the set of parame-
ters used here for simulations, we have
N,/ N,, = 2/3. Therefore, no one of these values

can be neglected.
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MaremaTHyeckasi MOJ€/Ib MATHETPOHA HA
NPOCTPAHCTBEHHOH rApMOHHUKE CO
BTOPHYHO-3MHCCHOHHBIM KAaTOAOM

K. Illynemann, I. M. Baspus, C. B. Cochnukuii

[Tpennoxena camocoriacoBaHHas MaTeMaTH-
yeckas MOJeJlb MarHeTpoHa C BTOPHUYHO-
IMHCCHOHHBIM KaTOAOM, paboTaroiero Ha npo-
CTPaHCTBEHHOW rapmoHuke. MoJaenb npeaHa3Ha-
YeHa JUls MCCIIeJOBAHUS KaK MepexXOAHbIX, TaK U
CTallMOHAPHBIX MpoueccoB. OnucaHbl XapakTep-
Hble OCOOEHHOCTH MOZENMPOBaHHs 3hheKToB
MPOCTPAHCTBEHHOTO 3aps/a, BTOPHYHOM IMHCCHH,
HEJIMHEMHOTO  B3aUMOJEHCTBHS JIEKTPOHOB C
BoJiHOM. [lpencraBiieHbl mpuMepbl pe3yabTAaTOB
MOJENUPOBAHKS, WUTIOCTPUPYIOLIHE OTIHUUS pa-
OOTbl MarHeTPOHOB Ha MPOCTPAHCTBEHHOI rap-

MOHHKE I10 CPAaBHEHHIO C KJIACCHYECKMMH MarHe-
TpoHaMH. OMHUCaHbl MYJIbTHCTAOWIIbHBIE COCTOS-
HHSI MAaHETPOHA M MPEUIOKEH MEXAHHU3M HMX 00-
pa3oBaHMUs.

MaremaTH4Ha MOJe/Ib MArHETPOHA HA
NPOCTOPOBiii rapMOHiLi 3 BTOPUHHO-eMICIHHUM
KaToJ0M

K. Illynemann, 1. M. Baspis, C. B. Cocaunpbkuii

3anponoHOBAaHO CaMOY3TOKEHY MaTeMaTHu-
Hy MOJieJlb MarHeTpoHa 3 BTOPHUHHO-eMICiliHUM
KaToAOM, NpalOYoro Ha MPOCTOPOBiH rap-
MoHili. Mojenb npu3HayeHa i JOCHiHKEHHs SK
nepexifiHuX, Tak i crauioHapHux npouecis. Onu-
CaHO XapakKTepHi OCOOIMBOCTI MOIETIOBAHHS
e(heKTiB MPOCTOPOBOrO 3apsiy, BTOPUHHOI eMicii,
HEJIiHiMHOT B3aeMOMil elekTpoHiB 3 xBuieo. Ha-
JIaHO 3pa3KM PEe3yJIbTATIB MOMIETIOBAHHSA, SKi
LTIOCTPYIOTh 0COOIHBOCTI pOGOTH MATHETPOHIB Ha
NPOCTOPOBIN rapMOHiLli MOPIBHAHO 3i 3BHYANHU-
MHU. OnucaHo MyJIbTHCTAOUIbHI CTAHN MarHETPOHA
Ta 3aNPONOHOBAHO MEXaHI3M 1X YTBOPEHHS.
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