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The space charge depression coefficients technique is generalized for the case when a ribbon-like
electron beam with an arbitrary distribution of the beam current is propagating at an angle with respect to
a metallic surface. Analytical expressions for the depression coefficients are obtained and analyzed. Both
local and non-local effect of space charge and their comparative contribution to the quasi-static field are

considered.
1. Introduction

Space charge depression coefficients are widely
used to account for influence of the geometry of
the beam and the wave supporting system on the
space charge field in electron devices [1-4]. Intro-
duction of such coefficients allows one to describe
conveniently the screening effect by conducting
surfaces on the space charge field and to simplify
the beam particle motion equation and its solu-
tion. In spite of a high capacity of modern com-
puters, the computing of space charge field still
remains a time-consuming procedure, and the
problem of deriving the simplified expressions for
the space charge field is still on the agenda. Be-
sides. the depression coefficients technique gives
one a simple approach to estimate analytically the
extent of space charge influence on electron-wave
interaction in a particular tube.

However, up to now a technique has been de-
veloped for computing and application of such
coefficients only in the case of an electron beam
parallel to the principal plane of the electrody-
namical system (for example, a ribbon-like beam
skimming over a grating or a cylindrical beam in a
cylindrical waveguide) [1-4]. The aim of this work
is to generalize the space charge depression coeffi-
cients technique for the case when an electron
beam is propagating at an angle to a metallic sur-
face. When solving this problem, we did not spec-
ify the beam modulation mechanism; it can be
arbitrary to some extent. The final expressions for
the space charge field can be used when solving a
self-consistent problem of the beam interacting
with the field, provided the modulation mecha-
nism and its parameters are specified. The results
obtained can be used for space charge effects de-
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scription in such electron devices as the clinotron,
M-type TWT, electron collectors, and others.

The paper is organized as follows: Section II
gives the formulation of the problem; in Sec-
tion III we derive an expression for space charge
field and introduce the depression coefficients for
an inclined beam; Section IV contains conclusions,
and in Appendix we derive an easy-to-handle ex-
pression for the Green’s function.

2. Problem Formulation

The geometry of the problem is shown in
Fig. I. An inclined electron beam with the thick-
ness « is propagating with the velocity », between
two metallic planes and is scattered by one of
them. The tilt angle is o, and D is the distance
between the planes. Fig.1 presents the coordinate
systems used: the axis Z,y are Cartesian coordi-

nate axis referring to the geometry of the planes,

T
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Fig. 1. Schematics of the problem geometry with the co-
ordinate systems used. The following configuration pa-
rameters are used: a is the beam thickness; o is the tilt
angle; A=alsino. is the area the beam covers on the
metallic surface: D is the distance between the metallic
planes
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whereas y and Y are coordinates as correspond to
the beam geometry. We introduce the latter as
follows:
y+

Z cota, az0,m

Y =-Z/sina.

Thus, we consider the two-dimensional for-
mulation of the problem. Let us note that the
lower plane can be a slow-wave supporting sys-
tem, that is a grating. However, from the point of
view of space charge field calculation the grating
can be replaced by a plane surface when its period
is less then the period of the synchronous wave [1].
We assume the beam modulated, the current and
the charge densities, denoted as j(F.l) and p(7.r).

respectively, being periodic functions of time:

= - ) inf3 ¥
‘/(r.l)=z./},(l‘)e el
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Here B, = o/v, is the electron wave number with

 being the modulation frequency, 7 denotes the
spatial coordinates. The expression (1) means we
consider the constant component of the beam
charge density p, compensated by positive ions,

which usually occurs in the beam. By using the
charge conservation law and assuming uni-
directional motion of the beam particles along the
Y-axis (due to the infinite longitudinal static mag-
netic field, for example) (see Fig. 1). the harmonic
amplitudes can be expressed as [4]

e 1()[11()’ )G()) >

Toiites
Py =—2i,(Y)o(y) .
Vo
beam

where [, is  the total current,

| 2n
e J‘)m(q\,i-(ﬂ)dq)()
2n

is the n-th harmonic of the
0

beam current normalized on /;;
turbed electron phase. and 6 is the electron phase
shift due to the both microwave and Coulomb
field action. By o(y) we denote the y-projection
of the beam current density transversal distribu-
tion. Such a factorization is possible because of
uniformity of the wave supporting system along
the y-axis. In general, a component of the space

@, is the unper-

charge field acting on the beam particles in a beam
modulated according to (1) can be expressed as
follows [4]:

J'zp” (yz’Y,)e—‘iu(nlwtin[ic)"+iuBl, i %

oon=l

xG(y,).Y,Y)dy'dY’,

where ¥V is the volume occupied by the beam, and
G(y.)",Y.Y") is the Green's function for the elec-

tric field equation. The aim of this paper is to de-
rive an expression for the space charge field acting
on the beam particles, which would be easy for
using in theoretical studies and time saving in
computer simulations.

3. Space Charge Field

For more clarity, let us consider the beam
modulated by an arbitrary n-th time harmonic
only. As the tilt angle is usually small. further we
assume coso.=1. In this terms

Iy 7
E,y =-sino— """"’Idy ()

Yo
Al2 3 Fivs
J‘d']f,o'()"k’”ﬁ"('l +Y )G()'.Y.,_j". Y’). (2)
-A/2

where A=a/sino is the area on the lower plane.
covered by the beam (see Fig. 1), and Y; means the
Y-coordinate of the injection plane; further we

assume Y, =-D/sinoc. To evaluate (2), let us

make use of the Taylor expansion of the current
harmonic amplitude i,(Y”) in the vicinity of the

observation point Y [2]:

m=l I

Now we may rewrite the expression (2) for the
space charge field as below:

E,y =—sino— Ty -inex o
"0
Al2
x 1,,(Y)J.dY' Jdl 's( ™G (Y, Y )+
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The first term in the braces is responsible for local
effect of space charge, whereas the second term
describes non-local phenomena. As i,(Y’) varies
slowly as compared to the Green's function, the
main contribution to (3) is due to the local action,
so let us first neglect non-local phenomena and
consider only the first term in (3).

3.1. Local Phenomena

The Green’s function (Al), derived in Appen-
dix, can be rewritten as a function of y and Y as

follows: G =G* -G . Here

sinh - [(1 - )+ (Y - Y')]

G =-
8¢, Dsinh T sinh T
2D 2D
where x:=(y—-y)+ (¥ -Y)+i(Y £Y')sina,

xE=(y-)y)+(Y =-Y)-i(Y£Y')sina, g, is the
permittivity of a free space.

In order to simplify the expression (3) for the
space charge field let us consider the integral

T
A2 e cinhe = h-aefE—%)]
= oyt 22 ,
-Al2 sinh lenh Ex_+
2D 2D
4)

as distinct from

,sinh i [ = Y (T =1

[:i(”Bv )= J‘d’l_l()inﬁ”.
== sinh —x——smh nx+
2D 2D
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Now we note that I- is the Fourier spectrum

of the function —8¢,D-G*(3.Y.)".Y’), whereas
I i —ithe

—8e,D-G*().Y.)".Y’)-6()") . which is the convo-
lution of the multipliers spectra. So, we can write

17 = Floty")- (860D - 6* )= (<ol )]+ 12).

spectrum of the product

where

x)|= J‘_/'(.\‘}""n""' doz and
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Denoting

Flo()l=

integral as follows:

Y(np, ) we can express the examined

13=L dk¥ (B, — k)% (k)
2n

—o0

Thus, the integral (4) describing the Coulomb
field in a beam with any transversal current distri-
bution can be expressed through the Coulomb
force in the infinitely broad beam with a homoge-
neous distribution of harmonics amplitudes
(equations (5), (6)).

Now let us brace ourselves to evaluating 7
This can be done using the residue technique.
Considering 3* a complex number, one notes that

at )’ —>teo and at y —+iee the function
e"B""/G(y,y’,Y,Y') vanishes as exponentially; so

Jordan's lemma's conditions are met and the inte-
grals can be expressed through the residues of the
integrand in the upper half-plane of the complex

plane. Let us first examine /] . In the upper half-

plane the integrand has only first-order poles at
points

=y +(Y=Y)—i(Y+Y")sino+2Dni, n>0
Er =y+ (Y =Y)+i(Y+Y")sino+2Dmi, m>0.

Taking into account that for any s>r =0 the ra-
tio of residues (noted as Res) of the intergrand in

(5) Re.y/Res is not larger than e "L and as-
ES i

suming B,D >>1. we may approximate /. as
B Oy
i, () )X

1:, = 25{]{@3‘ o R(’SJ: —4iDe

Uy iy

3 sino(Y+Y") ~2ma D -na_ sine(Y+Y') | —ina )Y’
x{e'ﬁ" hesehSial }’ A%

Similarly. one obtains

12 =—4iDe™P:+1) 5

xl:e—nB(. sin oY =) i ~2n|3l,l)€ P, sinofY-y"| ]L’ﬂ”Ii")

(considering separately the cases Y >Y’ and
Y <Y’). Also, allowing B,e R and considering
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separately the cases B, >0 and B, <0. it is easy to

generalize the expression for I* as follows:

e . . (y+})
1Z =-4iDsgn(B,) ™ X
X|:e‘”i'3m5”‘“‘“&)"' +e—-ni[L[(ZD-sina!)'t)"!)]e_iy,ﬁ‘,)". )

This expression can be made more precise (to a
desirable extent) by taking into account more
poles of the infinite set.

With the expression (7) the integral I

a

be-

comes

It o s Idk sen(k W (nB, —k)x
n —c0
X(""{

Integrating the latter expression by Y’ and taking
into account (4), we can expand the space charge
field (3) as follows, neglecting the terms describing
non-local effects of the field:
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is the space charge field depression coefficient for

an arbitrary beam current density distribution.
When applying the depression coefficients

technique to describing collective electron interac-

kY, il/\'|ye —ik Y’ |}) —n|k]sin o]y +1| o —n|k|2D-sinafy£y| )]

tion regimes of electron devices with an inclined
beam, it is useful to introduce the averaged over a
cross-section Y=const depression coefficient, tak-
ing into account that the energy delivered (or ab-
sorbed) by the beam is the sum of the energies de-
livered (absorbed) by the beam layers:

anf3, sin o
R ()=~ LB

o0

k sin .x
X jd/' Y(np, - k)x
kst ot (B, —k)
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x
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where x = (k —B, )Ja/2sinc . Let us note here that,

substituting in (8), (9) the spectrum of any trans-
versal current density distribution, we will be able
to compute the space charge field in that case. For
example, for a homogeneous distribution of the
current density

118 7 eEAl2A12]

oy )E{O’ng ar2.ar2;

where S is the beam cross-section, which is as-
sumed to be equal unity. It is easy to show that

il -{} 2
emﬁ,.A/Z = np.Al2

inB,

The depression coefficients (8). (9) become
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The plasma frequency reduction factor Rio (10)
is shown in Fig. 2 as a function of y
andz=-Ysino. In general, the integrals in (10)
cannot be evaluated in a closed form. However,
analytical expressions can be derived for two im-
portant cases: P,a>>1 is a broad beam

andB,a — 0 is a narrow beam. In the case of a
broad beam we note that the integrand in (10)

-4/2sino.

2

.

ARsinae 0

Fig. 2. The plasma frequency reduction factor Ry as a
function of y and =z ==Y sina, Bea=>5

k (sin X
k*sin® o+ (nB, k) L 5

constituting a sharp peak in the vicinity of the point
k=np, . the other terms being slow functions of 4.

Using the Taylor expansion of the slow terms in the
vicinity of & =np, and taking into account only the

first term of the expansion, we can approximate (10)
as follows:

Rsﬂ ()‘~ Y)= [(1 - ()“B«bin(x Y )+
+2¢""BD sinh(n{i(, sino )’)]. e i

includes the function

where
K, (a.y)=1=¢""P"2 cosh(yn, sin o) (12)

is a function describing the effect of the finite beam
thickness on the space charge depression coefficient.
It is easy to see that for the depression coefficient
averaged over ) instead of (12) we will have

—an, 12
- Qg8 eron By
K, (a)=1- sinh B,

anf, 2 ()

In the case of a narrow beam, in the integral
(10) we can assume sinx/x =1. This leads to the
following expression for the depression coefficient.

RnZO Sil=e
xsinh(nB, sin oY )e P (14)

2nP, sinay +2e =2uB,.D x

Fig. 3. 4 show the averaged plasma frequency
reduction factors R, vs. the z-coordinate for dif-

ferent values of the beam thickness for the cases of
a thick and a thin beams, respectively, as com-
puted according to (10) (solid lines) and (11)-(14)

Ry
1.0 1

0.6 A

0 0.2 0.4 0.6 0.8 zID
Fig. 3. The averaged plasma frequency reduction factor
Ry vs. the z-coordinate for different values of the nor-

malized beam thickness ay = aP, for a thick beam

64 06 G685  #p

Fig. 4. The averaged plasma frequency reduction factors
Ry vs. the z-coordinate for different values of the nor-

malised beam thickness a, = a3, for a thin beam

(dotted lines). It is evident from Fig. 3 that the
analytical expression (11) serves a good approxi-
mation of (10) for B,a =2, whereas the formula
(14) works for B,a<1. It can be seen from (12),
(13) that the effect of the beam edges on the space
charge field is determined, as it should be, by the
phase shift B,a, not by the beam thickness itself,

and for B,a 210 can be neglected.
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As one could expect, the reduction coefficient
diminishes essentially at distance from the metallic

surfaces of the order of B;'. It follows from here

that one may neglect mutual influence of the
planes if the distance between the metallic planes is
larger than this value.

3.2. Non-local Phenomena

So far we have considered the terms in (3) re-
sponsible for the local effect of the space charge
field. To allow for non-local effects, we should
account for the second term in (3). Instead of (12)
we will have the following expansion of the ex-
pression (3) for the space charge field:

o)
= .(L)I,IH‘, e~i((m—nﬁv_\ —nf.Y) >
l'elnﬁv
. o1 d ()
x ',,(Y)R,fo()"-)’)+Z;—I;-d—}—irRﬁm(J’.Y)

m=1

(15)
where ®, is the plasma frequency:
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Fig. 5. The coefficient k” as functions of z=-Ysino -

Jor different values of the normalized beam thickness
a =B,a
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Gyt e B 3
4-10 /, 
A/I/// a;=2 |
all e e
210371 |
a=1 -\i
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Fig. 6. The coefficient k,z as functions of z=-Ysina
Sfor different values of the normalized beam thickness
a =B,a
and

0
Vit (/(,Y): J.d Y'e’iq"lﬁf k¥ (Y' ¥
Y;

% (eull\',sin a(Y+Y’) = e—nll\'Isin u|)'—)"| )

The coefficients R,, and R,, averaged over y are

shown in Fig. 5, 6 as functions of z=-Ysina for
different values of the normalized beam thickness
a, =B,a. With a1 increasing, the coefficients for

non-local effect turn to their limit values. These
values rapidly decrease with m growth. However,
even the maximum value of Rii is essentially
smaller than that of Rio. Because of this fact, the
non-local phenomena are not crucial for the space
charge effects description and in most cases it is
sufficient to account only for the first term in the
sum over m in (15) (see also [3]).

4. Conclusions

In this paper, we proposed an approach to
computing the space charge field in a modulated
beam inclined to the principal plane of the wave
supporting system, that enabled us to obtain the
simplified analytical expressions for the space
charge field by using space charge depression coef-
ficients. The approach proposed gives an elegant
and flexible method for accounting for effect of
the geometry of the metallic surfaces and the beam
on the space charge field. The derived expressions
reduce the problem of calculating space charge
field for a given geometry to computing the Cou-
lomb force in a beam in free space with weight
coefficients depending on spatial coordinates,
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which we were able to evaluate analytically. We
analyzed both local and non-local action of space
charge and their comparative contribution to the
quasi-static field. The results obtained for a rib-
bon-like beam can be generalized for an arbitrary
transversal distribution of the beam current den-
sity.
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Appendix.
1. The Green's Function for a Narrow Rectangular
Resonator

In order to derive the Green's function for the
geometry shown in Fig. |, we will issue from the
calculation of the Green's function for a narrow
rectangular resonator. This will allow us to obtain
conditions at which the rectangular cavity can be
modelled by two infinite metallic planes. To this
end we regard the field created by a point unitary
charge whose coordinates as well as those of the
point of observation we consider components of
complex numbers. Let z=x+iy be the point obser-
vation and {=&+in the point where the charge is
located, (x,)), (&.,n) their Cartesian coordinates,
respectively. Let x,&e[0.D], yme[0,L], where
L>>D.

The force function of the potential field can be
expressed through Weierstrass's functions as fol-
lows [6]:

o(z+Q)o(z-F)
o(z+8)o(z=¢)

Hes::/ue] Bk =D
T

where dash means conjunction and 0 is Jakoby's
function [6] (see below). The potential becomes

U(z)=2Reln o(z) =const,

U(z)=2Rex

t’(( 0 L - ) 1((-"+?;)/T)6|((2—é)/‘€) 2

xIn| e2® S Vel AL\ A S 5
6((=+0)/1)8((-0)/7)

. 0,z +2)/1)0,(z- i)”
—2R({ T 81§n+ln (( +§)/‘C)9((- C)/T

Keeping in mind that the Green's function is ex-
pressed through the derivative dU/dy, we can

omit the terms constant with respect to ) and write

0/(z+0)/7)6,(=- L)1)
0,(z+6)/1)8,(=-0)/7)

U()ZRlln

Now let us take advantage of the assumption that
L>>D:

0,(z)=i i(—l)" (e'"L/D)(""”ZF o 2Kz

j
n:L _‘)nl,
=2¢ *Dsinmz—2e 4P sin3nz.

Here we neglected the terms at least by the factor
e*™!D less then those remained. With this

U(z)=2Rex
sin*(+T)sin " (:-7)
il T (1 5 O(e “2xLID ))
sin* (z+¢)sin :’ (z-¢)
T

and, after some transformations, one obtains

sin? (x+§)+sinh2 T (y-n)
U(z)=In| - = 2D 2

it = h‘ =1

sin 2D( )+sm (1 1)

~ L (ven) - (2L-y-n)
X 1+O(e'2"“’))+ e " LQe?®

Differentiating the latter expression we come out
with the final expression for the Green's function:

L au_
dme, dy

G=

T b1
= sinh— Sin—xsin—E&x
4ng,D D() = D &

B
[ (el +smlf () —n)] X

[smz c-Essin (- )T

T T
[1+0 ZnLlD +0 0_2/)( vn) o 6-5(21--.1'41)

(A1)
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The last line of this expression shows the estimates
of the terms neglected. In particular, it follows
from (Al) that it is possible for a narrow rectan-
gular resonator to be modelled by two infinite

planes when ¢™/? >>1_ and the charge particles
being at a distance more than D from the resona-
tor's sidewalls. These conditions are not severe
from the point of view of practical configurations.
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Koa¢duumeHTs! peyKuns nia3sMeHHOH 4acToThbl
MPU PaCcCesiHUHU JIEKTPOHHOTO MyyYKa
HA METAJJINYECKNX MOBEPXHOCTAX

C. B. Maunxoc, K. lllynemans, /I. M. BaBpus

Metoa k03 (PULHEHTOB AECNPECCHHU MPOCTPaAH-
CTBEHHOTO 3apsjia 0000uleH Ha cayuai pacnpo-
CTPAHEHHSI JIEHTOYHOTI'O JJIEKTPOHHOIO My4Ka ¢
MPOM3BOJIbHBIM PACMpe/e/ieHHeM TOKa Moj yrjiom
K MeTajuinieckoii nosepxHoctu. Ilosyuensbr n npo-
AHAJIM3MPOBAHbI BbIPAKEHUs Ul KOIPPHLHMEHTOB
genpeccuu. PaccMOTpeHbl JIOKaIbHOE W HEJIOKallb-
HO€ [elCTBHE MPOCTPAHCTBEHHOIO 3apsaga M MX
CPaBHHUTENbHbIN BKJIAJ B KBA3MCTATUUECKOE MOJIE.

KoediuienTn peaykuii nia3smMoBoi 4acToTH 1s
PO3CiIOBAHHSI €JIEKTPOHHOTO MYYKa HA METaJeBHX
NOBEPXHSIX

C. B. Manxoc, K. lllynemans, /I. M. Baspis

Mertoa koedilieHTIB aenpecii NpocTOPOBOro
3apsay y3arajbHeHO Ha BHUMAZOK PO3MOBCIOKEH-
HS CTPIYKOBOIO €JIEKTPOHHOTO MyuKa 3 JAOBiIbHUM
PO3MOAIIEHHSIM CTPYMY il KYTOM [0 METAJIeBOI
noBepxHi. OTpUMAHO Ta NMPOAHAiI30BaAHO BHUpa3H
ans koediuieHTiB menpecil. Po3rnsHyTo nokanbHy
Ta HEJOKaJbHY i MPOCTOPOBOIO 3apsiay Ta ix
MOPIBHSJILHUIT BHECOK Y KBA3ICTATHYHE MOJIE.
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