TERAHERTZ OSCILLATIONS IN InN GUNN DIODES WITH AN ACTIVE REGION LENGTH OF 1 μm AND WITH A GRADED GaInN LAYER

DOI: https://doi.org/10.15407/rpra27.04.289

I. P. Storozhenko, S. I. Sanin

Abstract


Subject and Purpose. The InN Gunn diode is known as the device capable of generating powerful oscillations at frequencies above 300 GHz. A possible way for increasing both the microwave power and the cutoff frequency of the Gunn diode is to employ gradedgap semiconductors. The subject of this research is the process for generating electrical oscillations in InN and graded-gap GaInN Gunn diodes that involve resistive contacts at the cathode and the anode, and possess a 1-μm long active region. The research is aimed at suggesting an optimized structure for the graded-gap GaInN diode to obtain a maximum microwave power and maximum frequency of the oscillations, while consuming the lowest possible amount of DC power.

Methods and Methodology. А hydrodynamic simulation has been performed of transport of electrons in graded-gap semiconductors, and an integro-differential equation analyzed concerning voltage drop across elements of the related RLC circuit.

Results. The power spectra of oscillations have been analyzed for a variety of parameters of both the Gunn diode and the RLC circuit. The frequency dependences of the oscillatory power, characteristic of different electron concentrations, provide evidence for the possibility of obtaining considerable microwave powers at frequencies above 300 GHz through the use of graded-gap GaInN diodes.

Conclusion. The results that have been obtained clearly confirm the expected practicality of using a graded GaInN layer in the InN diode for increasing the power of microwave oscillations, reducing the necessary level of the DC power, and restraining the dependence of the output characteristics on the electron density. The highest power of oscillations has been demonstrated by the InN diode with a 0.1 μm long graded-gap layer of GaInN. Meanwhile, the oscillation frequency generated in that diode is somewhat lower than in the InN diode. A compromise between the values of generated power and the oscillation frequency has been reached in the diode with a graded-gap GaInN layer of 0.9 μm in length. In addition, the latter structure requires the lowest level of DC power for effectuating microwave generation at the higher feasible frequencies.

Keywords: Gunn diode, indium nitride, gallium-indium nitride, terahertz range, graded-gap semiconductor, oscillator, oscillatory power, output power, cutoff frequency, intervalley transfer of electrons

Manuscript submitted 05.07.2022

Radio phys. radio astron. 2022, 27(4):289-298

REFERENCES

1. Hesler, J., Prasankumar, R., Tignon, J., 2019. Advances in terahertz solid-state physics and devices. J. Appl. Phys., 126(11), pp. 110401. DOI:https://doi.org/10.1063/1.5122975

2. Trew, R.J., 2005. High-frequency solid-state electronic devices. IEEE Trans. Electron Devices, 52(5), pp. 638—649. DOI:https://doi.org/10.1109/TED.2005.845862

3. Storozhenko, I., 2020. Gunn diodes based on graded-gap GaInPAs. J. Nano- Electron. Phys., 12(1), pp. 010151—010159. DOI: https://doi.org/10.21272/jnep.12(1).01015

4. Arkusha, Yu.V., Prokhorov, E.D., Storozhenko, I.P., 2000. InxGa1–xAs/GaAs GaAs heterocathode in a GaAs millimeter-wave range Gunn diode. Radiotekhnika i Elektronika, 45(4), pp. 508—510.

5. Sharma, S.K., Kim, D.Y., 2015. Design, simulation, fabrication, packaging and testing of an AlGaAs/GaAs Gunn diode at 94 GHz. J. Korean Phys. Soc., 67(4), pp. 619—624. DOI: 10.3938/jkps.67.619. DOI:https://doi.org/10.3938/jkps.67.619

6. Förster, A., Lepsa, M.I., Freundt, D., Stock, J., Montanari, S., 2007. Hot electron injector Gunn diode for advanced driver assistance systems. Appl. Phys. A., 87, pp. 545—558. DOI:https://doi.org/10.1007/s00339-007-3872-5

7. Eisele, H., 2020. Third-harmonic power extraction from InP Gunn devices up to 455 GHz. IEEE Microwave Wireless Compon. Lett., 19(6), pp. 416—418. DOI:https://doi.org/10.1109/LMWC.2009.2020044

8. Eisele, H., Kamoua, R., 2004. Submillimeter-wave InP Gunn devices. IEEE Trans. Microw. Theory Tech., 52(10), pp. 2371—2378. DOI:https://doi.org/10.1109/TMTT.2004.835974

9. Garcia, S., Perez, S., Iniguez-de-la-Torre, I., Mateos, J., Gonzalez, T., 2014. Comparative Monte Carlo analysis of InP- and GaN-based Gunn diodes. J. Appl. Phys., 115(4), pp. 44510. DOI:https://doi.org/10.1063/1.4863399

10. Storozhenko, I., Sanin, S., 2022. Advanced micron sized Gunn diode based on graded-gap GaPAs – GaInAs. J. Nano- Electron. Phys., 14(1), pp. 01027—01032. DOI:https://doi.org/10.21272/jnep.14(1).01027

11. Ata Khalid, Dunn, G.M., Macpherson, R.F., Thoms, S., Macintyre, D., Li, C., Steer, M.J., Papageorgiou, V., Thayne, I.G., Kuball, M., Oxley, C.H., Montes Bajo, M., Stephen, A., Glover, J., and Cumming, D.R.S., 2014. Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode. J. Appl. Phys., 115(11), pp. 114502. DOI:https://doi.org/10.1063/1.4868705

12. Botsula, O.V., Prykhodko, К.H., 2019. Generation of electromagnetic oscillations of submillimeter range by GazIn1–zAs diodes using impact ionization. J. Nano- Electron. Phys., 11(2), pp. 020091—020095. DOI:https://doi.org/10.21272/jnep.11(2).02009

13. Pereza, S., Gonzalez, T., Pardo, D., Mateos, J., 2008. Terahertz Gunn-like oscillations in InGaAs/InAlAs planar diodes. J. Appl. Phys., 103(9), pp. 094516. DOI:https://doi.org/10.1063/1.2917246

14. Dobrinsky, A., Simin, G., Gaska, R., Shur, M., 2013. III-Nitride Materials and Devices for Power Electronics. ECS Trans., 58(4), pp. 129—143. DOI:https://doi.org/10.1149/05804.0129ecst

15. Yue, Hao, Lin-An, Yang, Jin-Cheng, Zhang, 2008. GaN-based Semiconductor Devices for Terahertz Technology. Int. J. Terahertz Sci. Technol., 1(2), pp. 51—64. DOI: 10.11906/TST.051-064.2008.06.07

16. Storozhenko, I.P., Arkusha, Yu.V., 2012. Prospects for using Gunn diodes based on GaN, AlN and InN. Telecommunications and Radio Engineering, 71(8), pp. 717—727. DOI:https://doi.org/10.1615/TelecomRadEng.v71.i8.40

17. Farahmand, M., Garetto, C., Bellotti, E., Brennan, K.F., Goano, M., Ghillino, E., Ghione, G., Albrecht, J.D., Ruden, P.P., 2001. Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Trans. Electron Devices, 48(3), pp. 535—542. DOI:https://doi.org/10.1109/16.906448

18. Aloise, G., Vitanov, S., Palankovski, V., 2011. Performance study of nitride-based Gunn diodes. In: 2011 NSTI Nanotechnology Conf. and Expo (NSTI-Nanotech): Proc. Boston, Massachusetts, USA, 13—16 Jun. 2011. Vol. 2, pp. 599—602.

19. Storozhenko, I.P., 2014. Resonance frequencies of Gunn diodes based on nitride graded-gap semiconductors. Telecommunications and Radio Engineering, 73(13), pp. 1201—1207. DOI:https://doi.org/10.1615/TelecomRadEng.v73.i13.60

20. Islama, M.O., Hassanb, Md.G., Islama, Md.R., Uddina, Md.A., Mahmooda, Z.H., 2011. Theoretical estimation of Gunn oscillation in InxGa1−xN. AIP Conf. Proc., 1399(1), pp. 167. DOI:https://doi.org/10.1063/1.3666309

21. Storozhenko, I.P., Yaroshenko, A.N., Arkusha, Yu.V., 2014. InBN and GaBN graded-gap Gunn diodes. Telecommunications and Radio Engineering, 73(16), pp. 1461—1470. DOI:https://doi.org/10.1615/TelecomRadEng.v73.i16.60

22. Storozhenko, I.P., Yaroshenko, A.N., Kaydash, M.V., 2012. Graded-gap AlInN Gunn diodes. Semicond. Phys. Quantum Electron. Optoelectron., 15(2), pp. 176—180. DOI: https://doi.org/10.15407/spqeo15.02

23. Storozhenko, I., Kaydash, M., 2020. Theoretical Study of Current Oscillations in Gunn Diodes Based on Graded III-nitrides Operating in Submillimeter Range: Frequency and Power. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 3, pp. 917—920. DOI: https://doi.org/10.1109/UkrMW49653.2020.9252660

24. Yang, L., Long, Sh., Guo, X., Yue, Hao, 2012. A comparative investigation on sub-micrometer InN and GaN Gunn diodes working at terahertz frequency. J. Appl. Phys., 111(10), pp. 104514. DOI: https://doi.org/10.1063/1.4721667

25. Botsula, O.V., Prykhodko, K.H., 2020. Graded band InGaN-based diode for noise generation in terahertz range. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 21—25 Sept. 2020. Vol. 3, pp. 925—928. DOI: https://doi.org/10.1109/UkrMW49653.2020.9252763

26. Yilmazoglu, O., Mutamba, K., Pavlidis, D., Karaduman, T., 2008. First Observation of Bias Oscillations in GaN Gunn Diodes on GaN Substrate. IEEE Trans. Electron Devices, 55(6), pp. 1563—1567. DOI: https://doi.org/10.1109/TED.2008.921253

27. Hajo, A.S., Yilmazoglu, O., Samodi, B., Dadgar, A., Kuppers, F., Kussorow, T., 2019. A new approach to achieve Gunn effect for GaN based THz sources with high power. In: 44th Int. Conf. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Paris, France, 1—6 Sept. 2019. P. 1—2. DOI: https://doi.org/10.1109/IRMMW-THz.2019.8873720


Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)