DOI: https://doi.org/10.15407/rpra19.02.151

N. A. Baru, A. V. Koloskov, Y. M. Yampolski, A. Y. Pashinin


The data processing of the Ionosphere Alfven Resonance (IAR) signals synchronously received in Antarctica (Ukrainian Antarctic Station) and in Russia near Irkutsk has been made. The IAR parameters are calculated for several years, their diurnal and seasonal characteristics and the cases of registration of resonances in the frequency band higher than 10 Hz analyzed. The data are mapped with the ionosphere sounding results. The relation between IAR parameters and characteristics of the near-Earth plasma above the stations of observation is confirmed. The technique of the F2 layer critical frequency evaluation by the value of the average frequency spacing between neighboring modes of the Alfven resonance is developed within a simple phenomenological model of IAR. The technique is verified by the data of both stations and allows evaluating critical frequencies above any point on the Earth surface, where monitoring of IAR is performed.

Key words: ionospheric Alfven resonator, critical frequency

Manuscript submitted 26.03.2014

Radio phys. radio astron. 2014, 19(2): 151-159


1. POLYAKOV, S. V. AND RAPOPORT, V. O., 1981. Ionospheric Alfven resonator. Geomagnetism and aeronomy. vol. 21, no. 5, pp. 816–822 (in Russian).

2. B ELYAEV, P. P., POLYAKOV, S. V., RAPOPORT, V. O., and TRAKHTENGERTS, V. Yu., 1989. Theory of the formation of the resonant structure of the spectrum of the atmospheric electromagnetic noise background in the range of short-period geomagnetic pulsations. Izvestiya Vuzov. Radiophysics. vol. 32, no. 7, pp. 802–810 (in Russian).

3. BELYAEV, P. P., POLYAKOV, S. V., RAPOPORT, V. O., and TRAKHTENGERTS, V. Yu., 1989. Experimental Investigation of the Resonance Structure of the Spectrum of the Atmospheric Electromagnetic Noise Background in the Range of Short-Period Geomagnetic Pulsations. Izvestiya Vuzov. Radiophysics. vol. 32, no. 6, pp. 663–672 (in Russian).

4. BOSINGER, T., HALDOUPIS, C., BELYAEV, P. P., YAKUNIN, M. N., SEMENOVA, N. V., DEMEKHOV, A. G., and ANGELOPOULOS, V., 2002. Spectral properties of the ionospheric Alfven resonatorobserved at a low-latitude station (L=1.3). J. Geophys. Res. Space Phys. vol. 107, no. A10, pp. SIA 4-1–SIA 4-9.

5. BELYAEV, P. P., BOSINGER, T., ISAEV, S. V., and KANGAS, J., 1999. First evidence at high latitudes for the ionospheric Alfven resonator. J. Geophys. Res. Space Phys. vol. 104, no. A3, pp. 4305–4317. DOI: https://doi.org/10.1029/1998JA900062

6. BARU, N. A., KOLOSKOV, A. V., and RAKHMATULIN, R. A., 2012. Multiposition observations of signals of ionospheric Alfvén resonance . Sb. Tez. Doc. The first Ukrainian EMES conference. Kharkov, Ukraine. pp. 133–135 (in Russian).

7. PARENT, A., MANN, I. R., and SHIOKAWA , K., 2006. Observingthe MLT and L-shell dependence of ground magnetic signatures of the ionospheric Alfven resonator. Int. Conf. Substorms-8. Calgary, Canada. pp. 225–230.

8. KOLOSKOV, A. V., SINITSYN, V. G., GERASIMOVA, N. N., and YAMPOLSKY, Yu. M., 2008. Near-Earth resonators of the ULF waves as indicators of space weather. Kosmichna nauka i tehnologiya. vol. 14, no. 5, pp. 49–64 (in Russian).

9. BELYAEV, P. P., POLYAKOV, S. V., ERMAKOVA, E. N., and ISAEV , S. V., 2000. Solar cycle variations in the ionospheric Alfven resonator 1985-1995. J. Atmos. Solar-Terr. Phys. vol. 62, no. 4, pp. 239–248. DOI: https://doi.org/10.1016/S1364-6826(00)00009-2

10. HAYAKAWA, M., MOLCHANOV, O. A., SCHEKOTOV, A. Yu., and FEDOROV, E., 2004. Observation of ionosphere Alfven resonance ata middle latitude station. Adv. Polar Upper Atmos. Res. no. 18, pp. 65–76.

11. SEMENOVA, N. V., YAHNIN, A. G., VASIL'EV, A. N., and AMM, O., 2008. Specific Features of Resonance Structures in Spectra of ULF Electromagnetic Noise at High Latitudes (Barentsburg Observatory). Geomagn. Aeronomy. vol. 48, no.1, pp. 36–44. DOI: https://doi.org/10.1134/S0016793208010052

12. YAHNIN, A. G., SEMENOVA, N. V., OSTAPENKO, A. A., KANGAS, J., MANNINEN, J., AND TURUNEN, T., 2003.Morphology of the spectral resonance structure of the electromagnetic background noisein the range of 0.1–4 Hz at L=5.2. ANGEO. vol. 21, no. 3, pp. 779–786.

13. BEZRODNY, V. G., BUDANOV, O. V., KOLOSKOV, A. V., and YAMPOLSKY, Yu. M., 2003. Electromagnetic environment of the Earth in the low-frequency range. Kosmichna nauka i tekhnologiya. vol. 9, no. 5/6, pp. 117–123 (in Russian).

14. RIGGOTT V. R., and RAVER, K., 1977. URSI Manual on the interpretation and processing of ionograms. Moscow: Nauka Publ. (in Russian).

15. KUZMIN, A. V. and KANAEV, A. S., 2012. Means of vertical radio sounding of the ionosphere. Heliogeophysical research. no. 2, pp. 72–82 (in Russian).

16. SHI RUN, ZHAO ZHENG-YU, and ZHANG BEI-CHEN, 2010.Study of the influence of IAR on geomagnetic signal observed on the ground. Chi. J. Geophys. vol. 53, Is. 5, pp. 693–703.

17. DEMEKHOV, A. G., BELYAEV, P. P., ISAEV, S. V., MANNINEN, J., TURUNEN, T., AND KANGAS, J., 2000. Modelling the diurnal evolution of the resonance spectral structure of the atmospheric noise background in the Pc 1 frequency range. J. Atmos. Solar-Terr. Phys. vol. 62, no. 4, pp. 257–265. DOI:

18. JAYACHANDRAN, B., KRISHNANKUTTY, T. N., and GULYAEVA, T. L., 2004. Climatology of ionospheric slab thickness. ANGEO. vol. 22, no.1, pp. 25–33. DOI:https://doi.org/10.5194/angeo-22-25-2004



ionospheric Alfven resonator; critical frequency

Full Text:


Creative Commons License

Licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) .