DOI: https://doi.org/10.15407/rpra20.04.332

M. E. Kaliberda, L. M. Lytvynenko, S. A. Pogarsky


PACS number: 41.20.Jb

The interaction problem of a semi-infinite venetian blind-type grating and finite strip grating is considered. The H-polarization case is studied. The problem solution is obtained by the operator method. The known reflection operators of the semi-infinite venetian blind-type grating and finite strip grating are used. The far field dependences are presented vs polar angle.

Key words: semi-infinite venetian blind-type grating, finite strip grating, operator method

Manuscript submitted 24.09.2015

Radio phys. radio astron. 2015, 20(4): 332-339



1. FEL'D, Y. N., 1955. On infinite systems of linear algebraic equations connected with problems on semi-infinite periodic structures. Doklady AN USSR. vol. 102, no 2, pp. 257–260 (in Russian).

2. FEL'D, Y. N., 1958. Electromagnetic wave diffraction by semi-infinite grating. Radiotekhnika i Elektronika. vol. 3, no. 7, pp. 882–889 (in Russian).

3. HILLS, N. L. and KARP, S. N., 1965. Semi-infinite diffraction gratings. I. Commun. Pure Appl. Math. vol. 18, no. 1/2, pp. 203–233.

4. HILLS, N. L., 1965. Semi-infinite diffraction gratings. II. Inward resonance. Commun. Pure Appl. Math. vol. 18, no. 3, pp. 385–395.

5. WASYLKIWSKYJ, W., 1973. Mutual coupling effects in semi-infinite arrays. IEEE Trans. Antennas Propag. vol. 21, no. 3, pp. 277–285. DOI: https://doi.org/10.1109/TAP.1973.1140507

6. NISHIMOTO, M. and IKUNO, H., 1999. Analysis of electromagnetic wave diffraction by a semi-infinite strip grating and evaluation of end-effects. Progr. Electromagn. Res. (PIER). vol. 23. pp. 39–58. DOI: https://doi.org/10.1163/156939399X01177

7. LINTON, C. M. and MARTIN, P. A., 2004. Semi-infinite arrays of isotropic point-scatterers. A unified approach. SIAM J. Appl. Math. vol. 64, pp. 1035–1056. DOI: https://doi.org/10.1137/S0036139903427891

8. NEPA, P., MANARA, G. and ARMOGIDA, A., 2005. EM scattering from the edge of a semi-infinite planar strip grating using approximate boundary conditions. IEEE Trans. Antennas Propag. vol. 53, no. 1, pp. 82–90. DOI: https://doi.org/10.1109/TAP.2004.840523

9. LINTON, C. M., PORTER, R. and THOMPSON, I., 2007. Scattering by a semi-infinite periodic array and the excitation of surface waves. SIAM J. Appl. Math. vol. 67, no. 5, pp. 1233–1258. DOI: https://doi.org/10.1137/060672662

10. CAMINITA, F., NANNETTI, M. and MACI, S., 2008. An efficient approach to the solution of a semi-infinite strip grating printed on infinite grounded slab excited by a surface wave. XXIX URSI General Assembly. Chicago, IL, August 7-13, 2008, BPS 2.5.

11. CAPOLINO, F. and ALBANI, M., 2009. Truncation effects in a semi-infinite periodic array of thin strips: A discrete Wiener-Hopf formulation. Radio Sci. vol. 44, pp. 1223–1234. DOI: https://doi.org/10.1029/2007RS003821

12. CHO, Y. H., 2011. Arbitrarily polarized plane-wave diffraction from semi-infinite periodic grooves and its application to finite periodic grooves. Progr. Electromagn. Res. M (PIER M). vol. 18, pp. 43–54. DOI: https://doi.org/10.2528/PIERM11030111

13. LYTVYNENKO, L. M., REZNIK, I. I. and LYTVYNENKO, D. L., 1991. Wave scattering by semi-infinite periodic structure. Doklady AN Ukr. SSR. no. 6, pp. 62–67 (in Russian).

14. LYTVYNENKO, L. M. and PROSVIRNIN, S. L., 2012, Wave Diffraction by Periodic Multilayer Structures. Cambridge: Cambridge Scientific Publishers.

15. KALIBERDA, M. E., LITVINENKO, L. N. and POGARSKII, S. A., 2009. Operator method in the analysis of electromagnetic wave diffraction by planar screens. J. Commun. Technol. Electron. vol. 54, no. 9, pp. 975–981. DOI: https://doi.org/10.1134/S1064226909090010

16. KALIBERDA, M. E., LYTVYNENKO, L. N. and POGARSKY, S. A., 2011. Electrodynamic characteristics of multilayered system of plane screens with a slot. Radio Phys. Radio Astron. vol. 2, no. 4. pp. 339–344.

17. LYTVYNENKO, L. M., KALIBERDA, M. E. and POGARSKY, S. A., 2012. Solution of waves transformation problem in axially symmetric structures. Frequenz. vol. 66, no. 1-2, pp. 17–25. DOI: https://doi.org/10.1515/freq.2012.012

18. VOROBYOV, S. N. and LYTVYNENKO, L. M., 2011. Electromagnetic wave diffraction by semi-infinite strip grating. IEEE Trans. Antennas Propag. vol. 59, no. 6, pp. 2169–2177. DOI: https://doi.org/10.1109/TAP.2011.2143655

19. KALIBERDA, M. E., LYTVYNENKO, L. N. and POGARSKY, S. A., 2015. Diffraction of H-polarized electromagnetic waves by a multi-element planar semi-infinite grating. Telecommunications and Radio Engineering. vol. 74, no. 9, pp. 348–357. DOI: https://doi.org/10.1615/TelecomRadEng.v74.i9

20. KALIBERDA M. E. and POGARSKY S. A., 2012. Operator method in a plane waveguide eigenmodes diffraction problem by finite and semiinfinite system of slots. In: Int. Conf. on Mathematical Methods in Electromagnetic Theory (MMET) Proceedings. Kharkov, Ukraine, pp. 130–133.

21. LYTVYNENKO, L. M., KALIBERDA, M. E. and POGARSKY, S. A., 2013. Wave diffraction by semi-infinite venetian blind type grating. IEEE Trans. Antennas Propag. vol. 61, no. 12, pp. 6120–6127. DOI: 

22. NOSICH, A. A. and GANDEL, Y. V., 2007. Numerical analysis of quasioptical multireflector antennas in 2-D with the method of discrete singularities: E-wave case. IEEE Trans. Antennas Propag. vol. 55, no. 2, pp. 399–406. DOI: https://doi.org/10.1109/TAP.2006.889811

23. FELSEN, L. B. and MARCUVITZ, N., 1973. Radiation and Scattering of Waves. Englewood Cliffs, NJ: Prentice-Hall.


semi-infinite venetian blind-type grating; finite strip grating; operator method

Full Text:


Creative Commons License

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0) .