VARIATIONS OF PLASMA TEMPERATURES IN IONOSPHERE OVER KHARKIV DURING EXTREME SOLAR MINIMUM

DOI: https://doi.org/10.15407/rpra21.02.132

M. M. Siusiuk, D. V. Kotov, L. F. Chernogor, O. V. Bogomaz

Abstract


PACS numbers: 93.30.Ge, 94.20.Cf, 94.20.Dm, 94.20.Fg 

Purpose: to present temperature variations of electrons and ions obtained at the Institute of Ionosphere (Kharkiv) with an incoherent scatter radar during the 23rd solar cycle minimum, and compare the obtained results with the corresponding data of IRI-2012 model.

Design/methodology/approach: Data are obtained by incoherent scattering. Method of solving the inverse radiophysics problem was used for analysis. Two-dimensional ambiguity function was used for specification.

Findings: It has been found that in most cases the IRI-2012 model overestimates the values of electron and ion temperatures as against experimental data. The maximum differences are observed at night and can be about 500 K in summer, and 700 K in winter. Also, the effects of sunrise and sunset in magnetoconjugate area are considered.

Conclusions: It is confirmed that to adequately describe processes in the ionosphere it is necessary to have a systematic approach which takes into account interaction in ionospheric regions located in magneto-conjugate area. Such regularities must be taken into account for correction of ionospheric model for the Central European region.

Key words: method of incoherent scattering, electron temperature, ion temperature, magneto-conjugate area

Manuscript submitted: 22.02.2016

Radio phys. radio astron. 2016, 21(2): 132-140

REFERENCES

1. CHERNOGOR, L. F., 2006. Earth–atmosphere–ionosphere–magnetosphere as an open dynamic nonlinear physical system (Part 1). Nelinejnyj mir. vol. 4, no. 12, pp. 655–697 (in Russian).

2. CHERNOGOR, L. F., 2007. Earth–atmosphere–ionosphere–magnetosphere as an open dynamic nonlinear physical system (Part 2). Nelinejnyj mir. vol. 5, no. 4, pp. 198–231 (in Russian).

3. EVANS, J. V., 1969. Theory and Practice of Ionospheric Study by Thomson Scatter Radar. Proc. IEEE. vol. 57, is. 4, pp. 496–530. https://doi.org/10.1109/PROC.1969.7005

4. BILITZA, D. and HOEGY, W. R., 1990. Solar activity variations of ionospheric plasma temperatures. Adv. Space Res. vol. 10, no. 8, pp. 81–90. DOI: https://doi.org/10.1016/0273-1177(90)90190-B

5. TRISKOVA, L., TRUHLIK, V. and SMILAUER, J., 2003. An empirical model of ion composition in the outer ionosphere. Adv. Space Res. vol. 31, no. 3, pp. 653–663. DOI:https://doi.org/10.1016/S0273-1177(03)00040-1

6. OYAMA, K., 1991. Electron temperature measurements carried out by Japanese scientific satellites. Adv. Space Res. vol. 11, no. 10, pp. 149–158. DOI: https://doi.org/10.1016/0273-1177(91)90337-J

7. ARAUJO-PRADERE, E. A., REDMON, R., FEDRIZZI, M., VIERECK, R. and FULLER-ROWELL, T. J., 2011. Some Characteristics of the Ionospheric Behavior During the Solar Cycle 23–24 Minimum. Sol. Phys. vol. 274, is. 1, pp. 439–456. DOI: https://doi.org/10.1007/s11207-011-9728-3

8. SOLOMON, S. C., WOODS, T. N., DIDKOVSKY, L. V., EMMERT, J. T. and QIAN, L., 2010. Anomalously low solar extreme ultraviolet irradiance and thermospheric density during solar minimum. Geophys. Res. Lett. vol. 37, id. L16103. DOI: https://doi.org/10.1029/2010GL044468

9. TARAN, V. I., 2001. Study of the ionosphere in the natural and artificially excited states dy method of incoherent scattering. Geomagnetizm i aeronomija. vol. 41, no. 5, pp. 659–666 (in Russian).

10. DOMNIN, I. F., KOTOV, D. V. and CHERNOGOR, L. F., 2012. Optimization of the ionospheric plasma parameters estimation using the incoherent scatter technique. Nelineinyi mir. vol. 10, no. 6, pp. 380–386 (in Russian).

11. SIUSIUK, M. N., KOTOV, D. V. and BOGOMAZ, A. V., 2011. Modeling two-dimensional uncertainty function in incoherent scatter radar. Vestnik Natsionalnogo tekhnicheskogo universiteta. no. 44, pp. 81–84 (in Russian).

12. TRUHLIK, V., BILITZA, D. and TRISKOVA, L, 2012. A new global empirical model of the electron temperature with the inclusion of the solar activity variations for IRI. Earth Planets Space. vol. 64, pp. 531–543. DOI: https://doi.org/10.5047/eps.2011.10.016

13. APONTE, N., BRUM, CH. G. M., SULZER, M. P. and GONZÁLEZ, S. A., 2013. Measurements of the O+ to H+ transition height and ion temperatures in the lower topside ionosphere over Arecibo for equinox conditions during the 2008–2009 extreme solar minimum. J. Geophys. Res. Space Phys. vol. 118, pp. 4465–4470. DOI: https://doi.org/10.1002/jgra.50416

14. PICONE, J. M., HEDIN, A. E. and DROB, D. P., 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. vol. 107, no. A12, id. 1468. DOI: 0.1029/2009JA009430

15. CARLSON, H. C., 1966. Ionospheric Heating by Magnetic Conjugate-Point Photoelectron. J. Geophys. Res. Space Phys. vol. 71, no. 1, pp. 195–199. DOI: 10.1029/JZ07li001p00195

16. KAKINAMI, Y., BALAN, N., LIU, J. Y. and OYAMA, K., 2010. Predawn ionospheric heating observed by Hinotori satellite. J. Geophys. Res. vol. 115, id. A01304. DOI:10.1029/2009JA014334

17. Bryunelli, B. E. and Namgaladze, A. A., 1987. Physics of the ionosphere. Moscow: Nauka Publ. (in Russian).

 

 


Keywords


method of incoherent scattering; electron temperature; ion temperature; magneto-conjugate area

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)