TWO-FLUID MODEL OF THE MAGNETOSPHERE AS A BASIS FOR DESCRIPTION OF PULSAR EMISSION

DOI: https://doi.org/10.15407/rpra21.04.249

S. A. Petrova

Abstract


PACS numbers: 97.60.Gb, 97.60.Jd, 95.30.Lz   

Purpose: The self-consistent two-fluid model for the stationary axisymmetric magnetosphere of a pulsar is considered.

Design/methodology/approach: Taking into account infinitesimal inertial effects, the zero- and first-order equations are solved. The general results are applied to the case of a small difference in the distributions of the two particle species in the magnetosphere of a monopolar structure.

Results: The physically grounded distribution functions for the electron and positron constituents of the pulsar plasma are found, which sustain the force-free configuration of the magnetosphere. The approach developed enables us to consistently incorporate emission into the force-free model of the pulsar magnetosphere. Within the framework of our consideration, the plasma conductivity along the poloidal magnetic field appears of the order of the inverse particle mass, in contrast to the finite conductivity of “massless” particles typically assumed in the literature.

Conclusions: The model constructed has important implications not only for the high-energy emission but also for the radio emission of pulsars. In the force-free plasma flow, the two-stream and diocotron instabilities can develop, leading to the radio emission generation and subpulse drift, respectively. Then, the pulsar radio emission appears physically connected to the high-energy emission.

Key words: force-free magnetosphere, two-fluid model, inertial effects, conductivity of pulsar plasma, pulsar radio emission

Manuscript submitted 22.08.2016 г.

Radio phys. radio astron. 2016, 21(4): 249-259 

REFERENCES

1. KONOVALENKO, A., SODIN, L., ZAKHARENKO, V., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN,S., TOKARSKY, P., MELNIK, V., KALINICHENKO, N., STANISLAVSKY, A., KOLIADIN, V., SHEPELEV,V., DOROVSKYY, V., RYABOV, V., KOVAL, A.,BUBNOV, I., YERIN, S., GRIDIN, A., KULISHENKO, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., REZNIK, A., KVASOV, G., MUKHA, D., LITVINENKO, G., KHRISTENKO, A., SHEVCHENKO, V. V., SHEVCHENKO, V. A., BELOV, A., RUDAVIN, E., VASYLIEVA, I., MIROSHNICHENKO, A., VASILENKO, N., OLYAK, M., MYLOSTNA, K., SKORYK, A., SHEVTSOVA, A., PLAKHOV, M., KRAVTSOV, I., VOLVACH, Y., LYTVINENKO, O., SHEVCHUK, N., ZHOUK, I., BOVKUN, V., ANTONOV, A., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHIN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A., GRIEß-MEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., BRIAND, C. and MANN, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT 2016. Exp. Astron. vol. 42, is. 1, pp. 11–48. https://doi.org/10.1007/s10686-016-9498-x

2. ANSOLDI, S., ANTONELLI, L. A., ANTORANZ, P., BABIC, A., BANGALE, P., BARRES DE ALMEIDA, U., BARRIO, J. A., BECERRA GONZÁLEZ, J., BEDNAREK, W., BERNARDINI, E., BIASUZZI, B., BILAND, A., BLANCH, O., BONNEFOY, S., BONNOLI, G., BORRACCI, F., BRETZ, T., CARMONA, E., CAROSI, A., COLIN, P., COLOMBO, E., CONTRERAS, J. L., CORTINA, J., COVINO, S., DA VELA, P., DAZZI, F., DE ANGELIS, A., DE CANEVA, G., DE LOTTO, B., DE OÑA WILHELMI, E., DELGADO MENDEZ, C., DI PIERRO, F., DOMINIS PRESTER, D., DORNER, D., DORO, M., EINECKE, S., EISENACHERGLAWION, D., ELSAESSER, D., FERNÁNDEZBARRAL, A., FIDALGO, D., FONSECA, M. V., FONT, L., FRANTZEN, K., FRUCK, C., GALINDO, D., GARCÍA LÓPEZ, R. J., GARCZARCZYK, M., GARRIDOTERRATS, D., GAUG, M., GODINOVIĆ, N., GONZÁLEZ MUÑOZ, A., GOZZINI, S. R., HANABATA,Y., HAYASHIDA, M., HERRERA, J., HIROTANI, K., HOSE, J., HRUPEC, D., HUGHES, G., IDEC, W., KELLERMANN, H., KNOETIG, M. L., KODANI, K., KONNO, Y., KRAUSE, J., KUBO, H., KUSHIDA, J., LA BARBERA, A., LELAS, D., LEWANDOWSKA, N., LINDFORS, E., LOMBARDI, S., LONGO, F., LÓPEZ, M., LÓPEZ-COTO, R., LÓPEZORAMAS, A., LORENZ, E., MAKARIEV, M., MALLOT, K., MANEVA, G., MANNHEIM, K., MARASCHI, L., MARCOTE, B., MARIOTTI, M., MARTÍ-NEZ, M., MAZIN, D., MENZEL, U., MIRANDA, J. M., MIRZOYAN, R., MORALEJO, A., MUNAR-ADROVER, P., NAKAJIMA, D., NEUSTROEV, V., NIEDZWIECKI, A., NEVAS ROSILLO, M., NILSSON, K., NISHIJIMA, K., NODA, K., ORITO, R., OVERKEMPING, A., PAIANO, S., PALATIELLO, M., PANEQUE, D., PAOLETTI, R., PAREDES, J. M., PAREDES-FORTUNY, X., PERSIC, M., POUTANEN, J., PRADA MORONI, P. G., PRANDINI, E., PULJAK, I., REINTHAL, R., RHODE, W., RIBÓ, M., RICO, J., RODRIGUEZ GARCIA, J., SAITO, T., SAITO, K., SATALECKA, K., SCALZOTTO, V., SCAPIN, V., SCHULTZ, C., SCHWEIZER, T., SHORE, S. N., SILLANPÄÄ, A., SITAREK, J., SNIDARIC, I., SOBCZYNSKA, D., STAMERRA, A., STEINBRING, T., STRZYS, M., TAKALO, L., TAKAMI, H., TAVECCHIO, F., TEMNIKOV, P., TERZIĆ, T., TESCARO, D., TESHIMA, M., THAELE, J., TORRES, D. F., TOYAMA, T., TREVES, A., WARD, J., WILL, M. and ZANIN, R., 2016. Teraelectronvolt pulsed emission from the Crab Pulsar detected by MAGIC. Astron. Astrophys. vol. 585, id. A133. DOI: 10.1051/0004-6361/201526853

3. GOLDREICH, P. and JULIAN, W. H., 1969. Pulsar Electrodynamics. Astrophys. J. vol. 157, pp. 869–880. DOI: https://doi.org/10.1086/150119

4. MICHEL, F. C., 1973. Rotating Magnetospheres: an Exact3-D Solution. Astrophys. J. vol. 180, pp. L133–L136. DOI: https://doi.org/10.1086/181169

5. SCHARLEMANN, E. T. and WAGONER, R. V., 1973. Aligned Rotating Magnetospheres. General Analysis. Astrophys. J. vol. 182, pp. 951–960. DOI: https://doi.org/10.1086/152195

6. OKAMOTO, I., 1974. Force-free pulsar magnetosphere– I. The steady, axisymmetric theory for the charge-separated plasma. Mon. Not. Roy. Astron. Soc. vol. 167, no. 3, pp. 457–474. DOI: https://doi.org/10.1093/mnras/167.3.457

7. MICHEL, F. C., 1991. Theory of neutron star magnetospheres. Chicago, IL: University of Chicago Press.

8. PETROVA, S. A., 2013. On the Global Structure of Pulsar Force-free Magnetosphere. Astrophys. J. vol. 764, no. 2, id. 129. DOI: https://doi.org/10.1088/0004-637X/764/2/129

9. PETROVA, S. A., 2013. On the Structure of Pulsar Axisymmetric Force-Free Magnetosphere beyond the Light Cylinder. Radio Phys. Radio Astron. vol. 18, no. 3, pp. 201–209 (in Russian).

10. CONTOPOULOS, I., KAZANAS, D. and FENDT, C., 1999. The Axisymmetric Pulsar Magnetosphere. Astrophys. J. vol. 511, no. 1, pp. 351–358. DOI: https://doi.org/10.1086/306652

11. GRUZINOV, A., 2005. Power of an Axisymmetric Pulsar. Phys. Rev. Lett. vol. 94, no. 1, id. 021101. DOI: https://doi.org/10.1103/PhysRevLett.94.021101

12. SPITKOVSKY, A., 2006. Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators. Astrophys. J. vol. 648, no. 1, pp. L51–L54. DOI: https://doi.org/10.1086/507518

13. KALAPOTHARAKOS, C. and CONTOPOULOS, I., 2009. Three-dimensional numerical simulations of the pulsar magnetosphere: preliminary results. Astron. Astrophys. vol. 496, no. 2, pp. 495–502. DOI: https://doi.org/10.1051/0004-6361:200810281

14. TCHEKHOVSKOY, A., SPITKOVSKY, A. and LI, J. G., 2013. Time-dependent 3D magnetohydrodynamic pulsar magnetospheres: oblique rotators. Mon. Not. Roy. Astron. Soc. Lett. vol. 435, no. 1, pp. L1–L5. DOI: 
https://doi.org/10.1093/mnrasl/slt076

15. CONTOPOULOS, I., 2005. The coughing pulsar magnetosphere. Astron. Astrophys. vol. 442, no. 2, pp. 579–586. DOI: https://doi.org/10.1051/0004-6361:20053143

16. CHEN, A. Y. and BELOBORODOV, A. M., 2014. Electrodynamics of Axisymmetric Pulsar Magnetosphere with Electron-Positron Discharge: A Numerical Experiment. Astrophys. J. vol. 795, id. L22. DOI: https://doi.org/10.1088/2041-8205/795/1/L22

17. PHILIPPOV, A. A. and SPITKOVSKY, A., 2014. Ab Initio Pulsar Magnetosphere: Three-dimensional Particle-in-cell Simulations of Axisymmetric Pulsars. Astrophys. J. vol. 785, id. L33. DOI: https://doi.org/10.1088/2041-8205/785/2/L33

18. PHILIPPOV, A. A., SPITKOVSKY, A. and CERUTTI,B., 2015. Ab Initio Pulsar Magnetosphere: Three dimensional Particle-in-cell Simulations of Oblique Pulsars. Astrophys. J. vol. 801, id. L19. DOI: https://doi.org/10.1088/2041-8205/801/1/L19

19. GRALLA, S. E. and JACOBSON, T., 2014. Spacetime approach to force-free magnetospheres. Mon. Not. Roy. Astron. Soc. vol. 445, no. 3, pp. 2500–2534. DOI: https://doi.org/10.1093/mnras/stu1690

20. PHILIPPOV, A. A., CERUTTI, B., TCHEKHOVSKOY,A. and SPITKOVSKY, A., 2015. Ab Initio Pulsar Magnetosphere: The Role of General Relativity. Astrophys. J. vol. 815, id. L19. DOI: https://doi.org/10.1088/2041-8205/815/2/L19

21. PÉTRI, J., 2016. General-relativistic force-free pulsar magnetospheres. Mon. Not. Roy. Astron. Soc. vol. 455, no. 4, pp. 3779–3805. DOI: https://doi.org/10.1093/mnras/stv2613

22. GRUZINOV, A., 2008. Strong-Field Electrodynamics. ArXiv e-prints. arXiv:0802.1716

23. GRUZINOV, A., 2008. Dissipative pulsar magnetospheres. J. Cosmol. Astropart. Phys. no. 11, id. 002. DOI: https://doi.org/10.1088/1475-7516/2008/11/002

24. KALAPOTHARAKOS, C., KAZANAS, D., HARDING,A. and CONTOPOULOS, I., 2012. Toward a Realistic Pulsar Magnetosphere. Astrophys. J. vol. 749, no. 1, id. 2. DOI: https://doi.org/10.1088/0004-637X/749/1/2

25. LI, J., SPITKOVSKY, A. and TCHEKHOVSKOY, A., 2012. Resistive Solutions for Pulsar Magnetospheres. Astrophys. J. vol. 746, no.1, id. 60. DOI: https://doi.org/10.1088/0004-637X/746/1/60

26. KOJIMA, Y. and OOGI, J., 2009. Numerical construction of magnetosphere with relativistic two-fluid plasma flows. Mon. Not. Roy. Astron. Soc. vol. 398, no. 1, pp. 271–279. DOI: https://doi.org/10.1111/j.1365-2966.2009.15128.x

27. BESKIN, V. S. and RAFIKOV, R. R., 2000. On the particle acceleration near the light surface of radio pulsars. Mon. Not. Roy. Astron. Soc. vol. 313, no. 3, pp. 433–444. DOI: https://doi.org/10.1046/j.1365-8711.2000.03245.x

28. Asseo, E., Pelletier, G. and Sol, H., 1990. A nonlinear radio pulsar emission mechanism. Mon. Not. Roy. Astron. Soc. vol. 247, pp. 529–548.

29. WEATHERALL, J. C., 1994. Streaming instability in relativistically hot pulsar magnetospheres. Astrophys. J. vol. 428, no. 1, pp. 261–266. DOI: https://doi.org/10.1086/174237

30. ASSEO, E. and MELIKIDZE, G. I., 1998. Non-stationary pair plasma in a pulsar magnetosphere and the two-stream instability. Mon. Not. Roy. Astron. Soc. vol. 301, no. 1, pp. 59–71. DOI: https://doi.org/10.1046/j.1365-8711.1998.01990.x

31. FUNG, P. K., KHECHINASHVILI, D. and KUIJPERS, J., 2006. Radio pulsar drifting sub-pulses and diocotron instability. Astron. Astrophys. vol. 445, no. 3, pp. 779–794. DOI: https://doi.org/10.1051/0004-6361:20053040

 

 


Keywords


force-free magnetosphere; two-fluid model; inertial effects; conductivity of pulsar plasma; pulsar radio emission

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)