DOI: https://doi.org/10.15407/rpra21.04.318

O. S. Kosiak, V. I. Bezborodov, Ye. M. Kuleshov, P. K. Nesterov


PACS numbers: 42.25.Lc, 42.25.Bs, 42.70.Mp

Purpose: Studying the quasioptical tunable and broadband differential phase section (DPS) consisting of several birefringent elements (BE) on the basis of form birefringence effect.

Design/methodology/approach: Using the polarization scattering matrix method, the impact of the mutual rotation axis of anisotropy of several BE by the amount of phase shift and the position of the plane of anisotropy of resulting DPS is considered.

Findings: The DPS tunable in a wide range are shown to be possibly implemented in the case of quarter-wave DPS of two, and in the case of half-wave DPS of three, identical non-tunable BE. The analysis has shown to the possibility of creating a broadband quarter-wave and half-wave DPS.

Сonclusions: Experimental research has confirmed the possibility of constructing a tunable and broadband DPS. On this basis, tunable and broadband polarization converters, rotators of polarization plane, polarization phase shifters and frequency shifters in the terahertz frequency range can be created.

Key words: terahertz range, quasioptics, differential phase section, form birefringence

Manuscript submitted 26.09.2016

Radio phys. radio astron. 2016, 21(4): 318-329


1. BORN, M. and WOLF, E., 1968. Principles of Optics. Oxford: Pergamon Press.

2. BEZBORODOV, V. I., KOSIAK, O. S., KULESHOV, Ye. M., YACHIN, V. V., 2015. Differential Phase Sections Based on Form Birefringence in the THz Frequency Range. Telecommunications and Radio Engineering. vol. 74, is. 8, pp. 735–744. DOI: https://doi.org/10.1615/TelecomRadEng.v74.i8.70

3. Tydex, 2016. [viewed 12 October 2016]. Available from:http://www.tydexoptics.com/ru/products/thz_optics/thz_converters/

4. KOESTER, C. J., 1959. Achromatic Combinations of Half-Wave Plates. J. Opt. Soc. Am. vol. 49, is. 4, pp. 405–409.DOI: https://doi.org/10.1364/JOSA.49.000405

5. ADACHI, S. and KENNAUGH, E. M., 1960. The Analysis of a Broad-Band Circular Polarizer Including Interface Reflections. IRE Trans. Microw. Theory Tech. vol. 8, no. 5,pp. 520–525. DOI: https://doi.org/10.1109/TMTT.1960.1124780

6. PANCHARATNAM, S., 1955. Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer. Proc. Ind. Acad. Sci. A. vol. A 41, is. 4,pp. 130–136. DOI: 10.1007/BF03047097

7. IWANAGA, M., 2010. Subwavelength orthogonal polarization rotator. Opt. Lett. vol. 35, is. 2, pp. 109–111. DOI: https://doi.org/10.1364/OL.35.000109

8. HANANY, S., HUBMAYR, J., JOHNSON, B. R., MATSUMURA,T., OXLEY, P. and THIBODEAU, M., 2005. Millimeter-Wave Achromatic Half Wave Plate. Appl. Opt. vol. 44, is. 22, pp. 4666-4670. DOI: https://doi.org/10.1364/AO.44.004666

9. KANAREIKIN, D. B., PAVLOV N. F. and POTEKHIN,V. A., 1966. Polarisation of radar signals. Moscow: Sovetskoe Radio Publ. (in Russian).

10. BEZBORODOV, V. I., KOSIAK, O. S., KULESHOV, Ye. M. and YACHIN, V. V., 2015. Form Birefringent Structures Matching to Free Space in the Teraherts Frequency Range. Telecommunications and Radio Engineering. vol. 74, is. 19, pp. 1767–1776. DOI: https://doi.org/10.1615/TelecomRadEng.v74.i19.90

11. KULESHOV, Ye. M., 1986. Chapter 8. Measurements in sub-mm wavelength band. In: A. Y. USIKOV, ed. Electronics and Radio Physics of Millimeter and Sub-millimeter Waves. Kyiv: Naukova Dumka Publ., pp. 140–157 (in Russian).


terahertz range; quasioptics; differential phase section; form birefringence

Full Text:


Creative Commons License

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0) .