ON THE PROGRAM AND PRELIMINARY RESULTS OF INVESTIGATIONS OF INTRADAY AND INTERDIURNAL FLUX VARIABILITY OF EXTRAGALACTIC RADIO SOURCES AT TELESCOPES OF VENTSPILS INTERNATIONAL RADIO ASTRONOMY CENTER (VIRAC)
Abstract
PACS numbers: 95.75.Wx,
95.85.Bh
Purpose: From April 2017, a monitoring program of observations has been started at the RT-16 telescope of Ventspils Radio Astronomy Center (frequencies 5, 6.1, 6.7, 8.4 GHz) to study the intraday and interdiurnal variability of extragalactic radio sources. At the first stage, the technique was developed and trial observations of extragalactic radio sources 3C 295, 3C 273, 3C 454.3, BL Lac and OJ 287 were made.
Design/methodology/approach: Research efforts were made to test the modes of source observations in the context of some other different programs and calibration procedures, taking into account the influence of various factors in monitoring observations with the RT-16. For this type of data, the most effective is search for quasiperiods of radio source fluxes by the Lomb–Scargle method with the following approximation of observations by trigonometric polynomials.
Findings: The radio source 3C 295 appears to have quasiperiodic fluctuations in radiant flux density at the time scale of ≈4 h, as well as ≈ 5 and 7 h in different observation sessions, and long-term oscillations at the time scale of 10÷11 and 3÷4 days. In radio sources 3C 273 and 3C 454.3, due to a small number of observations, only the day-to-day trends are observed, BL Lac and OJ 287 show no trend and quasi-periodic changes in flux density. Obtained results are preliminary and will be refined with accumulation of observational data.
Conclusions: Methodology for realization of observations and calibration was prepared and tested for the monitoring program to study intraday and interdiurnal variability of extragalactic radio sources using the RT-16 telescope of Ventspils Radio Astronomy Center. Preliminary results of analysis of obtained data showed the effectiveness of applied technique and their conformity to the results of similar studies published earlier.
Key words: radio telescope, radio source, periodogram, quasiperiodic changes, intraday variability, trigonometric polynomial
Manuscript submitted 25.10.2017Radio phys. radio astron. 2017, 22(4): 256-269
REFERENCES
1. GORSHKOV, A. G., IPATOV, A. V., IPATOVA, I. A., KONNIKOVA, V. K., MARDYSHKIN, V. V., KHARINOV, M. A. and MIKHAILOV, A.G., 2009. The intraday variability of three radio sources with flat spectra. Astron. Zh. vol. 86, no. 5, pp. 428–439, (in Russian).
2. GORSHKOV, A. G., IPATOV, A. V., KONNIKOVA, V. K., MARDYSHKIN, V. V., MINGALIEV, M. G., FINKELSTEIN, A. M. and KHARINOV, M. A., 2011. Variability of the flux density of the blazar S5 0716 + 714 in the radio range with characteristic times less than a month. Astron. Zh. vol. 88, no. 2, pp. 115–126, (in Russian).
3. GORSHKOV, A. G., IPATOV, A. V., KONNIKOVA, V. K., MARDYSHKIN, V. V., MINGALIEV, M. G. and KHARINOV, M. A., 2014. Variability of the flux density of the quasar J1159 + 2914 (S5 1156 + 295) in the radio range in 2010 - 2013. Astron. Zh. vol. 91, no 10, pp. 815–823, (in Russian). DOI: https://doi.org/10.7868/S0004629914100065
4. GORSHKOV, A. G., KONNIKOVA, V. K., IPATOV, A. V., HARINOV, M. A., MIKHAILOV A. G. and MARDYSHKIN, V. V., 2016. Search for intraday variability of radio sources on the antennas of the IPA RAS. Trudy IPA RAN, vol. 38, P. 80–89, (in Russian).
5. XIANG LIU, 2003. Detection of Intrahour Variabilities in Quasar 3C 273? Acta Astronomica Sinica. vol. 44, suppl., pp. 310–312.
6. HARVEY, G. A., ANDREW, B. H., MACLEOD, J. M. and MEDD, W. J., 1972. A search for rapidly varying radio sources. Astrophys. Lett. vol. 11, pp. 147–149.
7. EPSTEIN E. E., LANDAU R. and RATHER, J. D. G., 1980. Extragalactic radio sources: Rapid variability at 90 GHz. Astron. J. vol. 85, no. 11, pp. 1427–1433, DOI: https://doi.org/10.1086/112818
8. EPSTEIN, E. E., SCHNEIDER, E., FOGARTY, W. G. and MOTTMANN, J., 1982. Quenchings and outbursts of extragalactic radio sources - Nine years of 3.3-mm measurements and comparisons with centimeter-wave variations. Astron. J. vol. 87, no. 3, pp. 449–461. DOI: https://doi.org/10.1086/113118
9. BLEIDERS, M., BEZRUKOVS, V. and ORBIDANS, A., 2018. Performance evaluation of Irbene RT-16 rado telescope receving system. Latvian J. Phys. Techn. Sci. vol. 55, no. 1.
10. LOMB, N. R., 1976. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. vol. 39, is. 2, pp. 447–462. DOI: https://doi.org/10.1007/BF00648343
11. SCARGLE, J. D., 1982. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. vol. 263, part 1, pp. 835–853. DOI: https://doi.org/10.1086/160554
12. PRESS, W. H. and RYBICKI, G. B., 1989. Fast algorithm for spectral analysis of unevenly sampled data. Astrophys. J. vol. 338, pp. 277–280. DOI: https://doi.org/10.1086/167197
13. GAIDYSHEV, I., 2001. Data Analysis and Processing: Special reference book. Saint Petersburg: Piter Publ. (in Russian).
14. LAING, R. A., RILEY, J. M. and LONGAIR, M. S., 1983. Bright radio sources at 178 MHz - Flux densities, optical identifications and the cosmological evolution of powerful radio galaxies. Mon. Not. R. Astron. Soc. vol. 204, is. 1, P. 151–187. DOI: https://doi.org/10.1093/mnras/204.1.151
15. Butcher, H. and Oemler, A. Jr., 1978. The evolution of galaxies in clusters. I - ISIT photometry of C1 0024+1654 and 3C 295. Astrophys. J. vol. 219, part 1, pp. 18–30. DOI: https://doi.org/10.1086/155751
16. ALLEN, S. W., TAYLOR, G. B., NULSEN, P. E. J., JOHNSTONE, R. M., DAVID, L. P., ETTORI, S., FABIAN, A. C., FORMAN, W., JONES, C., and MCNAMARA, B., 2001. Chandra X-ray observations of the 3C 295 cluster core. Mon. Not. R. Astron. Soc. vol. 324, is. 4, pp. 842–858. DOI: https://doi.org/10.1046/j.1365-8711.2001.04315.x
17. HARRIS, D. E., NULSEN, P. E. J., PONMAN, T. J., BAUTZ, M., CAMERON, R. A., DAVID, L. P., DONNELLY, R. H., FORMAN, W. R., GREGO, L. and HARDCASTLE, M. J., 2000. Chandra X-Ray Detection of the Radio Hot Spots of 3C 295. Astrophys. J. Letts. vol. 530, no. 2, pp. L81–L85. DOI: https://doi.org/10.1086/312503
18. TAYLOR, G. B. and PERLEY, R. A., 1992. The structure of the hot spots in 3C 295. Astron. Astrophys. vol. 262, no. 2, pp. 417–423.
19. ALLER, M. F., ALLER, H. D. and HUGHES, P. A., 2003. Pearson-Readhead Survey Sources II: The Longterm Centimeter-band Total Flux and Linear Polarization Properties of a Complete Radio Sample. Astrophys. J. vol. 586, no. 1, pp. 33–52. DOI: https://doi.org/10.1086/367538
20. FAN, J. H., LIU, Y., YUAN, Y. H., HUA, T. X., WANG, H. G., WANG, Y. X., YANG, J. H., GUPTA, A. C., LI, J., ZHOU, J. L., XU, S. X. and CHEN, J. L., 2007. Radio variability properties for radio sources. Astron. Astrophys. vol. 462, is. 2, pp. 547–552. DOI: https://doi.org/10.1051/0004-6361:20054775
21. JUN-HUI FAN, YONG HUANG, YU-HAI YUAN, JIANG-HE YANG, YI LIU, JUN TAO, YING GAO, TONG-XU HUA, RUI-GUANG LIN, JIANG-SHUI ZHANG, JING-YI ZHANG and YI-PING QIN, 2009. Brightness temperature for 166 radio sources. Res. Astron. Astrophys. vol. 9, no. 7, P. 751–760.
22. SPOELSTRA T. A. TH., 1997. The ionosphere and radio interferometry. Ann. Geophys. vol. 40, no. 4, P. 865–885. DOI: 10.4401/ag-3885
23. RICKETT, B. J., LAZIO, T. J. W. and GHIGO, F. D., 2006. Interstellar scintillation observations of 146 extragalactic radio sources. Astrophys. J. Suppl. Ser. vol. 165, pp. 439–460. DOI: https://doi.org/10.1086/504897
24. Koay, J. Y., Bignall, H. E., Macquart, J. P., Jauncey, D. L., Rickett, B. J. and Lovell, J. E. J., 2011. Detection of six rapidly scintillating active galactic nuclei and the diminished variability of J1819+3845. Astron. Astrophys. vol. 534, pp. L1–L5. DOI: https://doi.org/10.1051/0004-6361/201117805
25. QIAN SHAN-JIE, LI XIAO-CONG, WEGNER, R., WITZEL, A. and KRICHBAUM, T. P., 1996. Implications of the correlation between the optical and radio intraday variations in BLO 0716+714. Chinese Astron. Astrophys. vol. 20, is. 1, pp. 15–5. DOI: 0.1016/0275-1062(96)00003-3
26. CAMENZIND, M. and KROCKENBERGER, M., 1992. The lighthouse effect of relativistic jets in blazars - A geometric origin of intraday variability. Astron. Astrophys. vol. 255, no 1-2, pp. 59–62.
27. D’SILVA, S. and CHAKRABARTI, S. K., 1994. Magnetic activity in thick accretion disks and associated observable phenomena. 2: Flux storage. Astrophys. J. vol. 42, no. 1, pp. 149–157. DOI: https://doi.org/10.1086/173879
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)