NOISE TEMPERATURE OF THE ACTIVE PHASED ARRAY OF THE GURT RADIO TELESCOPE

DOI: https://doi.org/10.15407/rpra23.01.043

P. L. Tokarsky, A. A. Konovalenko, S. N. Yerin, I. N. Bubnov

Abstract


PACS number: 95.55.Jz 

Purpose: Theoretical and experimental investigations of noise temperature of a subarray being a part of the active phased array for the GURT – a low frequency radio telescope of new generation.

Design/methodology/approach: A mathematical model of the active phased array is developed in the form of a cascade connection of two noisy multiport networks, one of which is associated with the dipole array antenna placed over imperfect ground, and the other with the beam-forming network. The electrical parameters of these multiport networks are described by the scattering matrices, and the noise parameters – by the covariance matrix of the spectral densities of noise waves. The calculation expressions are obtained which allow analyzing the GURT subarray noise temperature with correct account for all internal noise sources and their mutual correlation which is caused by interaction of dipoles in the array.

Findings: Numerical and experimental studies of the noise temperature at the subarray output of the GURT active phased antenna array have been performed. These studies made it possible to estimate the relation between the external and internal noise temperatures in a wide frequency range from 8 to 80 MHz when scanning the subarray beam in the upper hemisphere. It is shown that the external noise temperature at the subarray output is more than 6 dB higher than the internal one in the bandwidth of about 65 MHz. Good agreement between the results of calculation and experiment is obtained, that validates the developed model of the GURT subarray and the effectiveness of the proposed technique for numerical analysis of its parameters.

Conclusions: The studies described here confirm the possibility of effective use of this subarray as the base cell of a large phased antenna array for the low frequency radio telescope, as well as the standalone antenna of the radio telescope when radio astronomical observations do not require high angular resolution. The results of this work can be useful in the development and studies of active phased antenna arrays for the decameter and meter wave ranges.

Key words: radio telescope, active phased antenna array, subarray, beam scanning, noise temperature, scattering matrix, covariance matrix

Manuscript submitted 15.01.2018 

Radio phys. radio astron. 2018, 23(1): 43-59

 

REFERENCES

1. KONOVALENKO, A., SODIN, L., ZAKHARENKO, V., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., TOKARSKY, P., MELNIK, V., KALINICHENKO, N., STANISLAVSKY, A., KOLIADIN, V., SHEPELEV, V., DOROVSKYY, V., RYABOV, V., KOVAL, A., BUBNOV, I., YERIN, S., GRIDIN, A., KULISHENKO, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., REZNIK, A., KVASOV, G., MUKHA, D., LITVINENKO, G., KHRISTENKO, A., SHEVCHENKO, V. V., SHEVCHENKO, V. A., BELOV, A., RUDAVIN, E., VASYLIEVA, I., MIROSHNICHENKO, A., VASILENKO, N., OLYAK, M., MYLOSTNA, K., SKORYK, A., SHEVTSOVA, A., PLAKHOV, M., KRAVTSOV, I., VOLVACH, Y., LYTVINENKO, O., SHEVCHUK, N., ZHOUK, I., BOVKUN, V., ANTONOV, A., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHIN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A., GRIEßMEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., BRIAND, C. and MANN, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron. vol. 42, is. 1, pp. 11–48. DOI: https://doi.org/10.1007/s10686-016-9498-x

2. KONOVALENKO, A. A., YERIN, S. M., BUBNOV, I. N., TOKARSKY, P. L., ZAKHARENKO, V. V., ULYANOV, O. M., SIDORCHUK, M. A., STEPKIN, S. V., GRIDIN, A. O., KVASOV, G. V., KOLIADIN, V. L., MELNIK, V. M., DOROVSKYY, V. V., KALINICHENKO, M. M., LITVINENKO, G. V., ZARKA, P., DENIS, L., GIRARD, J., RUCKER, H. O., PANCHENKO, M., STANISLAVSKY, A. A., KHRISTENKO, A. D., MUKHA, D. V., REZNICHENKO, O. M., LISACHENKO, V. N., BORTSOV, V. V., BRAZHENKO, A. I., VASYLIEVA, I. Y., SKORYK, A. O., SHEVTSOVA, A. I. and MYLOSTNA, K. Y., 2016. Astrophysical studies with small low frequency radio telescopes of new generation. Radio Phys. Radio Astron. vol. 21, no. 2, pp. 83–131 (in Russian). DOI: https://doi.org/10.15407/rpra21.02.083

3. VAN HAARLEM, M. P., WISE, M. W., GUNST, A. W., HEALD, G., MCKEAN, J. P., HESSELS, J. W. T., DE BRUYN, A. G., NIJBOER, R., SWINBANK, J., FALLOWS, R., BRENTJENS, M., NELLES, A., BECK, R., FALCKE, H., FENDER, R., HÖRANDEL, J., KOOPMANS, L. V. E., MANN, G., MILEY, G., RÖTTGERING, H., STAPPERS, B. W., WIJERS, R. A. M. J., ZAROUBI, S., VAN DEN AKKER, M., ALEXOV, A., ANDERSON, J., ANDERSON, K., VAN ARDENNE, A., ARTS, M., ASGEKAR, A., AVRUCH, I. M., BATEJAT, F., BÄHREN, L., BELL, M. E., BELL, M. R., VAN BEMMEL, I., BENNEMA, P., BENTUM, M. J., BERNARDI, G., BEST, P., BÎRZAN, L., BONAFEDE, A., BOONSTRA, A.-J., BRAUN, R., BREGMAN, J., BREITLING, F., VAN DE BRINK, R. H., BRODERICK, J., BROEKEMA, P. C., BROUW, W. N., BRÜGGEN, M., BUTCHER, H. R., VAN CAPPELLEN, W., CIARDI, B., COENEN, T., CONWAY, J., COOLEN, A., CORSTANJE, A., DAMSTRA, S., DAVIES, O., DELLER, A. T., DETTMAR, R.-J., VAN DIEPEN, G., DIJKSTRA, K., DONKER, P., DOORDUIN, A., DROMER, J., DROST, M., VAN DUIN, A., EISLÖFFEL, J., VAN ENST, J., FERRARI, C., FRIESWIJK, W., GANKEMA, H., GARRETT, M. A., DE GASPERIN, F., GERBERS, M., DE GEUS, E., GRIEßMEIER, J.-M., GRIT, T., GRUPPEN, P., HAMAKER, J. P., HASSALL, T., HOEFT, M., HOLTIES, H. A., HORNEFFER, A., VAN DER HORST, A., VAN HOUWELINGEN, A., HUIJGEN, A., IACOBELLI, M., INTEMA, H., JACKSON, N., JELIC, V., DE JONG, A., JUETTE, E., KANT, D., KARASTERGIOU, A., KOERS, A., KOLLEN, H., KONDRATIEV, V. I., KOOISTRA, E., KOOPMAN, Y., KOSTER, A., KUNIYOSHI, M., KRAMER, M., KUPER, G., LAMBROPOULOS, P., LAW, C., VAN LEEUWEN, J., LEMAITRE, J., LOOSE, M., MAAT, P., MACARIO, G., MARKOFF, S., MASTERS, J., MCFADDEN, R. A., MCKAY-BUKOWSKI, D., MEIJERING, H., MEULMAN, H., MEVIUS, M., MIDDELBERG, E., MILLENAAR, R., MILLER-JONES, J. C. A., MOHAN, R. N., MOL, J. D., MORAWIETZ, J., MORGANTI, R., MULCAHY, D. D., MULDER, E., MUNK, H., NIEUWENHUIS, L., VAN NIEUWPOORT, R., NOORDAM, J. E., NORDEN, M., NOUTSOS, A., OFFRINGA, A. R., OLOFSSON, H., OMAR, A., ORRÚ, E., OVEREEM, R., PAAS, H., PANDEY-POMMIER, M., PANDEY, V. N., PIZZO, R., POLATIDIS, A., RAFFERTY, D., RAWLINGS, S., REICH, W., DE REIJER, J.-P., REITSMA, J., RENTING, G. A., RIEMERSV, P., ROL, E., ROMEIN, J. W., ROOSJEN, J., RUITER, M., SCAIFE, A., VAN DER SCHAAF, K., SCHEERS, B., SCHELLARTV, P., SCHOENMAKERS, A., SCHOONDERBEEK, G., SERYLAK, M., SHULEVSKI, A., SLUMAN, J., SMIRNOV, O., SOBEY, C., SPREEUW, H., STEINMETZ, M., STERKS, C. G. M., STIEPEL, H.-J., STUURWOLD, K., TAGGER, M., TANG, Y., TASSE, C., THOMAS, I., THOUDAM, S., TORIBIO, M. C., VAN DER TOL, B., USOV, O., VAN VEELEN, M., VAN DER VEEN, A.-J., TER VEEN, S., VERBIEST, J. P. W., VERMEULEN, R., VERMAAS, N., VOCKS, C., VOGT, C., DE VOS, M., VAN DER WAL, E., VAN WEEREN, R., WEGGEMANS, H., WELTEVREDE, P., WHITE, S., WIJNHOLDS, S. J., WILHELMSSON, T., WUCKNITZ, O., YATAWATTA, S., ZARKA, P., ZENSUS, A. and VAN ZWIETEN, J., 2013. LOFAR: the low-frequency array. Astron. Astrophys. vol. 556, id. A2. DOI: https://doi.org/ 10.1051/0004-6361/201220873

4. ELLINGSON, S. W., TAYLOR, G. B., CRAIG, J., HARTMAN, J., DOWELL, J., WOLFE, C. N., CLARKE, T. E., HICKS, B. C., KASSIM, N. E., RAY, P. S., RICKARD, L. J, SCHINZEL, F. K. and WEILER, K. W., 2013. The LWA1 Radio Telescope. IEEE Trans. Antennas Propag. vol. 61, no. 5, pp. 2540–2549. DOI: https://doi.org/10.1109/TAP.2013.2242826

5. SUTINJO, A. T., COLEGATE, T. M., WAYTH, R. B., HALL, P. J., DE LERA ACEDO, E., BOOLER, T., FAULKNER, A. J., FENG, L., HURLEY-WALKER, N., JUSWARDY, B., PADHI, S. K., RAZAVI-GHODS, N., SOKOLOWSKI, M., TINGAY, S. J. and BIJ DE VAATE, J. G., 2015. Characterization of a Low-Frequency Radio Astronomy Prototype Array in Western Australia. IEEE Trans. Antennas Propag. vol. 63, no. 12, pp. 5433–5442. DOI: https://doi.org/10.1109/TAP.2015.2487504

6. KONOVALENKO, A. A., FALKOVICH, I. S., GRIDIN, A. A., TOKARSKY, P. L. and YERIN, S. N., 2012. UWB Active Antenna Array for Low Frequency Radio Astronomy. In: 6th Int. Conf. on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS’12) Conference Proceedings. 17–21 Sept. 2012, Sevastopol, Ukraine, pp. 39–43. DOI: https://doi.org/10.1109/UWBUSIS.2012.6379725

7. TOKARSKY, P. L., KONOVALENKO, A. A. and YERIN, S. N., 2015. Analysis of Active Phased Antenna Array Parameters for the GURT Radio Telescope. Radio Phys. Radio Astron. vol. 20, no. 2, pp. 142–153 (in Russian). DOI: https://doi.org/10.15407/rpra20.02.142

8. TOKARSKY, P. L., KONOVALENKO, A. A., YERIN, S. M. and BUBNOV, I. N., 2016. Sensitivity of Active Phased Antenna Array Element of GURT Radio Telescope. Radio Phys. Radio Astron. vol. 21, no. 1, pp. 48–57 (in Russian). DOI: https://doi.org/10.15407/rpra21.01.048

9. SAZONOV, D. M., 2015. Multielement antenna systems. The matrix approach. Moscow, Russia: Radiotekhnika Publ. (in Russian).

10. TOKARSKY, P. L., 2007. Matrix Theory of Dissipative Antenna Arrays. In: 6th Int. Conf. on Antenna Theory and Techniques (ICATT’07) Conference Proceedings. 17–21 Sept. 2007, Sevastopol, Ukraine, pp. 87–92. DOI: https://doi.org/10.1109/ICATT.2007.4425122

11. BABAK, L. I., 1980. Determination of Microwave Circuits Noise Characteristics. Radiotekhnika i Elertronika. vol. 25, no. 11, pp. 2380–2384 (in Russian).

12. BOSMA, H., 1967. On the Theory of Linear Noisy Systems. Eindhoven: Technische Hogeschool Eindhoven. DOI: 10.6100/IR109175

13. TOKARSKY, P. L., 2002. Wave Matrices in the Analysis of Noises of Dissipative Antenna Arrays. Telecommun. Radio Eng. vol. 57, no. 6-7, pp. 47–50. DOI: https://doi.org/10.1615/TelecomRadEng.v57.i6-7.30

14. RAZEVIG, V. D. (ed.), POTAPOV, Y. V. and KURUSHIN, A. A., 2003. Microwave devices design using Microwave Office software. Moscow, Russia: Solon-Press Publ. (in Russian).

15. KRYMKIN, V. V., 1971. The spectrum of background low frequency radio emission. Radiophys. Quantum Electron. vol. 14, is. 2, pp. 161–164. DOI: https://doi.org/10.1007/BF01031395

16. WARNICK, K. F., IVASHINA, M. V., MAASKANT, R. and WOESTENBURG, B., 2010. Unified Definitions of Efficiencies and System Noise Temperature for Receiving Antenna Arrays. IEEE Trans. Antennas Propag. vol. 58, no. 6, pp. 2121–2125. DOI: https://doi.org/10.1109/TAP.2010.2046859

17. IVASHINA, M. V., MAASKANT, R. and WOESTENBURG, B., 2008. Equivalent System Representation to Model the Beam Sensitivity of Receiving Antenna Arrays. IEEE Antenn. Wireless Propag. Lett. vol. 7, pp. 733–737. DOI: https://doi.org/10.1109/LAWP.2008.2006917

18. HICKS, B. C., PARAVASTU-DALAL, N., STEWART, K. P., ERICKSON, W. C., RAY, P. S., KASSIM, N. E., BURNS, S., CLARKE, T., SCHMITT, H., CRAIG, J., HARTMAN, J. and WEILER, K. W., 2012. A Wide-Band, Active Antenna System for Long Wavelength Radio Astronomy. Publ. Astron. Soc. Pac. vol. 124, no. 920, pp. 1090–1104. DOI: https://doi.org/10.1086/668121

19. ERICKSON, B., 2005. Integration Times [online]. Long Wavelength Array (LWA) Memo Series. [viewed 12 January 2018]. Available from: http://www.phys.unm.edu/~lwa/memos/memo/lwa0023.pdf

20. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M., VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEßMEIER, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI: https://doi.org/10.1142/S2251171716410105

 


Keywords


radio telescope; active phased antenna array; subarray; beam scanning; noise temperature; scattering matrix; covariance matrix

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)