DYNAMICS OF THE CHELYABINSK METEOROID ENTERING THE ATMOSPHERE: MASS-ENERGY BALANCE

DOI: https://doi.org/10.15407/rpra23.03.176

Yu. B. Mylovanov, L. F. Chernogor

Abstract


PACS numbers: 93, 96.30.Ys 

Purpose: The study is concerned with determining the height and temporal dependences of the Chelyabinsk meteoroid surface temperature, its emission rate and energy losses, as well as calculations of its ablation parameters, the coefficient of dynamical resistance, and the correction to the height-time dependence of the midsection.

Design/methodology/approach: Numerical calculations have been made of the meteoroid temperature with accounting for the preliminary estimates of the midsection and of the total optical emission intensity, whith the optical corrections taken into account. The conditions for estimating the dynamical resistance have been determined. The corrected height-time dependence of the midsection has been calculated with the known mass loss rate. The implementation of the regularization algorithm utilizes the energy balance.

Findings: The balance of energy losses includes the equations of meteor physics taking into account the deceleration force, the ablation processes, emissions, and the detachment of the meteoroid fragments. The height-time dependences of temperature, emission rates, and the midsection have been obtained. The successive iterations in the regularization algorithm resulted in the corrections to the magnitude of the coefficient of dynamical resistance, the specific ablation energy, and the heat transfer coefficient. The branching ratio for the total kinetic energy is as follows: 16.8 % for air resistance, 8 % for emissions, 8.2 %
for ablation and defragmentation, and 67 % for the kinetic energy of the detached fragments.

Conclusions: Numerical simulations have provided the height and temporal dependences of mass, midsection, emission rates, and meteoroid temperature. The ablation parameters and the dynamical resistance coefficient have been estimated. A balance among energy loss processes associated with the Chelyabinsk meteoroid entering the atmosphere has been constructed.

Key words: Chelyabinsk meteoroid, height and temporal dependences, meteoroid speed, meteoroid temperature, midsection, ablation, total emission, energy balance, coefficient of dynamical resistance, regularization

Manuscript submitted 24.07.2018

Radio phys. radio astron. 2018, 23(3): 176-188

 REFERENCES

1. SOLAR SYSTEM RESEARCH. 2013. vol. 47, no. 4. (Thematical issue).

2. ALEKSEEV, V. A. (ed.), 2013. Proceedings of the international scientific-practical conference “Asteroids and comets. Chelyabinsk event and study of the meteorite falling into the lake Chebarkul”. Chelyabinsk, Russia: Krai Ra Publ. (in Russian).

3. ALPATOV, V. V., BUROV, V. N., VAGIN, J. P., GALKIN, K. A., GIVISHVILI, G. V., GLUHOV, J. V., DAVIDENKO, D. V., ZUBACHEV, D. S., IVANOV, V. N., KARHOV, A. N., KOLOMIN, M. V., KORSHUNOV, V. A., LAPSHIN, V. B., LESHENKO, L. N., LYSENKO, D. A., MINLIGAREEV, V. T., MOROZOVA, M. A., PERMINOVA, E. S., PORTNYAGIN, J. I., RUSAKOV, J. S., STAL, N. L., SYROESHKIN, A. V., TERTYSHNIKOV, A. V., TULINOV, G. F., CHICHAEVA, M. A., CHUDNOVSKY, V. S. and SHTYRKOV, A. Y., 2013. Geophysical conditions at the explosion of the Chelyabinsk (Chebarkulsky) meteoroid in February 15, 2013. Moscow, Russia: FGBU “IPG” Publ. (in Russian).

4. ANTIPIN, N. A. (ed.), 2014. The Chelyabinsk Meteorite – one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ. (in Russian).

5. EMEL’YANENKO, V. V., POPOVA, O. P., CHUGAI, N. N., SHELYAKOV, M. A., PAKHOMOV, YU. V., SHUSTOV, B. M., SHUVALOV, V. V., BIRYUKOV, E. E., RYBNOV, YU. S., MAROV, M. YA., RYKHLOVA, L. V., NAROENKOV, S. A., KARTASHOVA, A. P., KHARLAMOV, V. A. and TRUBETSKAYA, I. A., 2013. Sol. Syst. Res. vol. 47, is. 4, pp. 240–254. DOI: https://doi.org/10.1134/S0038094613040114

6. GRIGORYAN, S. S., IBODOV, F. S. and IBADOV, S. I., 2013. Physical mechanism of Chelyabinsk superbolide explosion. Sol. Syst. Res. vol. 47, no. 4, pp. 268–274. DOI: https://doi.org/10.1134/S0038094613040151

7. POPOVA, O. P., SHUVALOV, V. V., RYBNOV, Y. S., HARLAMOV, V. A., GLAZACHEV, D. O., EMELIANENKO, V. V., KARTASHOVA, A. P. and JENNISKENS, P., 2013. Chelyabinsk meteoroid parameters: Data analysis. In: Dinamicheskie protsessy v geosferah: sb. nauch. tr.
IDG RAN. Moscow, Russia: Geos Publ. is. 4, pp. 10–21 (in Russian).

8. POPOVA, O. P., JENNISKENS, P., EMELYANENKO, V., KARTASHOVA, A., BIRYUKOV, E., KHAIBRAKHMANOV, S., SHUVALOV, V., RYBNOV, Y., DUDOROV, A., GROKHOVSKY, V. I., BADYUKOV, D. D., YIN, Q.-Z., GURAL, P. S., ALBERS, J., GRANVIK, M., EVERS, L. G., KUIPER, J., HARLAMOV, V., SOLOVYOV, A., RUSAKOV, Y. S., KOROTKIY, S., SERDYUK, I., KOROCHANTSEV, A. V., LARIONOV, M. Y., GLAZACHEV, D., MAYER, A. E., GISLER, G., GLADKOVSKY, S. V., WIMPENNY, J., SANBORN, M. E., YAMAKAWA, A., VEROSUB, K. L., ROWLAND, D. J., ROESKE, S., BOTTO, N. W., FRIEDRICH, J. M., ZOLENSKY, M. E., LE, L., ROSS, D., ZIEGLER, K., NAKAMURA, T., AHN, I., LEE, J. I., ZHOU, Q., LI, X. H., LI, Q. L., LIU, Y., TANG, G.-Q., HIROI, T., SEARS, D., WEINSTEIN, I. A., VOKHMINTSEV, A. S., ISHCHENKO, A. V., SCHMITT-KOPPLIN, P., HERTKORN, N., NAGAO, K., HABA, M. K., KOMATSU, M. and MIKOUCHI, T., 2013. Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. vol. 342, is. 6162, pp. 1069–1073. DOI: 10.1126/ science.1242642

9. POPOVA, O. P., JENNISKENS, P., EMELYANENKO, V., KARTASHOVA, A., BIRYUKOV, E., KHAIBRAKHMANOV, S., SHUVALOV, V., RYBNOV, Y., DUDOROV, A., GROKHOVSKY, V. I., BADYUKOV, D. D., YIN, Q.-Z., GURAL, P. S., ALBERS, J., GRANVIK, M., EVERS, L. G., KUIPER, J., HARLAMOV, V., SOLOVYOV, A., RUSAKOV, Y. S., KOROTKIY, S., SERDYUK, I., KOROCHANTSEV, A. V., LARIONOV, M. Y., GLAZACHEV, D., MAYER, A. E., GISLER, G., GLADKOVSKY, S. V., WIMPENNY, J., SANBORN, M. E., YAMAKAWA, A., VEROSUB, K. L., ROWLAND, D. J., ROESKE, S., BOTTO, N. W., FRIEDRICH, J. M., ZOLENSKY, M. E., LE, L., ROSS, D., ZIEGLER, K., NAKAMURA, T., AHN, I., LEE, J. I., ZHOU, Q., LI, X. H., LI, Q. L., LIU, Y., TANG, G.-Q., HIROI, T., SEARS, D., WEINSTEIN, I. A., VOKHMINTSEV, A. S., ISHCHENKO, A. V., SCHMITT-KOPPLIN, P., HERTKORN, N., NAGAO, K., HABA, M. K., KOMATSU, M. and MIKOUCHI, T., 2013. Supplementary materials for Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science [online]. vol. 342. [viewed 27 July 2018]. Available from: www.sciencemag.org/cgi/ content/full/science.1242642/DC1

10. CHERNOGOR, L. F. and ROZUMENKO, V. T., 2013. The physical effects associated with Chelyabinsk meteorite’s passage. Probl. Atom. Sci. Tech. vol. 86, no. 4, pp. 136–139.

11. CHERNOGOR, L. F., 2013. The main physical effects associated with the Chelyabinsk bolide passage. In: Asteroids and comets. Chelyabinsk event and study of the meteorite falling into the lake Chebarkul: Proceedings of the international scientific-practical conference. Chelyabinsk, Russia: Krai Ra Publ., pp. 148–152 (in Russian).

12. CHERNOGOR, L. F., 2013. Plasma, electromagnetic and acoustic effects of meteorite Chelyabinsk. Inzhenernaya fizika. no. 8, pp. 23–40 (in Russian).

13. CHERNOGOR, L. F. and GARMASH, K. P., 2013. Disturbances in Geospace Associated with the Chelyabinsk Meteorite Passage. Radio Phys. Radio Astron. vol. 18, no. 3, pp. 231–243 (in Russian).

14. CHERNOGOR, L. F., 2013. Large-scale disturbances in the Earth’s magnetic field associated with the Chelyabinsk meteorite. Radiofizika i elektronika. vol. 4 (18), no. 3, pp. 47–54 (in Russian).

15. CHERNOGOR, L. F., MILOVANOV, YU. B., FEDORENKO, V. N. and TSYMBAL, A. M., 2013. Satellite observations of the ionospheric disturbances followed by the fall of Chelyabinsk meteorite. Kosmіchna nauka і tekhnologіya. vol. 19, no. 6, pp. 38–46 (in Russian). DOI: https://doi.org/10.15407/knit2013.06.038

16. CHERNOGOR, L. F. and BARABASH, V. V., 2014. Ionosphere disturbances accompanying the flight of the Chelyabinsk body. Kinemat. Phys. Celest. Bodies. vol. 30, no. 3, pp. 126–136. DOI: 10.3103/ S0884591314030039

17. CHERNOGOR, L. F., 2014. Geomagnetic field effects of the Chelyabinsk meteoroid. Geomagn. Aeron. vol. 54, no. 5, pp. 613–624. DOI: https://doi.org/10.1134/S001679321405003X

18. CHERNOGOR, L. F., 2015. Ionospheric effects of Chelyabinsk meteoroid. Geomagn. Aeron. vol. 55, no. 3, pp. 353–368. DOI: https://doi.org/10.1134/S0016793215030044

19. POPOVA, O. P., SHUVALOV, V. V., RYBNOV, Y. S., KHARLAMOV, V. A., GLAZACHEV, D. O., EMELIANENKO, V. V., KARTASHOVA, A. P. and JENNISKENS, P., 2014. Chelyabinsk meteoroid: data analysis. In: ANTIPIN, N. A., ed. The Chelyabinsk Meteorite – one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ., pp. 364–376 (in Russian).

20. CHERNOGOR, L. F., 2014. Main effects of Chelyabinsk meteorite fall: the results of physical and mathematical modelling. In: ANTIPIN, N. A., ed. The Chelyabinsk Meteorite – one year on the Earth: Proceedings of All-Russian Scientific Conference. Chelyabinsk, Russia: Kamennyi poyas Publ., pp. 229–264 (in Russian).

21. CHERNOGOR, L. F., 2017. Chelyabinsk meteoroid acoustic effects. Radio Phys. Radio Astron. vol. 22, no. 1, pp. 53–66 (in Russian). DOI: https://doi.org/10.15407/rpra22.01.053

22. CHERNOGOR, L. F., 2017. Atmospheric-seismic effect of Chelyabinsk meteoroid. Radio Phys. Radio Astron. vol. 22, no. 2, pp. 123–137 (in Russian). DOI: https://doi.org/10.15407/rpra22.02.123

23. STULOV, V. P., MIRSKII, V. N. and VISLYI, A. I., 1995. Aerodynamics of Bolides. Moscow, Russia: Nauka Publ. (in Russian).

24. ADUSHKIN, V. V. and NEMCHINOV, I. V. (eds.), 2005. Catastrophic Impacts of Cosmic Bodies. Moscow, Russia: ECC, Akademkniga Publ. (in Russian).

25. BRONSTEN, V. A., 1983. Physics of Meteoric Phenomena. Dordrecht, Holland: D. Reidel Publ. Co. DOI: https://doi.org/10.1007/978-94-009-7222-3

26. CHERNOGOR, L. F. and MILOVANOV, YU. B., 2018. Dynamics of the Chelyabinsk Meteoroid Fall: Altitude and Time Dependences. Radio Phys. Radio Astron. vol. 23, no. 2, pp. 104–115 (in Russian). DOI: https://doi.org/10.15407/rpra23.02.104

27. MILOVANOV, YU. B. and CHERNOGOR, L. F., 2017. Regularization Algorithm for Calculating Height and Temporal Characteristics Describing the Dynamics of Chelyabinsk Meteoroid Passage Through the Atmosphere. Visnyk Kharkivs’koho Natsional’noho Universytetu. Radiofizyka i elektronika. vol. 26, pp. 75–79 (in Russian).

28. KRUCHINENKO, V. G., 2012. Mathematical and physical analysis of the meteor phenomena. Kyiv, Ukraine: Naukova Dumka Publ. (in Ukrainian).

29. SEDUNOV, YU. S., AVDIUSHIN, S. I., BORISENKOV, E. P., et al. (eds.), 1991. Atmosphere. Handbook. Leningrad, Russia: Gidrometeoizdat Publ. (in Russian).

30. BROWN, P., SPALDING, R. E., REVELLE, D. O., TAGLIAFERRI, E. and WORDEN, S. P., 2002. The flux of small near-Earth objects colliding with the Earth. Nature. vol. 420, no. 6913, pp. 294–296. DOI: https://doi.org/10.1038/nature01238

31. KNUNYANTS, I. L. (ed.), 1983. Chemical encyclopedic dictionary. Moscow, Russia: Soviet encyclopedia Publ. (in Russian).

32. CLARKE, S. P. (ed.), 1969. Handbook of physical constants of rocks. Moscow, Russia: Mir Publ. (in Russian).

 

 


Keywords


Chelyabinsk meteoroid; height and temporal dependences; meteoroid speed; meteoroid temperature; midsection; ablation; total emission; energy balance; coefficient of dynamical resistance; regularization

Full Text:

PDF