BEHIND THE ZONE OF AVOIDANCE OF THE MILKY WAY: WHAT CAN WE RESTORE BY DIRECT AND INDIRECT METHODS?
Abstract
PACS number: 98.35.-a °
Purpose: to present a brief overview of methods for restoring the large-scale structure of the Universe behind the Zone of Avoidance (ZoA) of the Milky Way; to propose a new “algorithm of darning the ZoA” and new approach based on the Generative adversarial network (GAN) to recover galaxy distribution in the ZoA using optical surveys as an additional platform for programming the artificial neural networks.
Design/methodology/approach: Due to the extensive monitoring observations in radio (DOGS project, in HI line), infrared (IRAS and 2MASS surveys), and X-ray spectral ranges, the ZoA has been decreased significantly in size and now the obscured part is about 10% of the sky in the visible spectral range. The Cosmic Microwave Background (CMB) measurements showed a 180° asymmetry known as the dipole: despite the fact that the resulting vector lies within 20° of the observed CMB dipole, the calculations remain highly ambiguous, partly because the galaxies in the ZoA are not taken into account and the concept of “attractors” should be reconsidered. Hence, the analysis of the spatial distribution of galaxies and their groups in the regions surrounding and behind the ZoA of Milky Way remains a complex and unresolved problem, and estimation of the “invisible” content of the spatial galaxy distribution, which is obscured by this absorption zone, becomes a highly actual one. Restoring the ZoA is possible by indirect methods (signal processing applied to obscured and incomplete data; Voronoi tessellation, etc.). These recovery methods, however, work only for large-scale structures in the ZoA; they are practically not sensitive to individual galaxies and small galaxy systems. We suggest the machine learning technique such as the GAN to apply for modeling the “invisible” spatial galaxy distribution behind the ZoA.
Findings: We present “the algorithm of darning the ZoA” for dividing the real extragalactic surveys (e.g, the SDSS DR 14 galaxy sample) on the slices by redshifts, stellar magnitudes, coordinates and other parameters to form a training sample, and the general GAN scheme for the ZoA filling. We discuss principal tasks to generate galaxy distributions and their properties in the ZoA from latent space of features and describe how the discriminative network will compare the obtained artificial survey with the real one and evaluate how it is a realistic one.
Conclusions: The incompleteness of data depending on wavelengths indicates that there are steal not resolved problems such as the dynamics in the Local Group and the near Universe; the large-scale structure of the Universe in the sky region obscured by the Milky Way; the velocity flow fields towards the Great Attractor; the CMB dipole. Here, we propose a new “algorithm of darning the ZoA” and the general GAN scheme as an additional machine learning platform to recover a spatial distribution behind the ZoA of our Galaxy.
Key words: large-scale structure of the Universe, Milky Way, galaxies, galaxy clusters, zone of avoidance, machine learning, Generative adversarial network (GAN), “algorithm of darning the ZoA”
Manuscript submitted 19.10.2018
Radio phys. radio astron. 2018, 23(4): 244-257
REFERENCES
1. KRAAN-KORTEWEG, R. C. and LAHAV, O., 2000. The Universe behind the Milky Way. Astron. Astrophys. Rev. vol. 10, no. 3, pp. 211–261. DOI: https://doi.org/10.1007/s001590000011
2. MAFFEI, P., 2003. My Researches at the Infrared Doors. Mem. S. A. It. vol. 74, no. 1, pp. 19–28.
3. SPINRAD, H., SARGENT, W. L. W., OKE, J. B., NEUGEBAUER, G., LANDAU, R., KING, I. R., GUNN, J. E., GARMIRE, G. and DIETER, N. H., 1971. Maffei 1: a New Massive Member of the Local Group? Astrophys. J. vol. 163, id. L25. DOI: https://doi.org/10.1086/180660
4. BUTA, R. J. and MCCALL, M. L., 1999. The IC 342/ Maffei Group Revealed. Astrophys. J. Suppl. Ser. vol. 124, pp. 33–93. DOI: https://doi.org/10.1086/313255
5. DAVIDGE, T. J. and VAN DEN BERGH, S., 2001. The Detection of Bright Asymptotic Giant Branch Stars in the Nearby Elliptical Galaxy Maffei 1. Astrophys. J. vol. 553, is. 2, id. L133. DOI: https://doi.org/10.1086/320692
6. HUCHTMEIER, W. K., LERCHER, G., SEEBERGER, R., SAURER, W. and WEINBERGER, R., 1995. Two new possible members of the IC342-Maffei1/2 group of galaxies. Astron. Astrophys. vol. 293, pp. L33–L36.
7. KARACHENTSEV, I. D., SHARINA, M. E., DOLPHIN, A. E. and GREBEL, E. K., 2003. Distances to nearby galaxies around IC 342. Astron. Astrophys. vol. 408, pp. 111–118. DOI: https://doi.org/10.1051/0004-6361:20030912
8. JARRETT, T. H., CHESTER, T., CUTRI, R., SCHNEIDER, S., ROSENBERG, J., HUCHRA, J. P. and MADER, J., 2000. 2MASS Extended Sources in the Zone of Avoidance. Astron. J. vol. 120, is. 1, pp. 298–313. DOI:
https://doi.org/10.1086/301426
9. LU, N. Y., DOW, M. W., HOUCK, J. R., SALPETER, E. E. and LEWIS, B. M., 1990. dentifying galaxies in the zone of avoidance. Astrophys. J. vol. 357, pp. 388–407. DOI: https://doi.org/10.1086/168929
10. KRAAN-KORTEWEG, R. C., LOAN, A. J., BURTON, W. B., LAHAV, O., FERGUSON, H. C., HENNING, P. A. and BELL, L. D., 1994. Discovery of a nearby spiral galaxy behind the Milky Way. Nature. vol. 372, is. 6501, pp. 77–79.
11. BURTON, W. B., VERHEIJEN, M. A., KRAAN-KORTEWEG, R. C. and HENNING, P. A., 1996. Neutral hydrogen in the nearby galaxies Dwingeloo 1 and Dwingeloo 2. Astron. Astrophys. vol. 309, pp. 687–701.
12. HUCHTMEIER, W. K., LERCHER, G., SEEBERGER, R., SAURER, W. and WEINBERGER, R., 1995. Two new possible members of the IC342-Maffei1/2 group of galaxies. Astron. Astrophys. vol. 293L, pp. L33–L36.
13. KARACHENTSEV, I. D., 2005. The Local Group and Other Neighboring Galaxy Groups. Astron. J. vol. 129, no. 1, pp. 178–188. DOI: https://doi.org/10.1086/426368
14. LAHAV, O., BROSCH, N., GOLDBERG, E., HAU, G. K. T., KRAAN-KORTEWEG, R. C. and LOAN, A. J., 1998. Galaxy candidates in the Zone of Avoidance. Mon. Not. R. Astron. Soc. vol. 299, is. 1, pp. 24–30. DOI: https://doi.org/10.1046/j.1365-8711.1998.01686.x.
15. SAURER, W., SEEBERGER, R. and WEINBERGER, R., 1997. Penetrating the “zone of avoidance”. IV. An optical survey for hidden galaxies in the region -130°≤l≤130°, -5°≤l≤+5°. Astron. Astrophys. Suppl. Ser. vol. 126, no. 1, pp. 247–250. DOI: https://doi.org/10.1051/aas:1997385
16. BABYK, IU. V. and VAVILOVA, I. B., 2012. The Distribution of Baryon Matter in the Nearby X-ray Galaxy Clusters. Odessa Astronomical Publications. vol. 25, is. 2, pp. 119–124.
17. BABYK, IU. V. and VAVILOVA, I. B., 2013. Comparison of Optical and X-ray Mass Estimates of the Chandra Galaxy Clusters at z<0.1. Odessa Astronomical Publications. vol. 26, pp. 175–178.
18. BABYK, IU. and VAVILOVA, I., 2014. The Chandra X-ray galaxy clusters at z<0.4: constraints on the evolution of Lx -T-Mg relations. Astrophys. Space Sci. vol. 349, is. 1, pp. 415–421. DOI: https://doi.org/10.1007/s10509-013-1630-z
19. BABYK, IU. V., DEL POPOLO, A. and VAVILOVA, I. B., 2014. Chandra X-ray galaxy clusters at z<0.4: Constraints on the inner slope of the density profiles. Astron. Rep. vol. 58, no. 9, pp. 587–610. DOI: https://doi.org/10.1134/S1063772914090017
20. KOCEVSKI, D. D., EBELING, H. and MULLIS, C. R., 2003. Clusters in the Zone of Avoidance. In: J. S. MULCHAEY, A. DRESSLER, and A. OEMLER, eds. Carnegie Observatories Astrophysics Series. Vol. 3: Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution. [online]. [viewed 17.10.2018. Available from: http://cds.cern.ch/record/614259/files/0304453.pdf
21. EBELING, H., JONES, L. R., FAIRLEY, B. W., PERLMAN, E., SCHARF, C. and HORNER, D., 2001. Discovery of a Very X-Ray Luminous Galaxy Cluster at z=0.89 in the Wide Angle ROSAT Pointed Survey. Astrophys. J. vol. 548, is. 1, pp. L23–L27. DOI: https://doi.org/10.1086/318915
22. KARACHENTSEV, I. D., MAKAROV, D. I. and KAISINA, E. I., 2013.Updated Nearby Galaxy Catalog. Astron. J. vol. 145, is. 4. id. 101. DOI: https://doi.org/10.1088/0004-6256/145/4/101
23. KASHIBADZE, O. G., KARACHENTSEV, I. D. and KARACHENTSEVA, V. E., 2014. Surveying the Local Supercluster Plane. Astrophys. Bull. vol. 73, no. 2, pp. 124–141. DOI: https://doi.org/10.1134/S1990341318020025
24. VAVILOVA, I. B., 2000. Wavelet analysis as approach to recognize abundance zone in galaxy distribution. Kinematika i Fizika Nebesnykh Tel. vol. 16(3), pp. 155.
25. ERDOĞDU, P. and LAHAV, O., 2009. Is the misalignment of the Local Group velocity and the dipole generated by the 2MASS Redshift Survey typical in Λ cold dark matter and the halo model of galaxies? Phys. Rev. D. vol. 80, is. 4, id. 043005. DOI: https://doi.org/10.1103/PhysRevD.80.043005
26. KOGUT, A., LINEWEAVER, C., SMOOT, G. F., BENNETT, C. L., BANDAY, A., BOGGESS, N. W., CHENG, E. S., DE AMICI, G., FIXSEN, D. J., HINSHAW, G., JACKSON, P. D., JANSSEN, M., KEEGSTRA, P., LOEWENSTEIN, K., LUBIN, P., MATHER, J. C., TENORIO, L., WEISS, R., WILKINSON, D. T. and WRIGHT, E. L., 1993. Dipole anisotropy in the COBE DMR first year sky maps. Astrophys. J. vol. 419. DOI: https://doi.org/10.1086/173453
27. GIOVANELLI, R. and HAYNES, M. P., 1985. A 21cm survey of the Pisces-Perseus supercluster. I – The declina tion zone +27.5 to +33.5 degrees. Astron. J. vol. 90, is. 12, pp. 2445–2473. DOI: https://doi.org/10.1086/113949
28. KOLATT, T. and DEKEL, A. 1997. Large-scale power spectrum from peculiar velocities. Astrophys. J. vol. 479, no. 2, pp. 592–605. https://doi.org/10.1086/303894
29. VASYLENKO, M. YU. and KUDRYA, YU. N., 2017. Dipole bulk velocity based on new data sample of galaxies from the catalogue 2MFGC. Adv. Astron. Space. Phys. vol. 7, is. 1-2, pp. 6–11. DOI: https://doi.org/10.17721/2227-1481.7.6-11
30. KRAAN-KORTEWEG, R. C., CLUVER, M. E., BILICKI, M., JARRETT, T. H., COLLESS, M., ELAGALI, A., BÖHRINGER, H. and CHON, G., 2016. Discovery of a supercluster in the ZOA in Vela. Mon. Not. R. Astron. Soc. vol. 466, is. 1, pp. L29–L33. DOI: https://doi.org/10.1093/mnrasl/slw229
31. KRAAN-KORTEWEG, R. C., 2005. Cosmological Structures behind the Milky Way. In: S. RÖSER, ed. Reviews in Modern Astronomy 18: From Cosmological Structures to the Milky Way. New York: Wiley. pp. 48–75. DOI:https://doi.org/10.1002/3527608966.ch3
32. SAID, K., KRAAN-KORTEWEG, R. C., and JARRETT, T. H., 2014. Galaxy peculiar velocities in the Zone of Avoidance. In: R. BOTHA and T. JIL, eds. Proc. SAIP2013, the 58th Annual Conference of the South African Institute of Physics. arXiv:1410.2992
33. SAID, K., KRAAN-KORTEWEG, R. C., STAVELEYSMITH, L., WILLIAMS, W. L., JARRETT, T. H. and SPRINGOB, C. M., 2016. NIR Tully-Fisher in the Zone of Avoidance – II. 21 cm HI-line spectra of southern ZOA galaxies. Mon. Not. R. Astron. Soc. vol. 457, is. 3, pp. 2366–2376. DOI: https://doi.org/10.1093/mnras/stw105
34. SAID, K., KRAAN-KORTEWEG, R. C, JARRETT, T. H., STAVELEY-SMITH, L. and WILLIAMS, W. L., 2016. NIR Tully-Fisher in the Zone of Avoidance – III. Deep NIR catalogue of the HIZOA galaxies. Mon. Not. R. Astron. Soc. vol. 462, is. 3, pp. 3386–3400. DOI: https://doi.org/10.1093/mnras/stw1887
35. COURTOIS, H. M., HOFFMAN, Y., TULLY, R. B. and GOTTLÖBER, S., 2012. Three-dimensional Velocity and Density Reconstructions of the Local Universe with Cosmicflows-1. Astrophys. J. vol. 744, is. 1, id. 43. DOI: https://doi.org/10.1088/0004-637X/744/1/43
36. SORCE, J. G., COLLESS, M., KRAAN-KORTEWEG, R. C. and GOTTLÖEBER, S., 2017. Predicting Structures in the Zone of Avoidance. Mon. Not. R. Astron. Soc. vol. 471, is. 3, pp. 3087–3097. DOI: https://doi.org/10.1093/mnras/stx1800
37. BEL, J., MARINONI, C., GRANETT, B. R, GUZZO, L., PEACOCK, J. A., BRANCHINI, E., CUCCIATI, O., DE LA TORRE, S., IOVINO, A., PERCIVAL, W. J., STEIGERWALD, H., ABBAS, U., ADAMI, C., ARNOUTS, S., BOLZONELLA, M., BOTTINI, D., CAPPI, A., COUPON, J., DAVIDZON, I., DE LUCIA, G., FRITZ, A., FRANZETTI, P., FUMANA, M., GARILLI, B., ILBERT, O., KRYWULT, J., LE BRUN, V., LE FÈVRE, O., MACCAGNI, D., MAŁEK, K., MARULLI, F., MCCRACKEN, H. J., PAIORO, L., POLLETTA, M., POLLO, A., SCHLAGENHAUFER, H., SCODEGGIO, M., TASCA, L. A. M., TOJEIRO, R., VERGANI, D., ZANICHELLI, A., BURDEN, A., DI PORTO, C., MARCHETTI, A., MELLIER, Y., MOSCARDINI, L., NICHOL, R. C., PHLEPS, S., WOLK, M. and ZAMORANI, G., 2014. The VIMOS Public Extragalactic Redshift Survey (VIPERS) Ωm0 from the galaxy clustering ratio measured at z~1. Astron. Astrophys. vol. 563, id. A37. DOI: https://doi.org/10.1051/0004-6361/201321942
38. CUCCIATI, O., IOVINO, A., MARINONI, C., ILBERT, O., BARDELLI, S., FRANZETTI, P., LE FÈVRE, O., POLLO, A., ZAMORANI, G., CAPPI, A., GUZZO, L., MCCRACKEN, H. J., MENEUX, B., SCARAMELLA, R., SCODEGGIO, M., TRESSE, L., ZUCCA, E., BOTTINI, D., GARILLI, B., LE BRUN, V., MACCAGNI, D., PICA, J. P., VETTOLANI, G., ZANICHELLI, A., ADAMI, C., ARNABOLDI, M., ARNOUTS, S., BOLZONELLA, M., CHARLOT, S., CILIEGI, P., CONTINI, T., FOUCAUD, S., GAVIGNAUD, I., MARANO, B., MAZURE, A., MERIGHI, R., PALTANI, S., PELLÒ, R., POZZETTI, L., RADOVICH, M., BONDI, M., BONGIORNO, A., BUSARELLO, G., DE LA TORRE, S., GREGORINI, L., LAMAREILLE, F., MATHEZ, G., MELLIER, Y., MERLUZZI, P., RIPEPI, V., RIZZO, D., TEMPORIN, S. and VERGANI, D., 2006. The VIMOS VLT Deep Survey: the build-up of the colour-density relation. Astron. Astrophys. vol. 458, is. 1, pp. 39–52. DOI: https://doi.org/10.1051/0004-6361:20065161
39. ELYIV, A. A., 2006. UHECRs deflections in the IRAS PSCz catalogue based models of extragalactic magnetic field. Eprint arXiv.org. arXiv:astro-ph/0611696
40. VAVILOVA, I. B., 1997. Cluster and wavelet analysis for detachment of the structure of galaxy cluster: comparison. In: V. DI GESU, M. J. B. DUFF, A. HECK, M. C. MACCARONE, L. SCARSI and H. U. ZIMMERMAN, eds. Data Analysis in Astronomy, Proc. of the Fifth Workshop. World Scientific Press, pp. 297–302.
41. FLIN, P. and VAVILOVA, I. B., 1997. Structure and properties of A1226, A1228, A1257. Astrophys. Lett. Commun. vol. 36, no. 1-6, pp. 113–117.
42. GREGUL, A. IA., MANDZHOS, A. V. and VAVILOVA, I. B., 1991. The existence of the structural anisotropy of the Jagiellonian field of the galaxies. Astrophys. Space Sci. vol. 185, is. 2, pp. 223–235. DOI: https://doi.org/10.1007/BF00643190
43. KARACHENTSEVA, V. E. and VAVILOVA, I. B. , 1994. Clustering of Low Surface Brightness Dwarf Galaxies in the Local Supercluster. In: G. MEYLAN and P. PRUGNIEL, eds. Dwarf Galaxies, ESO Conf. and Workshop Proceedings. Garching: European Southern Observatory (ESO), pp. 91–100.
44. VAVILOVA, I. B., KARACHENTSEVA, V. E., MAKAROV, D. I. and MELNYK, O. V., 2005. Triplets of Galaxies in the Local Supercluster. I. Kinematic and Virial Parameters. Kinematika i Fizika Nebesnykh Tel. vol. 21, no. 1, pp. 3–20.
45. LAHAV, O., FISHER, K. B., HOFFMAN, Y., SCHARPE, C. A. and ZAROUBI, S., 1994. Wiener Reconstruction of All-Sky Galaxy Surveys in Spherical Harmonics. Astrophys. J. Lett. vol. 423, is. 2, pp. L93. DOI: https://doi.org/10.1086/187244
46. BRANCHINI, E., TEODORO, L., FRENK, C. S., SCHMOLDT, I., EFSTATHIOU, G., WHITE, S. D. M., SAUNDERS, W., SUTHERLAND, W., ROWAN-ROBINSON, M., KEEBLE, O., TADROS, H., MADDOX, S. and OLIVER, S., 1999. A non-parametric model for the cosmic velocity field. Mon. Not. R. Astron. Soc. vol. 308, is. 1, pp. 1–28. DOI: https://doi.org/10.1046/j.1365-8711.1999.02514.x
47. VAVILOVA, I. and MELNYK, O., 2005. Voronoi tessellation for galaxy distribution. In: H. SYTA, A. YURACHKIVSKY, and P. ENGEL, eds. “Voronoi’s Impact on Modern Science” Mathematics and its Applications. Proc. of the Institute of Mathematics of the NAS of Ukraine. Kyiv, Ukraine, 2005. vol. 55, pp. 203–212.
48. MELNYK, O. V., ELYIV, A. A. and VAVILOVA, I. B., 2006. The structure of the Local Supercluster of galaxies detected by three-dimensional Voronoi’s tessellation method. Kinematika i Fizika Nebesnykh Tel. vol. 22, no. 4, pp. 283–296.
49. ELYIV, A., MELNYK, O. and VAVILOVA, I., 2009. High-order 3D Voronoi tessellation for identifying isolated galaxies, pairs and triplets. Mon. Not. R. Astron. Soc. vol. 394, is. 3, pp. 1409–1418. DOI: https://doi.org/10.1111/j.1365-2966.2008.14150.x
50. DOBRYCHEVA, D. V., MELNYK, O. V., VAVILOVA, I. B. and ELYIV, A. A., 2014. Environmental Properties of Galaxies at z < 0.1 from the SDSS via the Voronoi Tessellation. Odessa Astronomical Publications. vol. 27, pp. 26–27.
51. CUCCIATI, O., GRANETT, B. R., BRANCHINI, E., MARULLI, F., IOVINO, A., MOSCARDINI, L., BEL, J., CAPPI, A., PEACOCK, J. A., DE LA TORRE, S., BOLZONELLA, M., GUZZO, L., POLLETTA, M., FRITZ, A., ADAMI, C., BOTTINI, D., COUPON, J., DAVIDZON, I., FRANZETTI, P., FUMANA, M., GARILLI, B., KRYWULT, J., MAŁEK, K., PAIORO, L., POLLO, A., SCODEGGIO, M., TASCA, L. A. M., VERGANI, D., ZANICHELLI, A., DI PORTO, C. and ZAMORANI, G., 2014. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Never mind the gaps: Comparing techniques to restore homogeneous sky coverage. Astron. Astrophys. vol. 565, id. A67. DOI: https://doi.org/10.1051/0004-6361/201423409
52. STARCK, J. L, PANTIN, E. and MURTAGH, F., 2002. Deconvolution in Astronomy: A Review. Publ. Astron. Soc. Pac. vol. 114, is. 800, pp. 1051–1069. DOI: https://doi.org/10.1086/342606
53. CANTALE, N., COURBIN, F., TEWES, M., JABLONKA, P. and MEYLAN, G., 2016. Firedec: a two-channel finite-resolution image deconvolution algorithm. Astron. Astrophys. vol. 589, id. A81. DOI: https://doi.org/10.1051/0004-6361/201424003
54. SAVANEVYCH, V. E., KHLAMOV, S. V., VAVILOVA, I. B., BRIUKHOVETSKYI, A. B., POHORELOV, A. V., MKRTICHIAN, D. E., KUDAK, V. I., PAKULIAK, L. K., DIKOV, E. N., MELNIK, R. G., VLASENKO, V. P. and REICHART, D. E., 2018. A method of immediate detection of objects with a near-zero apparent motion in series of CCD-frames. Astron. Astrophys. vol. 609, id. A54. DOI: https://doi.org/10.1051/0004-6361/201630323
55. SCHAWINSKI, K., ZHANG, C., ZHANG, H., FOWLER, L. and SANTHANAM, G. K., 2017. Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit. Mon. Not. R. Astron. Soc. Lett. vol. 467, is. 1, pp. L110–L114. DOI: https://doi.org/10.1093/mnrasl/slx008
56. GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D., OZAIR, S., COURVILLE, A. and BENGIO, Y., 2014. Generative Adversarial Networks. In: Advances in Neural Information Processing Systems 27 (NIPS 2014). NIPS’14 Proceedings of the 27th International Conference on Neural Information Processing Systems 2014. vol. 2, pp. 2672–2680. arXiv:1406.2661.
57. DOBRYCHEVA, D. V., VAVILOVA, I. B., MELNYK, O. V. and ELYIV, A. A., 2017. Machine learning technique for morphological classification of galaxies at z<0.1 from the SDSS. E-print arXiv.org. arXiv:1712.08955
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)